Author Index

Note: The notations n, t, and f refer to citations in footnotes, tables, and figure captions, respectively.

Ackerly, S., 121
Ackerman, P. L., 46, 113
Adams, B. C., 287
Agid, Y., 118, 121
Aguire-Garcia, K. G., 463
Ahola, K., 120
Aiello, A., 189, 195, 203–4, 205f, 206t, 207, 208n, 210
Ajjanagadde, V., 464
Akmaian, A., 194n
Alexander, G. E., 390
Alexander, M. P., 462
Allport, A., 10n, 430, 455, 461–2
Alpert, N. M., 54
Alsop, D. C., 55, 217, 463
Alvarez, A. A., 113
Amaral, D. G., 389
Anderson, C. H., 343
Anderson, J. A., 344, 346
Anderson, J. R., xiii, 2, 9, 13–4, 21, 136–7, 139, 141, 150, 152, 155f, 156, 185–90, 194, 195n, 202, 231, 235, 354, 399, 376, 386, 400, 403, 415, 464
Anderson, S. W., 121
Andrade, J., 31t, 53, 431–2
Apfelblat, D., 190
Apeicella, P., 343, 347, 370, 391, 407
Armitage, S. G., 120
Arnetet, P. A., 469f
Ashcraft, M. H., 43, 469
Aslin, R. N., 465
Asplund, R., 247
Atkinson, R. C., 6–7, 14, 16–7, 188, 194, 232, 341–2, 426, 446, 473
Atlas, R. S., 283
Atlas, S., 55, 217, 463
Awh, E., 54, 196, 217, 462
Axelrod, B. N., 121
Ayres, T. J., 218
Baars, B. J., 16–7, 88, 369, 431
Babcock, R. L., 13
Bahrick, H. P., 235
Baillargeon, R., 103
Bain, J. D., 86
Baker, S. C., 36, 393
Baldwin, J. M., 103
Ballard, D. H., 349, 454, 463, 467
Ballas, J. A., 184n
Balota, D. A., 63, 189, 210
Baltes, P. B., 264
Banbury, S., 78
Barbas, H., 124, 393
Barch, D. M., 404
Barley, R. A., 469t
Barnes, D. L., 124
Barone, P., 394
Bauer, B. H., 117, 124
Baumgartner, P., 3
Beardsley, T., xiii, 18, 96
Beaver, W. S., 246
Bechara, A., 407, 472
Beerten, A., 454
Beeson, P. M., 469t
Bekkertan, D., 328
Bell, L. C., 287
Bellezza, F. S., 279
Bellugi, U., 247
Bench, C. J., 120
Bennett, L., 469t
Ben-Shahar, G., 91
Bensinger, D. G., 467
Benton, S. L., 103
Berg, E. A., 120
Berger, R. C., 283
Bernardin, L., 469t
Berry, D. C., 78
Beschin, N., 52, 54
Blair, A., 121

483
Author Index

<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campbell, R.</td>
<td>321</td>
</tr>
<tr>
<td>Cantor, J.</td>
<td>9, 11, 13, 80, 110, 124, 136, 178, 287, 430</td>
</tr>
<tr>
<td>Caplan, D.</td>
<td>33, 88, 136, 208n, 218, 459</td>
</tr>
<tr>
<td>Card, S. K.</td>
<td>187</td>
</tr>
<tr>
<td>Carey, D. P.</td>
<td>333</td>
</tr>
<tr>
<td>Carlson, R. A.</td>
<td>21, 367, 454, 467</td>
</tr>
<tr>
<td>Carpenter, P. A.</td>
<td>xiii, xiv, 1–2, 3n, 11, 13, 15, 17, 21, 38, 79–80, 103, 136, 150, 158, 194, 230–1, 243, 264, 286–8, 292, 395, 421t, 430, 433, 437, 459–60, 469t</td>
</tr>
<tr>
<td>Carrier, M.</td>
<td>7</td>
</tr>
<tr>
<td>Carroll, J. B.</td>
<td>122, 125, 263</td>
</tr>
<tr>
<td>Carullo, J. J.</td>
<td>2, 9, 11, 13, 103, 110, 124, 287, 430</td>
</tr>
<tr>
<td>Case, R.</td>
<td>103, 107</td>
</tr>
<tr>
<td>Casey, B. J.</td>
<td>118, 150, 177t</td>
</tr>
<tr>
<td>Caspari, I.</td>
<td>469t</td>
</tr>
<tr>
<td>Cattell, R. B.</td>
<td>107</td>
</tr>
<tr>
<td>Ceci, S. J.</td>
<td>10m</td>
</tr>
<tr>
<td>Cermak, L. S.</td>
<td>120</td>
</tr>
<tr>
<td>Chabris, C. F.</td>
<td>54</td>
</tr>
<tr>
<td>Chalmers, D. J.</td>
<td>216</td>
</tr>
<tr>
<td>Chalmers, P.</td>
<td>32, 34</td>
</tr>
<tr>
<td>Chambers, D.</td>
<td>50–1</td>
</tr>
<tr>
<td>Changeux, J. F.</td>
<td>390</td>
</tr>
<tr>
<td>Charness, N.</td>
<td>262, 266, 283</td>
</tr>
<tr>
<td>Chase, W. G.</td>
<td>15, 75, 149, 263–4, 267, 273–4, 275n, 277–9, 284–5</td>
</tr>
<tr>
<td>Chelazzi, L.</td>
<td>346</td>
</tr>
<tr>
<td>Chi, M. T. H.</td>
<td>15, 326</td>
</tr>
<tr>
<td>Cho, B.</td>
<td>248</td>
</tr>
<tr>
<td>Chomsky, N.</td>
<td>244–5</td>
</tr>
<tr>
<td>Chorover, S. L.</td>
<td>116</td>
</tr>
<tr>
<td>Christal, R. E.</td>
<td>9, 103, 108n, 124</td>
</tr>
<tr>
<td>Christie, D. F. M.</td>
<td>37</td>
</tr>
<tr>
<td>Churchland, P. M.</td>
<td>431</td>
</tr>
<tr>
<td>Churchland, P. S.</td>
<td>342</td>
</tr>
<tr>
<td>Clark, E. V.</td>
<td>41</td>
</tr>
<tr>
<td>Clark, H. H.</td>
<td>41</td>
</tr>
<tr>
<td>Clifton, C.</td>
<td>75, 242</td>
</tr>
<tr>
<td>Cocchini, G.</td>
<td>52, 54</td>
</tr>
<tr>
<td>Cochran, K. E.</td>
<td>103</td>
</tr>
<tr>
<td>Cohen, J. D.</td>
<td>118–9, 124, 150, 177t, 359, 379, 383, 385–7, 390, 394–5, 401, 404–6, 460</td>
</tr>
<tr>
<td>Cohen, R. M.</td>
<td>119</td>
</tr>
<tr>
<td>Cole, M.</td>
<td>118</td>
</tr>
<tr>
<td>Collette, F.</td>
<td>54</td>
</tr>
<tr>
<td>Collins, K. W.</td>
<td>103</td>
</tr>
<tr>
<td>Collins, P. F.</td>
<td>469</td>
</tr>
<tr>
<td>Colombo, M.</td>
<td>95</td>
</tr>
<tr>
<td>Condon, C. B.</td>
<td>226n</td>
</tr>
<tr>
<td>Connelly, S. L.</td>
<td>146, 157</td>
</tr>
<tr>
<td>Conrad, K. R.</td>
<td>37, 73, 85, 195, 247, 362</td>
</tr>
<tr>
<td>Cook, J. R.</td>
<td>189, 218</td>
</tr>
</tbody>
</table>
Author Index

Cooke, N. J., 283
Cooper, Z., 333
Corin, W., 321
Corley, R., 456
Cornoldi, C., 36, 50
Court, A., 36
Courtney, S. M., 55, 462
Cowan, N., xiii, 2, 14, 16–7, 21, 34, 62–3, 64f, 66–7, 67–8, 69f, 70–1, 72f, 73, 74f, 75–6, 77f, 78–83, 84f, 85–6, 88–92, 93f, 94–7, 105, 189, 195–6, 206, 210, 267, 294, 362, 371, 433, 450, 468
Craik, F. I. M., 85, 314, 322, 404, 428
Crandall, B. W., 282
Crawford, J. D., 124
Crick, F., 356
Cronister-Silverman, A., 469t
Crowder, R. G., 15, 73, 81, 85, 87, 258, 321, 426, 445–6
Crutcher, R. J., 270
Cuenod, C. A., 120
Cuntz, A. R., 81–2
Cunningham, T. F., 144n, 415, 427n
Dagnon, J., 121
Damasio, A. R., 393, 404, 407, 470–2
Damasio, H., 121, 393, 407, 471–2
D’Amato, M. R., 95
Daneman, M., 1–2, 9, 13, 38, 103, 124, 136, 158, 264, 286–7, 395, 456, 459, 468
Dansereau, D. F., 285
Darke, S., 469
Darwin, C. J., 87
Davidson, K. C., 469t
Davidson, R. J., 407
Davies, D. R., 87, 429
Day, L., 34, 76, 82, 195
Dayan, P., 391, 407
De Groot, A., 269, 282
De Benzi, E., 54
De Ribauipierre, A., xiii
De Roo, M., 118
De Vooght, G., 458n
Deacon, D., 90
Decary, A., 120
Deeecke, L., 120
DeFelipe, J., 346, 370
DeFries, J. C., 456
Degueldre, C., 54
Dehaene, S., 390
Dehaene-Lambertz, G., 54
Delfiore, G., 54
Delis, D. C., 121
Della Sala, S., 32–4, 39–40, 52, 54–5, 469t
Demers, R. A., 194n
Dempster, F. N., 264n
Denes, G., 119
Denis, M., 54
Dennett, D. C., 417
Dennis, I., 10n
Desimone, R., 95, 346, 389–90, 398, 404, 430
Desmond, J. E., 122
D’Esposito, M., 55, 217, 463, 469
Dete⁠re, J. A., 55, 217, 463
Detweiler, M., xiii, 2, 9, 21–2, 341, 347, 349, 356–7, 365–6, 369, 414
Deutsch, D., 85, 247
Deutsch, J. A., 85
DeVito, J., 119
Diamond, A., 112, 394
Dimityr, C., 427n
Divac, H. I.
Dodd, B., 321
Dolan, C. P., 248
Dolan, R. J., 120, 393
Donald, M., 8, 467–8
Donchin, E., 46
Donlan, C., 456n
Dowling, M. S., 119
Draper, S. W., 236
Drewse, A. E., 121
Dritschel, B. H., 53
Dubois, B., 118
Duco⁠t, D. A., 313, 332
Duchek, J. M., 189, 210
Duff, S. C., 38
Duke, D. J., 313, 332
Dunbar, K., 385, 387, 405, 460
Duncan, J., 53, 107, 113, 117, 121–2, 430–1, 469t
Dupont, P., 118
Duvoe, A., 36
Dyrnes, S., 247
Ebbinghaus, H., 262, 284, 289
Eccob, J. R., 48
Eddy, J. K., 41
Eddy, W. F., 150
Eggeemeier, F. T., 219
Eldridge, M., 41, 328
Ellis, N. C., 445
Elman, J. L., 465
Ensle, H., 113, 121–2, 431
Engle, R. W., xiii, 2, 9, 11, 13, 45, 65, 80, 103–5, 107, 110, 113, 116, 120, 124, 136, 146, 178, 287, 430, 454–5
Erickson, C. A., 389, 398, 404
Erickson, J. R., 37
Ericsson, K. A., xiii, 2, 11, 15–6, 21, 37–8, 47, 89, 149, 236, 238, 244, 249, 252, 254, 260, 262, 263n, 264–70, 272–4, 275n, 277, 279–80, 282–8, 291t, 449, 454, 460
Eriksen, C. W., 189, 210
Eslinger, P. J., 120
<table>
<thead>
<tr>
<th>Author Index</th>
<th>487</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hagerman, R. J., 469t</td>
<td>Huffman, S. B., 233, 235</td>
</tr>
<tr>
<td>Halford, G. S., 86, 464, 468</td>
<td>Huguenard, B. R., 13</td>
</tr>
<tr>
<td>Halliday, M. S., 36</td>
<td>Hullihan, D., 120</td>
</tr>
<tr>
<td>Halligan, P. W., 371</td>
<td>Hull, A. J., 34, 195</td>
</tr>
<tr>
<td>Hamilton, S. E., 54</td>
<td>Hulme, C., 33, 47, 68t, 75–6, 77f, 89, 217</td>
</tr>
<tr>
<td>Hammond, N. V., 327–8</td>
<td>Hummel, J. E., 464</td>
</tr>
<tr>
<td>Hart, R., 90, 94</td>
<td>Hunt, E. B., 113</td>
</tr>
<tr>
<td>Harlow, H. F., 119, 121</td>
<td>Hutchins, E., 426, 466</td>
</tr>
<tr>
<td>Harnish, R. M., 194n</td>
<td>Hyvärinen, J., 95</td>
</tr>
<tr>
<td>Harris, M. S., 285</td>
<td>Iddon, J. L., 469t</td>
</tr>
<tr>
<td>Hasher, L., xiil, 11, 65, 146, 157, 421t, 459, 468</td>
<td>Institute for Personality and Ability Testing, 107</td>
</tr>
<tr>
<td>Hastings, N. A. J., 196n</td>
<td>Isaac, W., 119</td>
</tr>
<tr>
<td>Haxby, J. V., 55, 462</td>
<td>Isely, C., 195</td>
</tr>
<tr>
<td>Hayhoe, M. M., 454, 467</td>
<td>Ivry, R. B., 18</td>
</tr>
<tr>
<td>Hayhurst, H., 333</td>
<td>Jacobs, J., 10</td>
</tr>
<tr>
<td>Head, H., 434</td>
<td>Jacobsen, C. F., 117</td>
</tr>
<tr>
<td>Healy, A. F., 7, 42, 144n, 189, 218, 415, 426, 427n, 429</td>
<td>Jacobson, K. S., 333</td>
</tr>
<tr>
<td>Heaton, R. K., 120</td>
<td>James, M., 54</td>
</tr>
<tr>
<td>Hebb, D. O., 11, 14n, 63, 121</td>
<td>James, W., 10, 14n, 17, 63, 80, 85, 216</td>
</tr>
<tr>
<td>Heckhausen, J., 264</td>
<td>Javitt, D. C., 90</td>
</tr>
<tr>
<td>Hegarty, M., 425–6</td>
<td>Jensen, A. R., 10n</td>
</tr>
<tr>
<td>Heinz, S. P., 77</td>
<td>Jevons, W., 114</td>
</tr>
<tr>
<td>Heitmeyer, C. L., 184n</td>
<td>Joanette, Y., 120</td>
</tr>
<tr>
<td>Hendry, S. H., 346, 370</td>
<td>John, E. E., 246</td>
</tr>
<tr>
<td>Henry, L. A., 54</td>
<td>Johnson, D. N., 362</td>
</tr>
<tr>
<td>Henson, R. A. N., 189</td>
<td>Johnson, H. J., 189, 210</td>
</tr>
<tr>
<td>Herstein, R. J., 188</td>
<td>Johnson, R., 113, 121, 431, 469t</td>
</tr>
<tr>
<td>Heron, C., 113, 454</td>
<td>Johnson, T., 35, 42, 76, 82, 195</td>
</tr>
<tr>
<td>Hersberger, L., 195</td>
<td>Johnston, W. L., 225</td>
</tr>
<tr>
<td>Hertz-Pannier, L., 120</td>
<td>Johnson-Laitin, P. N., 44, 229, 241</td>
</tr>
<tr>
<td>Heuer, H., 9n</td>
<td>Johnston, W. A., 77</td>
</tr>
<tr>
<td>Hochwa, R. D., 393</td>
<td>Jones, B., 121</td>
</tr>
<tr>
<td>Hille, B. A., 85</td>
<td>Jones, E. G., 346, 370</td>
</tr>
<tr>
<td>Hillyard, S. A., 346</td>
<td>Jones, R. D., 121</td>
</tr>
<tr>
<td>Hinton, G. E., 49, 345</td>
<td>Jones, R. M., 225</td>
</tr>
<tr>
<td>Hirn, W., 86</td>
<td>Junides, J., 15, 31t, 32, 52, 118, 124, 196, 217, 333, 359, 390, 394, 404, 419, 432, 454, 462</td>
</tr>
<tr>
<td>Hochreiter, S., 390</td>
<td>Junker, B. W., 13</td>
</tr>
<tr>
<td>Hodges, J. R., 469t</td>
<td>Junque, C., 120</td>
</tr>
<tr>
<td>Holopainen, A., 469t</td>
<td>Jurado, M. A., 120</td>
</tr>
<tr>
<td>Holcomb, H. B., 119</td>
<td>Judson, E. H., 124</td>
</tr>
<tr>
<td>Holender, D., 63, 71</td>
<td>Kahneman, D., 10, 17, 385, 430, 458</td>
</tr>
<tr>
<td>Holland, A. L., 469t</td>
<td>Kaila, K., 94</td>
</tr>
<tr>
<td>Holtzman, J. D., 96</td>
<td>Kane, M. J., 105, 107, 113, 146, 157</td>
</tr>
<tr>
<td>Holyoak, K. J., 464</td>
<td>Kapur, S., 404</td>
</tr>
<tr>
<td>Hong, Y. J., 112</td>
<td>Kareev, Y., 465</td>
</tr>
<tr>
<td>Hopko, D., 469</td>
<td>Karpov, A., 283</td>
</tr>
</tbody>
</table>
Kass, R. E., 13
Kasznak, A. W., 120
Katlina, T., 94
Katz, R. C., 469t
Katz, S., 196, 217
Kaufman, G., 50–1
Kaufman, L., 94, 150, 188
Kavanagh, D., 53
Keane, M. T., 472
Kehoe, B., 390
Keil, K., 55
Keller, C. V., 75
Keller, T. A., 34, 68t, 73, 74f, 75–6, 77f, 82, 95, 150, 195
Keppel, G., 81
Kerr, N., 36
Kieras, D. E., 21, 184, 186, 187f, 188–90, 193–4, 196, 215, 446, 458
Kiewra, K. A., 103
Kilackey, J., 9
Kimberg, D. Y., 150, 177t, 433, 455, 469
King, J., 103
Kingma, J., 2
Kinsbourne, M., 389, 404
Kintsch, W., xiii, 2, 11, 16, 21, 38, 41, 47, 89, 149, 235–6, 238, 244, 252, 260, 265–8, 270, 275, 277, 280, 284n, 286–7, 289, 291l, 449, 454, 460
Kirk, E. P., 469
Kirsh, D., 466
Klapp, S. T., 2, 170, 356
Klein, G. A., 282
Kliegl, R., 264
Knoll, R. L., 196, 214
Knuttila, J., 90, 94
Koch, C., 356
Koch, K. W., 117
Koenig, O., 470
Koepepe, R. A., 54, 118, 124, 196, 217, 394
Kojima, S., 117
Kolotanowski, G., 283
Konick, A. F., 196, 207
Koresko, R. L., 78, 92
Körkel, J., 15
Koss, F., 225
Kosslyn, S. M., 54, 470
Kraft, R. G., 103
Kramer, L. A., 469t
Krampe, R. Th., 283–4
Krasnecor, N. A., 447
Kristofferson, A. B., 189, 217
Kubota, K., 124
Kurland, M. D., 107
Kutinsky, J., 429
Kyllonen, P. C., 9, 103, 108n, 122, 124–5
Laiacina, M., 32, 34
Laird, J. E., 21, 185–7, 190, 225, 226n, 233, 235, 240n, 248–9

Author Index

Landauer, T. K., 193
Landry, S. H., 469t
Lane, D. M., 283
Lange, W., 120
Lapiere, M. F., 120
LaPointe, L. L., 469t
Larkin, J. H., 235, 237, 466
Lashley, K. S., 189, 434
Lauber, E. J., 190
Laughlin, J. E., 2, 13, 105, 110, 116, 454
Law, D. J., 113, 124
Lawrence, A., 33
Le Bihan, D., 120
Lebierre, C., xiii, 2, 9, 13, 21, 136, 150, 152, 155f, 156
LeDoux, J. E., 95, 470–1
Lehman, J. F., 226n
Lehman, R. A., 120
Lehmann, A. C., 263n, 268–70, 272, 283, 288
Leng, N. R. C., 120
Lerch, F. J., 13, 235
Lesgold, A. M., 103
Lester, P. T., 2, 356
Lev, M., 465
Levin, H. S., 469t
Levy, B. A., 195
Lewandowsky, S., 21
Lewis, R. L., 225, 233, 235, 243–6, 248
Lewis, V. J., 41, 194n, 195, 321
Lezak, M. D., 121
Lichty, W., 67, 68t, 69f, 70, 189, 210
Liddle, P. F., 120
Lieberman, J., 465
Lieberman, K., 35, 50, 145, 149
Lindlinger, G., 120
Lindzey, G., 188
Littlewort, G., 390
Ljungberg, T., 343, 347, 370, 391, 407
Lloyd, C. A., 53
Lobbeck, L., 469t
Lockhart, R. S., 314, 322, 428
Logan, G. D., 170, 258
Logie, R. H., xiii, 32–5, 38–40, 42–3, 45–6, 49–55, 145, 149, 247
Logue, V., 54
Longoni, A. M., 189, 195, 203–4, 205f, 206t, 207, 208n, 210
Lovett, M. C., 139
Lü, Z.-L., 94, 150
Luce, R. D., 188
Luchetta, T., 469t
Luciana, M., 469
Luck, S. J., 346
Luppino, G., 393
Luria, A. R., 121
Luxen, A., 54
Luzzatti, C., 52, 54
Lyon, G. R., 447
Author Index

McCabe, X., 469t
McCarthy, R., 119
McClelland, J. L., 189, 341, 370, 376, 379, 381–2, 384–5, 387, 404–6, 460
McConnell, J., 35, 50
McDaniel, M. A., 264
McDonald, D. G., 78, 92
MacDonald, M. C., 103, 243
McDougall, S., 68t, 75–6, 77f
McDowell, S., 469t
McEvoy, L., 104
McGeoch, J. A., 81
McGregor, A. M., 236
Maciejewski, C., 54
MacLean, A., 313, 327–8, 332
MacLeod, A. M., 344
MacLeod, C. M., 292
McNamara, D. S., 7, 426
McNaughton, B. L., 370, 382, 384–5, 404–5
MacWhinney, B., 194n, 195
Maglio, P., 466
Magnusson, S., 247
Maier-Brüker, W., 287
Maisog, J. M., 462
Malapani, C., 118
Maljkovic, V., 54
Malm, R. B., 118
Mane, A., 46
Mangun, G. R., 18
Mäntysalo, S., 90
Maquet, P., 54
Marcel, A. J., 63, 330
Marchetti, C., 33–5, 49
Markham, R., 469
Marsalek, B., 122, 125
Marshall, J. C., 371
Marshburn, E. A., 2, 356
Martin, K. A., 342, 370
Martin, R. C., 9, 88, 264
Massman, P., 121
Matelli, M., 393
Matessa, M., 141, 189, 194, 195n, 202, 415
Maughan, S., 47, 89
Maximillan, A. V., 122
May, J., 312–3, 328–9, 332, 334
Maybery, M. T., 86
Mayes, J. T., 236
Mayr, U., 283
Mazoyer, B., 54
Mazuryk, G., 85
Mazzucco, M. M., 469t
Mazzotto, M., 1
Mein, E. J., 457
Mellet, E., 54
Merikle, P. M., 124, 264, 395
Mesulam, M. M., 344, 370–1
Metzler, J., 323
Meyer, D. E., 21, 184, 187f, 188–90, 193–4, 196, 215, 446, 458
Mikami, A., 124
Miller, C. S., 240n, 225
Miller, E. K., 95, 124, 389–90, 394, 398, 404, 463
Milner, A. D., 333
Milner, B., 120–1, 404
Minoshima, S., 54, 217
Mintun, M. A., 54, 217
Mishkin, M., 117, 393
Miyake, A., 9, 13, 124–5, 145, 148, 178, 286, 288, 393, 395–6, 400, 436, 469t
Motelet, J., 120
Monsch, A. U., 469t
Monsell, S., 9, 196, 214, 454
Montague, P. R., 391, 407
Montague, W. E., 285
Montgomery, J. W., 469t
Monticelli, M. L., 36
Moran, T. P., 187
Moray, N., 70, 77
Morrin, K. A., 113, 124
Morris, C. D., 323
Morris, E., 469
Morris, P. E., 225
Morris, R. G., 50, 469t
Mortelmans, L., 118
Morton, J., 321, 327
Morton, N., 50
Moscovitch, M., 17, 387, 389, 396, 404, 448
Muir, C., 33
Müller, G. E., 227, 277
Murdock, B. B., 232
Murray, D., 314
Murray, L., 334
Murray, L. L., 469t
Näättänen, R., 68t, 90–2, 433
Nairne, J. S., 42, 71, 85
Narayanan, N. H., 425
Naveh-Benjamin, M., 218
Navon, D., 10, 17, 458
Nead, L., 85
Neisser, U., 86, 225
Nelson, H. E., 121
Newcombe, E., 120
Newell, A., 4, 21, 137, 185–7, 190, 217, 225, 226n, 227–8, 233, 240–2, 245, 248, 251t, 263, 270, 367, 376, 447
Newport, E. L., 465
Nhouyvanisvong, A., 171n
Nichelli, P., 54
Nicolson, R., 33
Niki, H., 117
Nimmo-Smith, I., 53
Nolan, S. D., 266
Noll, D. C., 118, 124, 150, 177f, 359, 390, 404
Author Index

Pennington, B. E., 117, 434, 456n, 469t
Perez, M. A., 184n
Perfetti, C. A., 103, 287
Perlstein, W. M., 359, 390, 404
Perret, E., 120
Petersen, S. E., 344
Petersen, J. J., 356
Petersen, L. R., 81, 356, 437
Petersen, M. J., 81, 437
Petersen, S. E., 104, 119, 126t, 461, 471
Petit, L., 462
Petrides, M. E., 394, 462
Pfeiferbaum, A., 469t
Phillips, S., 464, 468
Phillips, W. A., 37
Piaget, J., 103
Pichora-Fuller, M. K., 468
Picton, T. W., 462
Pierrot-Deseilligny, C., 121
Pillow, B., 118
Pimm-Smith, M., 341, 344, 356, 369
Pizzamiglio, L., 52
Plake, B. S., 103
Platt, J. R., 448
Plaut, D. C., 49, 150, 434n
Plomin, R., 456
Podreka, I., 120
Poeppele, D., 434
Poizner, H., 247
Polk, T. A., 225, 228, 233, 241–2
Polkey, C. E., 121
Polson, P. G., 15, 186, 189, 285
Pook, P. K., 454, 467
Postner, M. I., 10n, 31t, 52, 104, 119, 126t, 196, 207, 385, 461, 471
Potter, M. C., 246
Prabhakaran, V., 122
Pratt, R. T. C., 54
Preti, D., 36
Pribam, K. H., 19, 117, 119, 185, 230, 285
Proctor, R. L., 53
Prohovnik, I., 122
Pujol, J., 120
Pylyshyn, Z. W., 87, 114
Quinn, J. G., 35, 50
Quintana, J., 124
Rabib, P., 447
Rabinowitz, M., 30
Rack, J., 68t, 75–6, 77t
Raichle, M. E., 10n, 119, 344, 461
Rainer, G., 124, 394, 463
Rao, R. P. N., 454, 467
Rao, S. C., 124, 394, 463
Rao, S. M., 469t
Rapelli, P., 469t
Rappaport, L., 466

Nordahl, T. E., 119
Norman, K. A., 405
Norris, D. G., 189
North, T., 456n
Nugent, L. D., 34, 68t, 75, 83, 84f, 85
Nuys, J., 118
Nystrom, L. E., 124, 359, 390, 404

Oakhill, J., 157
Oakford, M., 469
Oatley, K., 236
Obrist, W. D., 119
O’Donnell, R. D., 219
Öhman, A., 78, 91
Oliver, W. L., 270, 282, 341, 353–4, 355f, 356, 363, 366, 368–70
Olson, R. K., 456n
Olton, D. S., I
Oransky, N., 105
Orban, G. A., 118
O’Reilly, R. C., 370, 379, 382–7, 390, 394, 404–5
O’Riordan, J. E., 103
O’Scalaidhe, S. P., 124, 394
O’Shaughnessy, M., 466
Owen, A. M., 121, 393, 463, 469t
Ozonoff, S., 469t

Paap, K. R., 434
Padovani, A., 52
Page, M. P. A., 189
Pandya, D. N., 124, 393
Pantano, P., 52
Papagno, C., 40, 48–9, 322, 445, 469t
Parasuraman, R., 87, 429
Pardo, J. V., 119, 344
Parkin, A. J., 120, 157
Parkinson, S. R., 469t
Partiot, A., 118
Pascual-Leone, J., 103
Pashler, H. E., 7, 10n, 185, 458, 462
Patz, R. J., 13
Pauls, E., 54, 120, 196, 217, 333
Paykel, E. S., 333
Payne, D. G., 264
Payne, S. J., 236
Payr, S., 3
PD Research Group, 341
Peacock, J. B., 196n
Pearlmutter, N., 243
Pearson, D. G., 35, 50–1
Pellegrino, J. W., 113, 124
Pendleton, L. R., 35, 49
Pendleton, M. G., 120
Penfield, W., 121
Author Index

Rauch, S. L., 54
Raven, J. C., 107, 121
Ray, W. J., 189, 217
Reaves, C. A., 86
Reder, L. M., xiil, 2, 9, 13, 21, 136, 147, 152, 155f, 156, 171n
Reed, S. K., 280
Reisberg, D., 50–1, 259, 466
Reitan, R. M., 120–1
Reitman, J. S., 85, 196, 214
Reitman, W., 12, 211, 473
Reivich, M., 119
Richards, D. R., 171n
Richardson, A. T. E., 189, 195, 203–4, 205f, 206t, 207, 208n, 210
Richardson, J. T. E., xiii, 19
Richer, F., 120
Richman, H., 274, 275n
Ricker, J. H., 121
Ridgeway, V., 53
Riemann, J., 238–9
Rif, J., 90, 94
Risberg, J., 122
Ritchot, K. F. M., 287
Ritter, F. E., 226n
Ritter, W., 90
Rivaud, S., 121
Rizzolatti, G., 393
Robbins, T. W., 121, 393, 469t
Roberts, A. C., 121
Roberts, R. J., Jr., 113, 454
Robertson, I. H., 53
Rochon, E., 33, 136, 208n, 218
Rodman, H. R., 95
Rogers, R. D., 393, 454
Rogers, S. J., 469t
Roland, J., 120
Rolls, E. T., 470
Roodenrys, S., 68t, 75–6, 77f
Rosen, V. M., 45, 104, 113, 120, 454
Rosenbloom, P. S., 21, 185–7, 190, 225, 226n, 245, 248, 253
Rouleau, J., 120
Rouse, B., 469t
Rugg, M. D., 18
Rumelhart, D. E., 189, 341, 345, 376, 381
Rundell, O. H., 246
Saariluoma, P., 282–3
Saffran, J. R., 465
Sager, H. J., 469t
Sahakian, B. J., 121
Saint-Hilaire, J. M., 120
Salazar, A., 121
Salber, D., 328
Salin, P., 469t
Salmaso, D., 119
Salmon, D. P., 469t

Salmon, E., 54
Salthouse, T. A., 11, 13, 109, 157, 169, 421t, 457, 468
Salway, A. F. S., 50
Sams, M., 90, 94
Saint-Jules, S., 34, 68t, 71, 73, 74f, 75–6, 82, 85, 95, 195
Schaafstal, A. M., 36
Schacter, D. L., 95, 120
Schiepers, C., 118
Schils, J. P., 120
Schmeler, D., 346, 370
Schmidt, J., 390
Schneider, B. A., 468
Schneider, W., 15, 287, 292
Schraagen, J. M. C., 36
Schultz, W., 343, 347, 370, 391, 407
Schumacher, E. H., 190, 196, 217
Schunn, C. D., 171n
Schwamb, K., 225
Schweickert, R., 194–5, 203, 210
Scott, S. K., 328, 334
Scoville, W. B., 404
Seidenberg, M., 245, 381
Sejnowski, T. J., 151, 342, 391, 407
Selfridge, J. A., 47–8
Sells, S. B., 44
Semple, W. E., 119
Serles, W., 120
Servan-Schreiber, D., 118, 150, 177t, 379, 385, 394, 404–5
Service, E., 469t
Servo, A., 120
Settlage, P., 119
Seymour, T. L., 190
Shah, P., 9, 13, 124–5, 145, 148, 178, 286, 288, 393, 395–6, 400, 466
Shallice, T., xiil, 17, 31t, 37, 41, 49, 53, 104, 119–21, 314, 332, 335, 385–6, 462
Shapiro, L. P., 9
Sharkey, A. J. C., 365
Sharkey, N. E., 365
Shastry, L., 464
Shear, P. K., 469t
Sheiden, J. M., 341, 346, 349, 350f, 353–4, 364–5, 369
Shepard, R. N., 323
Sheptak, R., 46
Shimamura, A. P., 389, 404
Shin, R. K., 55, 217, 463
Shisler, R. J., 65, 104–5, 113
Author Index

Wadsworth, S. J., 456n
Walker, H. A., 246
Walker, P., 36
Warak, S., 119
Ward, G., 455
Ward, T., 53
Warrington, E. K., 37, 49, 54, 314, 332
Watanabe, T., 117
Waters, G. S., 33, 88, 136, 208n, 218, 459
Waters, W. E., 78, 91
Watkins, M. J., 85–6, 189, 210
Watkins, O. C., 85
Waugh, N. C., 6, 14, 16, 194, 232, 247
Wedderburn, A. A. L., 77
Weinert, F. E., 15
Weine, S. B., 54
Weismer, S. E., 469t
Wellford, A. T., 185
Welsh, M. C., 469t
Wenger, J. L., 454, 467
Wenger, M. J., 264
Wetherick, N. E., 44–5
White, E. L., 344, 347, 370
Whitten, W. B., 82, 89
Whyte, J., 469t
Wickelgren, I., xlii, 18–9
Wickens, C. D., 10, 17, 85, 458
Wickelgren, W. A., 189
Wiesmeyer, M. D., 225, 248–9
Wight, E., 324
Wilkins, A. J., 119
Williams, H. L., 246
Williams, J. M. G., 469
Williams, P., 113, 121, 431
Williams, R. J., 345
Williamson, S. J., 94, 150
Wilson, B., 33–4, 38, 42, 47, 49
Wilson, F. A. W., 124, 394
Wilson, M., 313, 332

Wilson, W. H., 464, 468
Wingfield, A., 85
Winkler, I., 68t, 90–2, 433
Winocur, G., 387, 389, 396
Witkin, H. A., 113
Wolffson, D., 120–1
Woltz, D. J., 124
Wood, N. L., 34, 63, 67–8t, 70–1, 72f, 75,
82–3, 84f, 85, 89
Wood, P. K., 75
Wood, S. D., 184, 194
Woodin, M. E., 36
Woodworth, R. J., 44
Woodworth, R. S., 284
Worden, M., 344
Wright, C. E., 196, 214–5, 218
Wynn, V., 32–4, 43, 45

Yantis, S., 362
Yager, C. L., 189
Yee, P. L., 113
Yntema, D. B., 108n
Young, R. M., 225, 226n, 235–6, 238
Yu, D., 104
Yulii, N., 157

Zable, M., 119
Zacks, R. T., xlii, 11, 65, 146, 157, 421t, 459,
468
Zarahn, E., 463
Zbrodoff, N. J., 170
Zefferio, T. A., 120
Zhang, J., 466–7
Zipser, D., 390
Zipursky, R. B., 469t
Zucco, G. M., 35, 50, 247
Zurbiggen, E. L., 190
Zwaan, R. A., 469
Subject Index

The subject index is organized in two sections. The first section is a special index designed to facilitate comparisons of the working memory theories represented in the volume. It provides pointers to the pages in the text that are most relevant to the respective designated theoretical questions (see Table 1.1, pp. 5–6); there may be other parts of the text that also refer to the issues raised in those questions (particularly Chapters 4 and 8, which address the designated questions in a more distributed manner than other chapters).

The second section is a regular subject index that picks up more specific terms used in each chapter. Whenever an entry in the regular subject index refers to one or more of the designated questions, see also the corresponding entries in the first section.

Index for the Eight Designated Questions

Note: The numbers in parentheses designate the chapter numbers; for example, 6–7(1) means pp. 6–7 of Chapter 1.

Index for Technical Terms and Concepts

Note: The notations n, t, and f mean the occurrence of the designated terms in footnotes, tables, and figure captions, respectively.

access consciousness, 431–2. See also consciousness
acoustic similarity effects, 359
acoustic subsystem (AC), see Interacting Cognitive Subsystems (ICS)

acquisition rules, see Soar architecture
action times, see ACT-R (or ACT) architecture
active gating mechanism, see gating
active maintenance, 292, 307, 335, 375–6, 378–9, 385–6, 390–1, 394–6, 399.

© Cambridge University Press www.cambridge.org
Subject Index

405–6, 449–50, 452t, 469–70. See also maintenance; Question 1: Basic Mechanisms and Representations of Working Memory
active memory, 376–82, 385, 389–95, 397t, 398, 400–2
activity report, see Controlled and Automatic Processing (CAP2)
ACT-R (or ACT) architecture, 21, 135, 137–78, 186–8, 231, 354, 359, 362–3, 366–70, 385, 400, 415, 427, 430, 433, 460, 470
action times, 142
base-level activation, 144n, 146–8, 151, 156, 160–1, 168, 171–2, 174, 176, 177t, 179
decay rate parameter (δ), 140, 144, 151, 169, 178–9
declarative learning mechanism, 151, 167–8
mismatch penalty (or partial matching penalty), 143, 161n
partial matching, 143–4
procedural learning mechanism, 167–8, 174, 178
retrieval times, 142
source activation, 21, 141–8, 151–7, 161, 164, 166–7, 170, 172–4, 178, 430, 449
W (parameter), 141, 145–52, 156–7, 160–70, 172–9, 422, 430, 449, 470
aging, 11, 157, 456–7, 468–9
air-traffic control, 184, 215
alcoholism, 469t
algebra problem solving, 152–4, 419, 424
alpha-arithmetical task, 170–4
Alzheimer's disease, 39–40, 42, 468, 469t
ambiguity resolution, 242–4
amnesic patients, 38, 42, 332
amygdala, 471
angular gyrus, 393
anosognosia, 95
anticipatory attention system, 104, 126t, 344, 461–2, 471
anticipatory cingulate gyrus, 357, 461, 471
anterograde amnesia, 332. See also amnesic patients
anxiety, 469–70
aphasia, 9, 469t
articulation speed, 33, 75–6, 263. See also rehearsal speed; Question 4: The Nature of Working Memory Limitations
articulation-time effect, 195, 203–6, 208–9
articulatory loop, 194n. See also phonological loop
articulatory subsystem (ART), see Interacting Cognitive Subsystems (ICS)
articulatory suppression, 12n, 36, 41–5, 71, 195, 200, 202–8, 321, 420, 455
artificial intelligence, 225
ascending reticular activating system, 94
association cortex, 92
associative memory, 248
atmosphere hypothesis (in reasoning), 44–5
attention, 10n, 20, 63, 105, 121–3, 138, 145, 151, 258, 262, 287, 300, 326, 334, 353, 382, 401, 417, 427, 433, 438, 446, 448. See also anterior attention system; posterior attention system; Question 7: The Relationship of Working Memory to Attention and Consciousness
control of, 341–2, 346, 368, 371, 429
divided, 70, 110, 113
effect view of, 430
resource theories of, 16–7, 85, 458
attention deficit hyperactivity disorder (ADHD), 469t
attention shifting, 70–1, 89, 117–9, 121, 126t, 216
attention switching, 28, 31t, 40, 86, 95, 110, 113, 120, 454, 458–9, 467. See also task switching
attenuating filter theory, 77–8
auditory cortex, 94, 151
auditory imagery, 73, 92
autism, 469t
autoassociative connection, see Controlled and Automatic Processing (CAP2)
autoassociative feedback, see Controlled and Automatic Processing (CAP2)
autobiographical memory, 231, 328–9
automatic processing, 43, 113–4, 341, 350–1, 357, 361t, 365–6, 371, 385, 388–9, 398t, 403
automatic transmission threshold, see Controlled and Automatic Processing (CAP2)
automaticity, 86, 113, 258, 362. See also automatic processing
awareness, see conscious awareness
AX-CPT task, see continuous performance test or task (CPT)
Ayn model (in Soar), 236–7
backward recall, 82–4
basal ganglia, 403
base-level activation, see ACT-R (or ACT) architecture
basic-capacity approach, 260–4
behavioral genetics, 456
biasing function (of prefrontal cortex), 386–8, 395–6, 402, 405
binding function (of hippocampus), 385–8, 396, 399, 402, 464
biological working memory, 468
Subject Index

body state subsystem (BS), see Interacting Cognitive Subsystems (ICS)
bottleneck, 41, 249. See also response selection bottleneck
brain imaging, see neuroimaging
brain-damaged patients, 6t, 18, 28, 31t, 32, 53–4, 88, 117, 150, 264, 336, 419, 432–3. See also frontal-lobe impairments (or damage); short-term memory impairments (or deficits)
broadcast projections, see Controlled and Automatic Processing (CAP2)
Broca’s area, 118, 393, 420
Brodmann areas, 116
bromocriptine, 469
Brooks’ task, 323–4
Brown-Peterson paradigm, 81–2, 437
buffered processing (buffering process), see Interacting Cognitive Subsystems (ICS)
attentional, 62, 68t, 79–80, 85–9, 96, 258, 385, 449
central executive, 30, 37–40, 42, 104, controlled attention, 102, 104, 107–9, 112, 114, 126f, 438, 459
phonological loop, 33, 194, 203
processing, 37, 96
rehearsal, 30, 33
short-term memory (or store), 226, 263–4, 289, 459
short-term working memory (ST-WM), 15, 277, 284, 286, 425, 465–6
Soar’s dynamic memory, 224, 232, 237, 239
storage, 37–8
visuospatial (sketchpad), 35–7, 41
capacity constraints, 226, 239, 244, 383
CAPS architecture, 231. See also 3CAPS architecture
CAP2 architecture, see Controlled and Automatic Processing (CAP2)
Cattell Culture-Fair Test, 107–8, 114–5, 121–2
CCT architecture, 186
cell assemblies, 11, 63
central engine, see Interacting Cognitive Subsystems (ICS)
chess (or chunking), 46–8, 87, 107, 159, 225–6, 263–4, 282, 284, 347–9, 358, 367, 402
cingulate cortex, 357, 461, 471
circular recognition rule, see Soar architecture
cocktail-party phenomenon, 147, 346
codes, types of, see representations, types of cognition in the wild, 191, 218, 426
cognitive aging, 11, 157, 456–7, 468–9
cognitive development; 35, 35–6, 73–6, 103, 111–2, 468–9
cognitive neuropsychology, see cognitive neuroscience
cognitive neuroscience, 1, 18–9, 21, 419, 432–4, 449, 463. See also Question 8: The Biological Implementation of Working Memory
cognitive science, 185, 228
common-question approach (to theory comparison), 3–4, 435–6
cognitive argumentation, 4, 453, 472
comprehension, 38, 225, 236–9, 261, 322. See also Question 5: The Role of Working Memory in Complex Cognitive Activities
discourse (or text), 13, 423, 459–60
language, 3n, St, 9, 12, 40–2, 62–3, 88, 103, 124, 242–3, 300, 311, 320, 327, 332–3, 424, 438
listening, 103, 111
reading, 70, 103, 110–1, 114, 428
sentence, 13, 224, 242, 245, 424. See also parsing; sentence processing; syntactic processing
computation (or computational) span, see working memory span tasks, operation span
computational modeling (or models), 13, 18–9, 22, 136–7, 150, 178, 183–5, 194, 197, 204, 208, 216–8, 225, 376–7, 379, 385, 390, 401, 405–7, 413, 417–8, 437–9, 453
concurrent tapping, 43
condition-action rules, see production rules
configurations of processes, see Interacting Cognitive Subsystems (ICS)
confirmatory factor analysis, 108
Subject Index

conflict resolution, 190
connection weights, 359, 381. See also fast weights; slow weights
connectionist models, 18, 22, 150, 247–8, 331, 345, 354, 359, 363, 368, 434n, 465. See also neural networks; parallel distributed processing (PDP)
conscious awareness, 63, 249, 330, 356, 369, 389, 427, 430–2. See also focus of awareness; Question 7: The Relationship of Working Memory to Attention and Consciousness
consciousness, 143–6, 53, 95–6, 147, 216, 248–9. 300, 326, 329–31, 341, 368–70, 388–9, 403–4, 429–32, 461–2. See also Question 7: The Relationship of Working Memory to Attention and Consciousness
consistent mapping, 87, 113
constraint satisfaction, 382, 388–9, 398, 403, 406
contention scheduling, 314
context (or context-specific) memory, 150, 356, 359, 363, 384
continuous distractor procedure, 82
continuous performance test or task (CPT), 378, 424
AX-CPT task, 378–81, 386, 395, 404
N-back task, 118, 378, 404, 424
control functions (or processes), 7, 17, 40, 52–3, 264, 265n, 417, 446. See also executive control (or functions or processes)
control store, see Executive-Process/Interactive-Control (EPIC) architecture
control structure, 8, 188, 191–3, 213–6, 252, 362
Controlled and Automatic Processing (CAP2), 22, 340–72, 414, 417, 427
autoassociative connection, 344
autoassociative feedback, 341, 368
automatic transmission threshold, 351
broadcast projections, 343
feedback connections, 353
feedback gain, 346
feed-forward projections (or connections), 343, 368
feed-forward projections (or connections), 343, 346, 368
input feedback, 345–6
output gain 346–7
output report, 346
point-to-point connection, 347
priority reports (or signals), 346–53, 355, 362, 365–6, 417
reinforcement signal, 347, 351, 354, 363, 371
controlled attention, 17, 21, 38, 45, 102, 104–17, 122–3, 387, 390, 421t, 422, 425, 427, 430, 433, 438, 446, 448, 454, 459. See also controlled processing
controlled processing, 113, 341, 357, 366, 375–6, 378, 385–6, 388–9, 391, 395–6, 398–406, 424, 427. See also controlled attention
copy process, see Interacting Cognitive Subsystems (ICS)
corpus callosum, 96
correlational dissociations, 456
corsi blocks test, 36
counting, 42–3, 87, 114–6
counting span, see working memory span tasks
cover speech, 189, 193, 196–9, 210
crystallized knowledge, 121
cued recall, 274
decay, 6, 10–1, 66, 71, 81–5, 105, 137, 143–4, 146, 151, 168, 178, 196, 202, 206–7, 210, 214–5, 340, 347, 359, 421t, 438, 448, 457. See also Question 4: The Nature of Working Memory Limitations
decay rate, 140, 169, 240, 341, 414–5, 422. See also Question 4: The Nature of Working Memory Limitations
decay rate parameter (d), see ACT-R (or ACT) architecture
decision making, 285–6, 424, 445, 471
declarative knowledge (or memories), 14, 89, 135, 137–46, 148–9, 151, 154, 167, 171, 188, 214–6, 218, 226, 231, 400, 403, 419, 427
declarative learning mechanism (in ACT-R), see ACT-R (or ACT) architecture
delay tasks, 117–8, 124
delayed alternation, 117
delayed matching-to-sample, 117
delayed response (task), 117, 386
delayed recall, 38, 42, 82
deliberate practice, 270, 283–4
delirium, 431
dementia, 431
depression, 325, 327, 333
depth of processing effects, 322–3
developmental fractionation, 32, 36
dichotic listening, 85–6, 346
digit span, see short-term memory span tasks
digit working memory task, 157–9, 167, 170–2
dishabituation, 78, 91
Subject Index

executive control (or functions or processes), 17, 21–2, 28, 38, 42, 45, 55, 73, 124, 183, 191, 199, 210–1, 213–6, 314, 318, 335, 340–1, 344, 347, 351–71, 385, 402, 406, 416, 418, 431, 433, 446–7, 454–5, 463, 467, 470–3. See also central executive; Question 2: The Control and Regulation of Working Memory

Executive-Process/Interactive-Control (EPIC) architecture, 21, 183–219, 244, 342, 359, 362–3, 368, 370, 413–4, 416, 427–8, 438, 444
control store, 188, 191–3, 212, 214–6
item-chain construction, 197, 198f, 199, 213
modal working memory stores, 191–2, 213–5, 217
motor processors, 183–4, 186–7, 190–1, 193, 213, 217
parsimonious Production System (PPS) interpreter, 189–91
perceptual processors, 183–4, 186–91, 196–202, 213–4, 217
rehearsal chain, 197–9, 201–2
status items, 191, 214
steps, 191
strategy items, 191, 214
symbolic tags, 189
tag store, 188, 192, 211f, 213–5, 217
working memory partitions, 188, 191, 193, 215, 414, 444

expert digit recall, 459–60
expert performance (or skill), 47, 236, 260, 262, 265–6, 270, 272–3, 283–5, 288, 292–3, 367, 415, 428. See also skilled performance

expert-performance approach, 262, 269–72
explicit knowledge (or memory), 389, 403
external action, 86, 458
external memory, 426, 465–8, 474

fast learning, see rapid learning
fast weights, 49, 340, 356, 359, 363, 367–8, 370–1, 427, 444
feedback connections, see Controlled and Automatic Processing (CAP2)
feedback gain, see Controlled and Automatic Processing (CAP2)
feed-backward projections (or connections), see Controlled and Automatic Processing (CAP2)
feed-forward projections (or connections), see Controlled and Automatic Processing (CAP2)
finger loop, 466
fluid intelligence, 38, 46, 102, 105–10, 112–6, 121–3, 459. See also general intelligence (g), intelligence, theories of

distraction, 102, 104, 113
divided attention, 70, 110, 113
domain-generality (of working memory), see Question 3: The Unitary Versus Non-Unitary Nature of Working Memory
domain-specificity (of working memory), see Question 3: The Unitary Versus Non-Unitary Nature of Working Memory
dopamine (DA), 384–5, 390–1, 399–400, 406–7, 469
dopamine receptor agonist, 469
dopamine receptor antagonist, 469
dorsal route (or stream) in visuospatial processing, 333, 393
dorsolateral prefrontal cortex, see prefrontal cortex (PFC): dorsolateral
double dissociation, 35, 332, 434n
dualism, 418
dual-task paradigm (or methodology), 12–3, 32, 55, 103, 110, 145–7, 157, 324, 330, 363, 419, 425, 449, 455, 458. See also interference situations (or performance)
dynamic memory, see Soar architecture: Soar’s dynamic memory (SDM)
dysarthric patients, 33
dysexecutive syndrome, 334, 471. See also frontal-lobe impairments (or damage)
dyspraxic patients, 33
electroencephalogram (EEG), 272
Elliott (patient), 471
embedded clause, 245–7. See also relative clause
embedded-processes model, 21, 62–97
emergent properties (or features), 8, 11, 40, 216, 375, 418, 422–3, 430, 433–4, 438–9, 446–7
emotion, 125t, 469–72
encoding-specificity principle, 268
endogenous activation, 10S, 125t
EPAM model, 473
EPIC architecture, see Executive-Process/Interactive-Control (EPIC) architecture
episodic memory, 42, 231, 237–8, 384
epistemic action, 467. See also external action
event-related potentials (ERPs), 18–9, 68t, 91–2, 150–1, 432–3. See also Question 8: The Biological Implementation of Working Memory
EVR (patient), 471
exceptional memory, 273, 277–8, 280, 284
Subject Index

fMRI, functional magnetic resonance imaging (fMRI)
focal awareness, see focus of awareness focus of attention, see attention: focus of focus of awareness, 62–3, 65, 85–87, 94–6, 330, 356, 427. See also conscious awareness; Question 7: The Relationship of Working Memory to Attention and Consciousness
fragile X syndrome, 469t
frames, 228. See also schema (or schemata)
frontal lobe (or cortex), 19, 94–6, 112, 118, 150, 332–4, 357, 370–1, 393, 398. See also prefrontal cortex (PFC)
frontal-lobe impairments (or damage), 117–23, 150, 157, 332, 334–5, 404, 469t, 471.
functional magnetic resonance imaging (fMRI), 18, 122, 357, 367, 432, 434, 463. See also neuroimaging; Question 8: The Biological Implementation of Working Memory

g, see general intelligence (g)
gating, 102, 361t, 365, 369–70, 382, 388, 390–1, 400, 406
general fluid intelligence (gF), see fluid intelligence
general intelligence (g), 9, 10n, 121–3, 225. See also fluid intelligence; intelligence, theories of
generate and recognize process, see SOAR architecture
global workspace theory (of consciousness), 17, 88
goal (or goal state), 95, 102, 104–5, 135, 138–9, 141–3, 145, 147, 150–1, 156, 159, 171, 176–71, 188, 191–2, 216, 227, 353, 355, 357, 359, 363, 365, 378, 386
goal management, 466
goal-recursion strategy (in problem-solving), 425
granular cells, 344
grouping effects, 327
habituation, 78, 91, 94
haloperidol, 469
Hebbian learning, 405
hemispatial neglect, see neglect hippocampal storage, 356, 359, 370
hippocampus (HCMP), 94, 117, 371, 375, 377–9, 383–5, 387–90, 396–407, 447, 449
binding function of, 385–8, 396, 399, 402, 404
HM (patient), 14
holism, 434
homunculus (or homunculus problem), 8, 39, 311, 335t, 349, 356, 369, 388, 391, 402, 406, 416–8, 447, 471. See also central executive; Question 2: The Control and Regulation of Working Memory human-computer interaction, 13, 22, 184, 215, 218–9, 327
hybrid architecture (or system), 137, 331, 354, 359
hydrocephalus, 469t
ICS architecture, see Interacting Cognitive Subsystems (ICS)
grouping effects, 327
identity transformation, see Interacting Cognitive Subsystems (ICS)
IDXL model, 238–9
image generation, 28, 32
image record, see Interacting Cognitive Subsystems (ICS)
imagery (or mental imagery), 66
auditory, 73, 92
visual (or visuospatial), 49–52, 54–5, 314, 325
vividness of, 53, 432
immediate memory, 32, 239–40, 264, 277
immediate (serial) recall, see serial recall
impasse, see SOAR architecture
implicational subsystem (IMPLIC), see Interacting Cognitive Subsystems (ICS)
implied knowledge (or memory), 231, 403
incidental memory, 267
individual differences, see working memory: individual differences in
individual-differences approach, 13, 102–26, 156–9, 164–7, 240–4, 458. See also Question 5: The Role of Working Memory in Complex Cognitive Activities
information-processing architecture (or models), 16, 183, 185, 187, 189, 217, 289, 433
informational disruption hypothesis, 35
inhibition (or inhibitory) processes, 10, 40, 43, 65, 104–5, 111–3, 146, 157, 382, 394, 401, 403–4, 421t, 454, 457, 468. See also Question 4: The Nature of Working Memory Limitations
inner scribe, 30, 35–6, 49–52, 414. See also visual cache; visuospatial sketchpad
inner speech, 445. See also phonological loop
innerloop, see Controlled and Automatic Processing (CAP2)
input feedback, see Controlled and Automatic Processing (CAP2)
input-output mappings, 324–5, 351, 354, 357, 365–8
intelligence, theories of, 2, 9, 10n, 11, 15, 119, 125, 442. See also fluid intelligence; general intelligence (g)
independent intelligence quotient (IQ), 121–2, 287
Subject Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>irrelevant speech effects</td>
<td>43–4, 327</td>
</tr>
<tr>
<td>item-chain construction, see Executive-Process/Interactive-Control (EPIC) architecture</td>
<td></td>
</tr>
<tr>
<td>KF (patient)</td>
<td>36–7</td>
</tr>
<tr>
<td>language acquisition</td>
<td>48–9, 445, 465</td>
</tr>
<tr>
<td>language processing</td>
<td>225, 247–8, 288, 419, 445, 458. See also comprehension: language</td>
</tr>
<tr>
<td>language production</td>
<td>311, 320, 352–3. See also speech production</td>
</tr>
<tr>
<td>language understanding, see comprehension: language</td>
<td></td>
</tr>
<tr>
<td>latent variable (or latent variable analysis)</td>
<td>75, 108–10, 116, 148, 455–6</td>
</tr>
<tr>
<td>Leabra framework</td>
<td>405</td>
</tr>
<tr>
<td>leaky capacitor</td>
<td>151</td>
</tr>
<tr>
<td>lesioning, 18, 117, 462</td>
<td></td>
</tr>
<tr>
<td>“less is more” hypothesis (in language acquisition)</td>
<td>465</td>
</tr>
<tr>
<td>levels of processing approach</td>
<td>322, 428</td>
</tr>
<tr>
<td>limb subsystem (LIM), see Interacting Cognitive Subsystems (ICS)</td>
<td></td>
</tr>
<tr>
<td>localization (of working memory), see working memory: localization of locus ceruleus, 94, 343, 347, 371</td>
<td></td>
</tr>
<tr>
<td>long-term knowledge and skills, 2, 11, 15, 47, 50, 428–9, 449–50, 459–60, 474</td>
<td></td>
</tr>
<tr>
<td>long-term recency effect (short-term)</td>
<td>82. See also recency effect (short-term)</td>
</tr>
<tr>
<td>long-term store (LTS), 6, 14, 92–3, 258, 313–4, 328, 342, 427n. See also long-term memory (LTM)</td>
<td></td>
</tr>
<tr>
<td>long-term working memory (LT-WM), 15–6, 21, 47, 89, 225, 236, 238, 244, 252, 257–8, 260, 267–9, 279–84, 286–93, 387, 413–4, 416, 422, 426, 429, 438, 449, 454, 459–60, 465. See also virtual short-term memory; Question 6: The Relationship of Working Memory to Long-Term Memory and Knowledge</td>
<td></td>
</tr>
<tr>
<td>macaques, 117–8, 123–4. See also nonhuman primates</td>
<td>4 (plus or minus 1), 86–7, 264, 425</td>
</tr>
<tr>
<td>magic (or magical) number 4</td>
<td></td>
</tr>
<tr>
<td>interference approach</td>
<td>265–6. See also dual-task paradigm (or methodology)</td>
</tr>
<tr>
<td>internal working memory</td>
<td>467–8</td>
</tr>
<tr>
<td>interstimulus intervals (ISI), 151</td>
<td></td>
</tr>
<tr>
<td>intradimensional variation</td>
<td>468–7</td>
</tr>
<tr>
<td>intralaminar nuclei (of thalamus)</td>
<td>346–7, 370</td>
</tr>
<tr>
<td>intermittent memory, 267</td>
<td></td>
</tr>
<tr>
<td>acoustic subsystem (AC), 302, 303t, 304, 311, 314, 318, 320, 322, 325</td>
<td></td>
</tr>
<tr>
<td>articulatory subsystem (ART), 301, 303t, 314, 316–7, 320–1</td>
<td></td>
</tr>
<tr>
<td>body state subsystem (BS), 303t, 312, 319, 330</td>
<td></td>
</tr>
<tr>
<td>buffered processing (buffering process), 306–7, 320–1, 325, 328, 330</td>
<td></td>
</tr>
<tr>
<td>central engine, 312, 314, 318, 320, 322–6, 328–9, 331, 333–5, 447. See also central executive</td>
<td></td>
</tr>
<tr>
<td>configurational states of processes, 309–11, 313, 326</td>
<td></td>
</tr>
<tr>
<td>copy process, 302–4, 320, 326, 330, 332–3</td>
<td></td>
</tr>
<tr>
<td>identity transformation</td>
<td>302</td>
</tr>
<tr>
<td>implicational subsystem (IMPLIC), 301, 302t, 303, 311–2, 315, 318–9, 329–30</td>
<td></td>
</tr>
<tr>
<td>limb subsystem (LIM), 301, 303t, 312 memory records, 298, 326</td>
<td></td>
</tr>
<tr>
<td>morphonolexical subsystem (MPL), 301, 303t, 311, 314, 318, 320–6, 329–30, 332</td>
<td></td>
</tr>
<tr>
<td>motor subsystem (MOT), 312 object subsystem (OBJ), 301, 303t, 312, 314–5, 321–4, 326, 329–30</td>
<td></td>
</tr>
<tr>
<td>principle of revival, 307, 320, 328 propositional subsystem (PROP), 301, 303t, 311–2, 314–5, 318, 320–3, 325, 329–30</td>
<td></td>
</tr>
<tr>
<td>rate-limitation principle</td>
<td>321</td>
</tr>
<tr>
<td>somatic responses (SOM), 309, 318 visceras responses (VISC), 309, 319</td>
<td></td>
</tr>
<tr>
<td>visual subsystem (VIS), 303t, 311–2, 323, 330</td>
<td></td>
</tr>
<tr>
<td>interference, 10, 11, 71, 76, 85, 102, 105, 112–3, 137, 144–5, 148–9, 257, 261, 265, 284–5, 340, 349, 364–6, 382, 390, 406, 465. See also Question 4: The Nature of Working Memory Limitations auditory, 78 dual-task paradigm (or methodology)</td>
<td></td>
</tr>
<tr>
<td>interference approach</td>
<td>265–6. See also dual-task paradigm (or methodology)</td>
</tr>
<tr>
<td>internal working memory</td>
<td>467–8</td>
</tr>
<tr>
<td>interstimulus intervals (ISI), 151</td>
<td></td>
</tr>
<tr>
<td>intradimensional variation</td>
<td>468–7</td>
</tr>
<tr>
<td>intralaminar nuclei (of thalamus)</td>
<td>346–7, 370</td>
</tr>
</tbody>
</table>
Subject Index

magic (or magical) number 7 (plus or minus 2), 11, 87, 89, 263–4, 425
magnetic resonance imaging, see functional magnetic resonance imaging (fMRI)
magnetic source imaging, 151. See also neuroimaging
magnetoencephalography (MEG), 94. See also neuroimaging
maintenance, 6–7, 73, 75, 398–9, 413, 453–4. See also active maintenance;
Question 1: Basic Mechanisms and Representations in Working Memory
matching hypothesis (in reasoning), 44–5
mathematics anxiety, 469
memory records, see Interacting Cognitive Subsystems (ICS)
memory search, 75, 80, 86
memory span tasks, see short-term memory span tasks
mental abacus, 268
mental arithmetic, 12, 40, 42–4, 135, 259, 268, 273, 275, 285, 424, 438. See also Question 5: The Role of Working
Memory in Complex Cognitive Activities
mental imagery, see imagery (or mental imagery)
mental models, 41, 44–5, 229, 241. See also situation model
mental rotation, 50, 323, 395, 463, 467
metaphors of working memory, see working memory metaphors
MG (patient), 50
mismatch negativity (MMN), 90–2, 433. See also event-related potentials (ERP)
mismatch penalty, see ACT-R (or ACT) architecture
modal model of memory, 7, 446, 473. See also working memory, traditional view of
modal working memory stores, see Executive-Process/Interactive-Control (EPIC) architecture
modality effects, 327
Model Human Processor, 187
modularity (modular), 213, 217, 243, 248
monitoring, 28, 40, 104, 118, 285, 322, 454
monkeys, see nonhuman primates
mood, 469–70
morphonolexical subsystem (MPL), see Interacting Cognitive Subsystems (ICS)
motor cortex, 393
motor processors, see Executive-Process/Interactive-Control (EPIC) architecture
motor sequencing task, 150
motor subsystem (MOT), see Interacting Cognitive Subsystems (ICS)
multitask tracking procedure, 87
multiple sclerosis, 469
multiple-task situations (or performance), 184, 187, 190–1, 215, 219. See also dual-task paradigm (or methodology)
Natural Language Soar (NL-Soar), 243–5, 248
nature vs. nurture debate (in intelligence), 11, 15–6
N-back task, see continuous performance test or task (CPT)
neglect, 51–2, 54, 95–6, 371, 431
neocortex, 399
neo-Piagetian approach, 103, 468
neural networks, 49. See also connectionist models; parallel distributed processing (PDP)
neuroimaging, 18–9, 32, 92–4, 96, 117–20, 122–3, 149, 196, 217, 272, 333, 344, 371, 394, 398, 404, 419, 432–4, 444–5, 462. See also functional magnetic reso-
nance imaging (fMRI); positron emission tomography (PET); Question 8: The Biological Implementation of Working
Memory
neuropsychological dissociations, 18–9, 432–4
NL-Soar, see 243–5, 248
nonhuman primates, 19, 94, 117–9, 404, 406, 462. See also macaques
nonsense syllables (or material), 47, 262–3, 285, 289, 311
norepinephrine, 384–5
object subsystem (OBJ), see Interacting Cognitive Subsystems (ICS)
occipital lobe (or cortex), 54, 107, 119
operation span, see working memory span tasks
operator, 227, 229, 243, 248–50
orbital areas (in prefrontal cortex), 394, 471
orienting response, 78–9, 92
output gain, see Controlled and Automatic Processing (CAP2)
output interference, 33–5
output report, see Controlled and Automatic Processing (CAP2)
overhead speech, 189, 193
pandemonium model, 47–9
parallel distributed processing (PDP), 381. See also connectionist models; neural networks
parietal lobe (or cortex), 54–5, 94–6, 117, 119, 217, 357, 370–1, 420, 462
Parkinson's disease, 469
parsimonious Production System (PPS) interpreter, see Executive-Process/Interactive-Control (EPIC) architecture
Subject Index

parsimony, 11, 15, 184, 190, 194–5, 214, 216, 287–8, 420

parsing, 242–5. See also syntactic processing

partial matching, see ACT-R (or ACT) architecture

partial matching penalty, 143, 161n

partial report, 86

partitions (of working memory), 188, 191, 193, 215, 414, 444

perceptual processors (EPIC), see Executive-Process/Interactive-Control (EPIC) architecture

perceptual speed, 46. See also processing speed

performance-operating characteristic (POC), 9n

perturbation model (of memory), 427n

PET, see positron emission tomography (PET)

phenomenal consciousness, 431–2. See also conscious awareness

phenomenological awareness, 431–2. See also conscious awareness; consciousness

phenylethanol (PKU), 469n

Phineas Gage (patient), 471

phonological similarity effects, 37, 41, 145, 195–6, 203–7, 247

phonological store (a component of the phonological loop), 30t, 32, 42, 81, 203, 250t. See also phonological loop; rehearsal process

planning, 259, 279–83, 364, 455, 466

point-to-point connection, see Controlled and Automatic Processing (CAP2)

posterior attention system, 303, 344, 461–2 posterior perceptual and motor cortex (PMC), 375, 377–9, 382–4, 386, 388–402, 404–5, 407, 447

practical memory, 225

prefrontal cortex (PFC), 18–9, 54–5, 94, 96, 105, 116–24, 371, 375, 377–9, 382–408, 419, 431, 433, 444, 447, 449, 463, 471. See also frontal lobe (or cortex)

biasing function of, 386–8, 395–6, 402

dorsolateral, 102, 116–8, 120, 122, 394, 462–3

orbital, 394, 471

ventrolateral, 394

ventromedial, 471–2

premotor areas, 54, 118, 150, 393

primacy effect, 14. See also serial position effect (or curves)

primary memory, 10, 17, 63, 232

primates, see nonhuman primates

principle of revival, see interacting Cognitive Subsystems (ICS)

priority reports (or signals), see Controlled and Automatic Processing (CAP2)

proactive interference, see interference: proactive

problem solving, 12–3, 225, 285–6, 298, 327, 354, 392–3, 406, 445, 467. See also Question 5: The Role of Working Memory in Complex Cognitive Activities

problem space, 227, 230, 251, 472

problem-size effect, 171, 174

procedural knowledge (or skills or memories), 14, 89, 112, 135, 137–8, 167, 183, 188, 214–6, 231, 309–13, 325, 328, 400, 403

procedural learning mechanism (in ACT-R), see ACT-R (or ACT) architecture

process buffering, 306–7, 320–1, 325, 328, 330

processing speed, 10, 214–5, 421t, 422, 448, 455, 457, 468. See also perceptual speed; Question 4: The Nature of Working Memory Limitations

production memory, see Soar architecture

production rules (or condition-action rules), 137–9, 148, 150, 152, 157, 159–60, 168, 171, 183, 185, 188–9, 192, 197, 213–6, 227, 229–30, 237–8, 247, 249, 286, 288–9, 367, 447

production-system architecture (or model), 183, 190, 225–6, 230–1, 248, 250–2, 331, 340, 354, 363, 368, 386, 400, 402, 416, 438, 446–7. See also ACT-R (or ACT) architecture; Executive-Process/Interactive-Control (EPIC) architecture; Soar architecture; 3CAPS architecture

propositional subsystem (PROP), see Interacting Cognitive Subsystems (ICS)

propositions, 188, 242, 245, 318

psychological refractory period (PRP), 184, 458

PV (patient), 332

pyramidal cells (or neurons), 343, 346–7, 370

radial arm maze paradigm, 1

ragtag problem (of the central executive), 8, 39, 447

random generation, 12n, 43–5, 323, 325, 424t, 458n
Subject Index

rapid learning, 365, 375–7, 382–4, 396, 401, 405
rate-limitation principle, see Interacting Cognitive Subsystems (ICS)
Raven Progressive Matrices Test, 107–8, 121–2, 424t
reading span, see working memory span tasks
reasoning, 12–3, 40, 103, 261, 279–80, 445. See also Question 5: The Role of Working Memory in Complex Cognitive Activities
syllogistic, 13, 44–5, 240–2, 424t, 435, 438, 466
recall rule, see Soar architecture
recency effect (short-term), 14, 37, 81–2. See also serial position effect (or curves)
recognition rule, see Soar architecture
recognition knowledge (or memory), see Soar architecture
reductionism, 434
rehearsal, 6–7, 28, 32–4, 51, 71, 82, 156, 158–60, 164, 166, 168, 179, 197–207, 213–4, 263, 274, 277, 284–6, 320, 365, 413, 446. See also Question 1: Basic Mechanisms and Representations in Working Memory
articulatory, 321, 326, 466
covert, 75–6, 86, 90, 194, 197, 203–6, 208, 210, 213–4
mechanisms of spatial information, 462
subvocal, 44, 194–5, 197, 200, 202–4, 317
verbal, 73, 75, 194, 393, 413
rehearsal chain, see Executive-Process/Interactive-Control (EPIC) architecture
rehearsal process (a component of the phonological loop), 32. See also phonological loop; phonological store; rehearsal
rehearsal speed, 75–6, 107. See also articulation speed
reinforcement signal, see Controlled and Automatic Processing (CAP2)
reinforcement-based learning, 407
relative clause, 243. See also embedded clause
representations, types of, 71–4, 144, 141–5, 453–4. See also Question 1: Basic Mechanisms and Representations in Working Memory; Question 3: The Unitary Versus Non-Unitary Nature of Working Memory
acoustic, 304
articulatory, 320
auditory, 9, 73
external, 426, 454, 466–7, 471, 474
implication, 312, 318, 322, 326
lexical, 9, 48
linguistic, 318
morphonexical, 302, 311, 322
motor, 9
orthographic, 73
phonological, 41, 48, 67, 73, 107, 285, 419
pictorial, 66
propositional, 311, 318, 320, 322–3, 325–6, 419
semantic, 7, 9, 67, 73, 279–80, 306, 321
spatial, 36, 247, 318, 419
symbolic, 196, 213–4
syntactic, 9
verbal, 36, 66, 323, 358
visual, 36–7
visuospatial, 41, 54, 73
resource constraints, 226, 240, 242, 244
resource theories of attention, 16–17, 85, 458
resources, 2, 9, 11, 16, 45–6, 50, 65–6, 85, 135–6, 146–8, 151, 164, 176, 177, 212, 214–5, 226, 236, 239–40, 242, 244, 251t, 299, 314, 318, 322–5, 327, 333, 336t, 357, 366, 400, 420, 429–30. See also working memory metaphors, “mental energy” or “resources”;
Question 3: The Unitary Versus Non-Unitary Nature of Working Memory;
Question 4: The Nature of Working Memory Limitations
activation, 11, 65, 110
attentional, 9n, 430, 458
cognitive, 31, 45, 50, 235, 264
effective, 45, 322
general-purpose, 46, 314
mental, 2
metabolic, 400
neural, 420
processing, 9, 11, 37, 327, 336–7t
response-selection bottleneck, 185, 190, 458. See also bottleneck
retrieval cues, 67t, 238, 257, 267, 274–5, 287, 414, 449–50
retrieval times, see ACT-R (or ACT) architecture
retroactive interference, see interference, retroactive
reward-based learning, 391, 406–7
SAS, see Supervisory Attentional System (SAS)
schema (or schemata), 38, 41, 47, 228, 319, 328–9, 332–3
schizophrenia, 379, 404, 469t
Scholastic Aptitude (or Assessment) Test (SAT), 110–1
SDM, see Soar architecture: Soar’s dynamic memory (SDM)
secondary memory, 10, 232
selective attention, 6, 76–7, 119–21, 360t, 429
self-regulation, 325, 417
semantic context effects, 243, 325
semantic memory, 279, 287–8
semantic similarity effects, 48
sensory iconic store, 365
sensory memory, 92
sentence processing, 135, 239. See also comprehension, sentence
sequence-length effect, 195, 203, 209, 217, 219
sequencing, 455
serial memory span task, see short-term memory span tasks
serial position effect (or curves), 321, 327. See also primacy effect; recency effect (short-term)
serial recall, 13, 21, 38–9, 42, 82, 107, 320–1, 424t, 428, 436, 449, 459
SF (subject), 149, 274, 279
shadowing, 72f
verbal, 41, 46–9, 53–4, 449–50, 459–60
short-term memory impairments (or deficits), 41, 48–9, 53–4, 88, 264
digit span, 54, 103, 149, 152, 273–9, 283, 360t, 395, 424, 466
word span, 103, 107, 423–4
short-term store (STS), 6, 14, 16, 226, 237, 258, 313–4, 328, 342, 427n, 443
short-term working memory (ST-WM), 15, 257, 260, 265, 268, 273, 277, 283–4, 286, 289–92, 414, 422, 425–6, 428–9, 460, 466. See also long-term working memory (LT-WM); working memory sign language, 247
similarity-based interference, see interference: similarity-based single-cell recordings, 18–9, 346, 462–3
situation model, 287. See also mental models
skill acquisition, 46, 269, 356–7, 366–7, 371
skilled everyday activities, 22, 260, 262, 264–5, 284–5, 425, 454
skilled performance, 185–6, 257, 268–72, 293, 367, 419. See also expert performance (or skill)
skin conductance response (SCR) or skin resistance, 78, 472
slave systems, 28, 30, 32–3, 37–9, 47, 105, 126t, 414, 425, 444. See also phonological loop; visuospatial sketchpad
slow learning, 365, 375
slow weights, 49, 340, 363, 427, 444
smoking urges, 469
Soar architecture, 7, 21, 186–7, 190, 224–53, 342, 353, 359, 362, 366–8, 370, 415–6, 438, 449
acquisition rules, 226
circular recognition rule, 234
generate and recognize process, 235
impasse, 229–30, 233–4, 248, 416
production memory, 228–9, 233, 237
recall rule, 233–5
recognition rule, 234–5, 238
recognition knowledge (or memory), 235, 237–8, 250
Soar’s dynamic memory (SDM), 224, 226–34, 236, 239–40, 244–5, 247, 249, 252, 415, 428
Soar’s learning (or acquisition) mechanism, 226, 229–39, 244, 248, 250, 387
substate, 227, 229, 233–4, 248, 250
superstate, 229–30, 233
somatic marker hypothesis, 471–2
somatic responses (SOM), see Interacting Cognitive Subsystems (ICS)
source activation, see ACT-R (or ACT) architecture
Space Fortress task, 46
spatial span, see working memory span tasks
spatial tapping, 12n, 50, 420, 455
specific language impairment, 468, 469t
speech perception, 32
speech production, 28, 32. See also language production
speed of processing, see processing speed
split-brain patients, 96
status items, see Executive-Process/Interactive-Control (EPIC) architecture
steps, see Executive-Process/Interactive-Control (EPIC) architecture
stimulus-independent thought, 53
strategy items, see Executive-Process/Interactive-Control (EPIC) architecture
Stroop effect (or task), 112, 119–20, 150, 387
Subject Index

structural equation modeling, 105, 108
structure of intellect model, 9. See also intelligence, theories of
subgoal, 160, 193, 227, 359, 402, 430
subitizing, 87, 114–6
substate, see Soar architecture
subsymbolic processing, 137, 140–2
subtraction method (in neuroimaging), 434. See also neuroimaging
subvocalization, 194, 199. See also rehearsal: subvocal
suffix effect, 34–5, 321, 327.
supergroup, 276f, 277
supersate, see Soar architecture
Supervisory Attentional System (SAS), 17, 104, 314, 386
supplementary motor area, 118
supra-marginal gyrus, 54
switching attention, see attention switching; task switching
syllogistic reasoning, see reasoning, syllogistic
symbolic processing, 137–9
symbolic tags, see Executive–Process/Interactive-Control (EPIC) architecture
syntactic processing, 252. See also parsing
syntactic similarity effect, 247
tag store, see Executive–Process/Interactive-Control (EPIC) architecture
task switching, 363. See also attention switching
temporal delay hypothesis, 35
temporal lobe (or cortex), 54, 94–5, 119, 124, 217
temporal tagging, 454
test anxiety, 469
test-retest reliability, 167, 170, 178
Tetris (game), 466
Thalamus, 94–6, 346–7, 361f, 371, 403
theory comparison, 3–4, 435–6
think aloud protocols, 272, 287
3CAPS architecture, 433, 457, 460. See also CAPS architecture
through-list distractor procedure, 82
through-list suffix effect, 35. See also suffix effect
Tower of Hanoi puzzle, 425, 466
trace decay, 34–5, 81–5. See also decay trade-off, 38–9, 110–1, 264, 459
Trail Making Test, 120–1
transient-store approach, 261–2, 264–6
traumatic brain injury, 469f
unified theories of cognition, 4, 21, 225, 227, 473
unified theories of working memory, 473
unilateral neglect, see neglect
variable mapping, 113, 349, 367
ventral route (or stream) in visuospatial processing, 333, 393
ventral tegmental area (VTA), 343, 347, 390–1
ventrolateral areas, 394
ventromedial prefrontal cortex, 471–2
verbal fluency, 113, 120, 453
verbal reports, 272, 287
verbal-conceptual models, 437–9
vigilance, 87–9, 119
virtual agents, 417, 431
virtual short-term memory, 16, 47, 49–52, 267, 429. See also long-term working memory (LT-WM)
visceral responses (VISC), see Interacting Cognitive Subsystems (ICS)
visual cache, 30t, 32, 35–6, 49–51, 414. See also inner scribe; visuospatial sketchpad
visual search, 113, 328
visual similarity effects, 36–7
visual subsystem (VIS), see Interacting Cognitive Subsystems (ICS)
visual-manual tracking task, 184, 310, 324
visuospatial scratchpad, see visuospatial sketchpad
visuospatial sketchpad, 3n, 8, 22, 28–30, 32, 35–7, 41, 49, 71, 102, 105, 265, 314, 318, 323, 333, 359, 363, 371, 393, 414, 446. See also inner scribe; slave systems; visual cache
visuospatial tracking task, 184, 310, 324
vividness of imagery, 53, 432
vocabulary learning, 103, 327
W (parameter), see ACT-R (or ACT) architecture
Wechsler Adult Intelligence Scale (WAIS), 122
weight-based memories and storage, 381–3, 396, 399
Wernicke’s area, 420
whole report, 86
Wisconsin Card Sorting Test (WCST), 120–1, 150, 455
word-length effect, 33–4, 76, 82–3, 85, 321, 327
word span, see short-term memory span tasks
working attention, 16, 20, 52, 462
working memory
age-related changes in, 11, 157, 456–7, 468–9
developmental changes in, 33, 35–6, 73–6, 103, 111–2, 468–9
working memory (cont.)
emotional factors influencing, 469
individual differences in, 11, 15, 104–16,
122–3, 136, 156–74, 240–4, 269, 286–9,
457, 459, 468–70. See also Question 5: The Role of Working Memory in Complex Cognitive Activities
intraindividual differences in, 468–70
limitations of, see Question 4: The Nature of Working Memory Limitations
localization of, 248, 433–4, 444. See also Question 8: The Biological Implementation of Working Memory
neurological factors influencing, 468
neuropharmacological factors influencing, 468–70
parallelism with intelligence and attention research, 2, 9–11, 15, 125, 442–3
partitions of, 188, 191, 193, 215, 414, 444
relation to emotion, 470–2
trade-off between storage and processing, 38–9, 110–1, 264, 459
traditional view of, 6–8, 14, 262–4, 443, 473. See also short-term memory (STM)
unified theories of, 473

Subject Index
working memory capacity, see capacity
working memory elements (WME), 149, 177, 460
working memory metaphors
"box" or "place," 2, 147, 157, 176t, 214, 438, 443–5, 450
"juggling," 2
"mental energy" or "resources," 2, 9, 147,
157, 214, 240, 242, 244, 251t, 264, 277,
420, 429–30, 458
"workspace" or "blackboard," 2, 8
working memory span tasks, 80, 108, 424t,
435, 459. See also Question 5: The Role of Working Memory in Complex Cognitive Activities
counting span, 107
operation span, 13, 103–4, 107, 110–1,
114–5, 424t, 425
reading span, 13, 38, 103–4, 107, 110,
158, 264, 286–7, 395, 424t, 425, 456
spatial span, 13, 395–6, 456
writing, 103