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Some useful electrical circuits

Electrical circuits are important in our lives, certainly in electric guitars, televi-
sion sets, and computers. However, they are also important in understanding how
our bodies work. In fact, most nerve activity, including that in the brain, is electri-
cal: Ionic currents passing through membranes and across synaptic gaps are the
dominant physical properties of neurons. This first chapter introduces some ba-
sic elements of electrical circuits, starting with simple resistors and ending with
a description of some modern integrated circuit chips that behave like neurons.

Electrical circuits are described in terms of the physical quantities of volt-
age (V) and current (/). Voltages and currents are not intuitive; they cannot
be directly observed by us without special instruments such as voltmeters and
ammeters. However, we can think of voltage as being a pressure that pushes
electrons in a conductor and of current as measuring the electron flow. We
gain intuition about voltage and current by thinking of them as being solu-
tions of the appropriate mathematical models, either ones derived here from
Kirchhoft’s Laws for the elementary circuits or, more generally, ones derived
from Maxwell’s equations in more advanced work.

The circuits studied here involve several components or circuit elements.
These are listed next along with their notations and IV (current-voltage)-charac-
teristics. Circuit elements can be combined to form circuits, and these can be
modeled using Kirchhoff’s laws. RLC circuits are important examples of simple
circuits. Other important circuits presented in this chapter include filters and
oscillator feedback circuits.

1.1 Circuit elements

Circuits are combinations of physical devices such as resistors and capacitors,
and they are described using mathematical terms.

1
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2 1. Some useful electrical circuits
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Figure 1.1. A resistor. A current / passing through the resistor with resistance R creates
a voltage change across the device of size Vg = RI.
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Figure 1.2. An inductor. A current / passing through an inductor creates a voltage
change of size V;, = L1.

Resistors are devices that impede the flow of current. Let  be the current into
the resistor and V the voltage across it as shown in Figure 1.1. Observations
of how Vi and I are related led to Ohm'’s law

Vr = RI.

That is, the voltage across a resistor is proportional to the current through it.
The constant of proportionality, the resistance R, is measured in units of ohms.
A high (low) resistance with a fixed voltage results in a low (high) current.

Inductors are coils of wire wrapped around a metal core (see Figure 1.2).
Current through the coil induces a magnetic field in the core that creates a
voltage. In an inductor I and V}, are related by the formula

V. =LI,

where I = dI /dt. The constant L is called the inductance, and it is measured in
units of henrys. Inductors are important in circuits described in later chapters,

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521590752
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-59075-4 - An Introduction to the Mathematics of Neurons: Modeling in the
Frequency Domain, Second Edition

Frank C. Hoppensteadt

Excerpt

More information

1.1 Circuit elements 3

C
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Figure 1.3. A capacitor. Charge accumulates on the plates of the capacitor at a rate
proportional to 7, and there results a voltage change Ve = I/C.

but there they are replaced by more convenient integrated circuits. Still, the
result has the same /V-characteristic and so inductors are written into circuits
even though they are replaced by other devices.

A capacitor is a device that accumulates charge on plates separated by
a nonconductor (Figure 1.3). The charge coming in (/) accumulates and the

IV-relation is
1 t
Ve =— Idt
c=¢ f

I=CVc.

or, equivalently,

The constant C is called the capacitance, and it is measured in units of farads.
In most of the circuits used here the appropriate units are microfarads (10~°
farads).

1.1.1 Electromotive force

A power supply, such as a battery or an alternating voltage, applies an electro-
motive force (voltage) to a circuit. We denote an electromotive force by E and
depict it as shown in Figure 1.4. When arrows are present, they indicate the
direction from positive to negative for the variables they describe.

1.1.2 Voltage adders and multipliers

Voltages can be added and multiplied by using a combination of operational
amplifiers [68]. Figure 1.5 indicates the notation used for a voltage adder and
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4 1. Some useful electrical circuits

Figure 1.4. A battery. Although it is indicated here, we ignore the polarity of batteries
in our subsequent diagrams, but this is corrected for in the signs of currents and voltages
in the circuits.

Vi Vi+Va Vi ViV

Va V2

Figure 1.5. A voltage adder (left) and a voltage multiplier (right).

for a voltage multiplier. The result of input voltages u and v is their sum u# + v
or their product u - v, respectively.

1.2 Filters

An important class of circuits involves a resistor, an inductor, and a capacitor in
series with a battery. These are called RLC circuits. A mathematical description
of an RLC circuit can be derived using Kirchhoff’s laws.

Filters are important since they sort out and allow to pass only certain fre-
quencies. The purpose is often to eliminate noise from a signal or to restrict a
signal to a size that meets tolerances of circuit elements farther downstream.
The filters described here are used in various applications later.

1.2.1 Kirchhoff’s laws

Most circuit models are derived using Kirchhoff’s laws. These state that:

e The total voltage measured around any closed loop that can be drawn in the
circuit is zero.

e The total current into any circuit node sums to zero.

A circuit node is any point at which two or more wires come together, and a
closed loop in a circuit is any closed loop that can be made on a circuit diagram.
These definitions are illustrated in the next section.
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1.2 Filters 5
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Figure 1.6. An RLC circuit.

1.2.2 RLC circuits

An RLC circuit is shown in Figure 1.6.
The first of Kirchhoft’s laws implies that / = I satisfies

—E+RI+LI+V =0,

where the four terms on the left are the applied voltage (measured in the clock-
wise direction) and the voltages across the resistor, inductor, and capacitor,
respectively. The current and the capacitor voltage are related by

CV =1
Thus, we get a system of two differential equations:
cv =1,
LI=E—V—RI
These equations can be solved in closed form for V and I once C, L, R, and

E are known. This is performed a little later, but first we will consider the
geometry of solutions.

1.2.2.1 Geometry of solution of an RLC circuit

Geometric methods play a big role in the study of RLC circuits and more
complicated circuits. For this, a plot of I versus V is made, and graphs of the
solutions to this system of equations are constructed.

The first step is to find isoclines. These are the graphs on which V = 0 and
on which / = 0. These are depicted in Figure 1.7.
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6 1. Some useful electrical circuits

I=E—RV({I=0)

/ I1=0(V=0)
4 /v
T \\*

Figure 1.7. Isoclines of the RLC circuit.

Obviously, the static states, or equilibria, of the system occur where the
isoclines cross: In this case, there is one equilibrium (/ = Oand V = E). Since
(V, I')is a vector tangent to the solutions, we can roughly draw the solutions by
observing how they cross the isoclines and axes. Typical crossings are shown
in Figure 1.7. It follows that solutions oscillate around the equilibrium.

Next, we determine the solutions in closed form. This is possible because
the RLC circuit is a linear circuit (see Appendix A).

1.2.2.2 Analytic solution of an RLC circuit
Differentiating the first equation leads to a single second-order differential
equation

LCV+RCV+V=E.

This equation can be solved using the Laplace transform method, as shown in
Appendix A. Note that when resistance in the circuit is negligible, the model
reduces to a harmonic oscillator

LCV+V=E,

where the natural frequency is shown in Appendix A to be ./1/LC.

The ratio R/L represents the damping in the full circuit. From the Appendix,
we see that if R > 0, then solutions spin into the equilibrium. If R = 0, then
the solutions are ellipses about the equilibrium.

1.2.2.3 LC circuits

RLC circuits with no resistance behave like timers. The circuit shown in Figure 1.8
is referred to as an LC circuit.
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1.2 Filters 7
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Figure 1.8. A harmonic oscillator.

As shown next, the solutions of this circuit for V and I describe ellipses in
the V-1 plane centered at V = E, I = 0. A radius drawn from this center to the
point (V(¢), I(t)) moves like one of the hands on a clock. In fact, the LC circuit
can easily be converted to the frequency domain: Let

V=E+rsiné
and
VLCV = rcosé.
After some calculation, we obtain
r =0
0r =r,

where the time constant T = +/LC. Therefore, r = constant. If » # 0, then
6 = 1/t, and equation in the frequency domain completely describes the volt-
age and current dynamics in the circuit: V = E 4+ rsint/r and I = CV =

ro/C/Lcost/t.

1.2.3 RC circuits; low-pass filters

The circuit in Figure 1.9 describes a low-pass filter where E = Vj, is the input
voltage and V = V, is the output voltage.
The mathematical model of a low-pass filter is

_Vin + Rl + Vou = 0,
CVout = I
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8 1. Some useful electrical circuits
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Figure 1.9. A low-pass filter.

This leads to the single equation
RC Vout + Vou = Vin.

Given V;,, we can solve this equation to get

1 t
Voult) = Va0 + —— f e IVRCY (o) ds.
0

The last term in this formula is called a convolution integral; in it, past values
of Vi, are weighted and added up.

1.2.4 Transfer functions

An input-output device where the input voltage W is related to the output
voltage V by the equation

an V" 4 a, VI gV = b, WM bW,

where VUl = d/V/dt/, etc., is referred to as a general filter. This equation can
be solved using Laplace transforms, as shown in Appendix A. Each derivative
is replaced by the transform variable, say s, to the appropriate power: The
result is that if v(s) and W(s) denote the Laplace transforms of V and W,
respectively, then

(ans" + ap_ys" '+ + ao)v =bps" +--+ bo)ﬁf + a polynomial in s.

The last polynomial in s depends on initial conditions, and it is taken to be
known from initial conditions. Therefore, the transform of the output voltage
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1.3 Voltage-controlled oscillators (VCOs) 9

is found to be a rational function of s multiplied by w:
V(s) = W()lbns™ + -+ + bol/[as" + - - + a),

where terms involving the initial conditions are ignored. The inverse transform
formula gives a convolution integral for V:

t
V() = / h(t —tYW(')dt' 4+ aknown function,
0
where h is a function whose Laplace transform is

h(s) = [Bps™ + - - - 4 bol/[ans™ + - - + ao].

The function £ is called the transfer function of the filter, and it is convenient
to follow the engineering literature and write

V() = i)W ()
for the convolution integral formula.
Using this notation, we can write the input—output relation for a low-pass
filter as

Vout(t) = Vin(t)v

1
RCs +1
which carries all the meaning derived earlier in this section. In particular, this
is a convenient shorthand notation for the integral applied to the input voltage.

1.3 Voltage-controlled oscillators (VCOs)

Voltage-controlled oscillators are the basic elements used in some neuron mod-
els studied in later chapters. They are electrical oscillators whose frequency is
modulated or controlled by an input voltage. There are many kinds of voltage-
controlled oscillators available on the electronics market, but we denote a
generic one by VCO and depict it by the graph

Vin = VCO — V(x(1)),

where the input voltage Vi, and the output voltage V are related in a somewhat
complicated way. V is a fixed function, called the wave form (e.g., a square wave,
asaw-tooth wave, or a sinusoidal wave). That s, it is a function that is periodic in
its argument x and has a fixed shape. All three of these possibilities are available
directly from outputs on commercially available VCOs. The function x() is
the phase of the output voltage. For example, if we select the sinusoidal wave
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10 1. Some useful electrical circuits

output (a certain pin coming out of the chip) and the device has settled down
under steady conditions, then x(¢) = wt + ¢, where w is the output frequency,
¢ is the phase lead (if positive) or phase lag (if negative), and the output voltage
would be sin(w? + ¢).

There exists some confusion in the terminology since sometimes ¢ is referred
to as the phase of the output; we will try to be consistent here and describe x as
being the phase of V(x) and when appropriate ¢ will be the phase deviation.

For example, the potential supplied to households in the United States
is 117 volts (root mean square) with a 60-cycle alternating current, and the
voltage observed across the terminals in a wall socket is (approximately)
165 cos(2r 6’—0 + ¢), where time is measured in seconds. The amplitude of
the voltage is 165 and its phase is 27 6’—0 + ¢ (with ¢ = 0, 27/3, or 47r/3). Here
V(x) =cosxand x(t) = 2w g’o- + ¢. The phase difference, say ¢; — ¢, between
two wires in a household, determines the size of the potential drop between the
wires.

Current is ignored in VCOs, and the model is given in terms of the input and
output voltages alone. So rather than using an /V-relation as we did for filters,
we describe the device in terms of an input—output relation. The output of the
VCOis an oscillatory function V of the phase x(t). When Vy;, is in the operating
range of the VCO, the output phase is related to this controlling voltage by the
simple differential equation

X =w+ 0V,
where o is called the VCO center frequency and o is the VCO sensitivity, both
of which are known. Here and below, we take ¢ = 1 by suitably scaling input
voltages. Keep in mind that the units in this equation are correct although o

does not appear explicitly in the following models.
This equation can be solved by integrating it:

x(t) =x(0) + ot + / Vin(s) ds,
0

where x(0) is the initial phase. The output voltage is

\% (a)t + / Vin(s)ds + x(O)) .
0

Thus, the larger is w or Vi, the faster V will oscillate.
We suppose here that all voltages are within the operating range of the VCO
device.
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