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The fundamental ideas

1.1 Unbounded linear operators

One of the key notions in any introductory course on functional analysis
is that of a bounded linear operator. If 4 is such an operator on the
Banach space # then there is a closed bounded subset Spec(A) of the
complex plane called its spectrum. The proof that the spectrum is always
non-empty is rather indirect, and this is related to the fact that the
explicit determination of the spectrum of particular operators is often
very difficult.

In this chapter we describe the appropriate context in which one
can define and analyse the spectrum of unbounded linear operators,
particularly those which are closed or self-adjoint. The description of
the spectrum of particular operators will be the main focus of attention
throughout the book.

Before one can start to study a differential operator one has to choose
the Banach or Hilbert space in which it acts; we mention here that all
Banach and Hilbert spaces in the book are assumed to be complex. It
turns out that the spectrum of an operator can change depending upon
the Banach space in which it acts. There is, however, another problem,
namely that differential operators are unbounded when considered as
acting on any of the usual Banach or Hilbert spaces. Because of this
we cannot even start to study them until we have given a more general
definition of a linear operator.

The key to this new definition is to drop the requirement that the
domain of the operator is the whole of the Banach space in which the
operator acts, and allow it to be a dense linear subspace. The precise
specification of that subspace is very important since it turns out that the
choice of different subspaces corresponds to the application of different
boundary conditions to the same formal operator, which frequently leads
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2 The fundamental ideas

to totally different spectra. For these reasons when using the term
‘differential operator’ we shall understand that we have already chosen
the boundary conditions if we are thinking in more applied terms, or that
we have already chosen the precise domain of definition of the operator
if we are thinking in abstract terms.

Definition We define a linear operator on a Banach space & to be a
pair consisting of a dense linear subspace L of # together with a linear
map A : L — #. We call L the domain of the operator 4 and write
Dom(4) := L. If L is a linear subspace of # which contains L and
Af = Af for all f € L then we say that A is an extension of A.

A complex number 4 is said to be an eigenvalue of such an operator
A if there exists a non-zero f € Dom(A4) such that Af = Af. Since the
Banach spaces we are interested in are all spaces of functions, we call f
an eigenfunction of the operator A. As in the more elementary theory
of bounded linear operators, the set of eigenvalues is not to be confused
with the spectrum (defined below), which is often a much larger set.

As an elementary example we choose 4 to be the space of all contin-
uous functions on the interval [a,b] and put Af = —f” where Dom(A4)
is the set of all smooth (ie. infinitely differentiable) functions on [a, b].
Every complex number is an eigenvalue of this operator, whose spectrum
is therefore equal to C. If, however, we take % to be the space of all
continuous periodic functions on the interval [a,b] and the domain to
be the set of all periodic smooth functions on [a, b], then the same for-
mula defines a different operator with countable spectrum. The following
example is more typical of those which we shall study later.

Example 1.1.1 We consider the operator H given formally by

Hf = —f" (1.1.1)

on the following alternative domains in the Hilbert space L*(a,b). To
treat Dirichlet boundary conditions we take the domain Lp consisting
of all twice continuously differentiable functions f on [a,b] for which
fla) = f(b) = 0. To treat Neumann boundary conditions, however, we
take the domain Ly of all twice continuously differentiable functions
f on [a,b] for which f'(a) = f'(b) = 0. Because we have two different
domains the equation (1.1.1) determines two different operators which we
shall call Hp and Hy. It is straightforward to determine the eigenvalues
of these two operators and to see that 0 is an eigenvalue of Hy but not
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1.1 Unbounded linear operators 3

of Hp. In higher dimensions the difference between the spectrum of the
Laplacian under Dirichlet and Neumann boundary conditions is much
greater than in this example. O

In this chapter we shall illustrate our ideas by means of very simple
operators such as Hp and Hy. The only reason for this is that we do
not wish the reader to have to cope with the abstract theory and its
applications at the same time. We ask the reader at this point to accept
our reassurance that the conditions of the abstract theorems which we
shall prove are actually verifiable in a wide range of more interesting
applications.

The continuity of bounded linear operators is so useful that we need to
have a replacement for it in our more general situation. This is provided
by the notion of closedness. We will henceforth use the expression
lim,_.« f» = f without further comment to mean that | f, — f|| converges
to zero as n — o0.

Definition Let A be an operator on 4 with domain L. We say that A is
closed if whenever f, is a sequence in L with limit f € 4 and there exists
g € & such that lim,_,,, Af, = g, it follows that f € L and that Af = g.

There is an alternative formulation of this idea. The product #; x %,
of two Banach spaces #; and %, becomes a Banach space if we provide
it with the norm

I(f.g) = {11 + g2

Other equivalent choices of the norm can be made, but one advantage
of the above definition is that if &, are both Hilbert spaces then % x %>
is also a Hilbert space for the above norm. If we define the graph of 4
to be the set

{(f.g): feL ge® and Af =g},

then the operator is closed if and only if its graph is a closed subspace
of B x 4.

The closed graph theorem states that if a closed operator has domain
equal to 4, then it has finite norm. While conceptually extremely valuable,
this result has the weakness of not giving any information about the size
of the norm. We shall see below that the size of the norm of resolvent
operators is important in locating the spectrum of 4.
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4 The fundamental ideas

Definition If A is a linear operator on # with domain L then its spectrum
Spec(A4) is defined as follows. We say that a complex number z does
not lie in Spec(A4) if the operator (z — A) maps L one-one onto %, and
the inverse (or resolvent) operator, which we shall denote by R(z,4) or
(z—A)~!, is bounded.

The following lemma explains why the notion of closedness is so im-
portant. The statement and proof involve using analytic function theory
for operator-valued functions of a complex variable. The definitions and
proofs of the relevant results are simple adaptations of the corresponding
results for complex-valued functions, and we leave readers to write out
the details for themselves.

Lemma 1.1.2 If the operator A does not have spectrum equal to the whole
of the complex plane C then A must be closed. The spectrum Spec(4) of a
linear operator A is always closed. More specifically let z ¢ Spec(A) and
let ¢ = ||R(z, A)||. Then the spectrum does not intersect the ball

{weC: lz—wl < '}

The resolvent operator is a norm analytic function of z and satisfies the
resolvent equations

R(z,A) — R(w,A) = —(z — w)R(z, A)R(w, A), (1.1.2)
R(z, A)R(w, A) = R(w, A)R(z, A), (1.1.3)
a%R(z,A) = —R(z,A4), (1.1.4)

Sfor all z,w & Spec(A).

Proof Suppose that z ¢ Spec(4) and let B = (z — A)~! be the inverse
operator, which is bounded by hypothesis. Let f,, € Dom(A), lim,_ [ =
f, im0 Af, = g and h, = (z — A)f,. Then

im h, = lim{zf, — Af,} = zf — g,

n—oo

SO
Blzf —g) = lim {Bhy} = lim {£,} = 1.

This implies that f € Dom(4) and (z — A)f = zf — g, or Af = g. Hence
A is closed.
The remainder of the proof is very similar to the case when A is
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1.1 Unbounded linear operators 5

bounded. Consider the bounded operator C defined by
[eo]
C =) (—uw'B", (1.1.5)
n=0
where the series is norm convergent if |u| < [|B|~'. The operator C
satisfies the identities

C=B—uBC , C=B-—uCB.

The first identity implies that the kernel Ker(C) and range Ran(C) of C
satisfy

Ker(C) = Ker(B) , Ran(C) € Ran(B),
while the second implies
Ker(B) = Ker(C) , Ran(B)< Ran(C).

Since B has kernel {0} and range Dom(A) we deduce that C is a bounded
linear operator mapping # one-one onto Dom(A). If f € Dom(4) and
g =(z—A)f then f = Bg, so Cg =f —uCf. Hence C(z +u—A)f =f.
Since (z+u—A)Cf = f for all f € # by a similar calculation, we conclude
that C = (z + u — A)~!. This establishes both that z + u ¢ Spec(4) if
jul < |i(z—A4)"'|"! and that

e8]
E+u—A)7" =) (—uy(z— 4" (1.1.6)

n=0
The norm convergence of this series is more than enough justification for
saying that the resolvent is a norm analytic function of z. The resolvent
equation (1.1.4) is proved by differentiating the series (1.1.5) term by
term, the justification for this being the same as for complex-valued
power series. The resolvent equation (1.1.2) is proved by multiplying
both sides by (z — A), in which case it becomes an elementary identity.
Upon interchanging w and z we see that (1.1.2) implies (1.1.3). a

It is possible to construct closed operators whose spectrum is either
empty or equal to the whole complex plane. However, we shall mainly be
interested in studying self-adjoint operators, whose spectrum is always a
non-empty subset of the real line.

Although all of the above suggest that we should only study closed
operators, there is a practical problem with this, namely that differential
operators are usually defined initially on simple domains where they are
not closed. This problem is overcome by yet more definitions.
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6 The fundamental ideas

Lemma 1.1.3 An operator A on % with domain L is said to be closable if
it has a closed extension A. In this case there is a closed extension A, which
we call its closure, whose domain is smallest among all closed extensions.

Proof We define 2 to be the set of f € # for which there exist f, €
Dom(A) and g € # such that lim,_, f, = f and lim,_,,, Af, = g. Since
A is a closed extension of 4 it follows that f € Dom(4) and Af = g.
Hence g is uniquely determined by f in the above situation. We define
Af = g with Dom(4) = 9. Clearly 4 is an extension of 4 and every
closed extension of A4 is also an extension of 4. The graph of 4 is the
closure of the graph of A in the Banach space # x #. Hence 4 is a
closed operator. O

Many of the differential operators which we will study have the key
property of self-adjointness. An intermediate but much more elementary
property is that of being symmetric.

Definition We say that an operator H with dense domain L in a Hilbert
space # is symmetric if for all f,g € L we have

(Hf,g) = (f,Hg).

Considering again the operator Hf = —f” on L?(a,b), choose either of
the domains of Example 1.1.1. By use of the identity

b
[ z=wnx =g - s
we see that both Hp and Hy are symmetric.

Lemma 1.1.4 Every symmetric operator H is closable and its closure is
also symmetric.

Proof Let 2 be the set of f € # for which there exist f, € Dom(H)
and g € # such that lim, ., f, = f and lim,,,, Hf, = g. It is easy to
see that 2 is a linear subspace of # containing Dom(H). If h € Dom(H)
then

(8.h) = Lim (Hfy, ) = lim (£, Hb) = (f, Hh).

Now g is uniquely determined by the functional h — (g, h) on Dom(H)
because Dom(H) is dense in 5# by hypothesis. Therefore g is uniquely
determined by f. If we define Hf = g then it follows that H is linear
on its domain 2. Moreover, the graph of H is the closure of the graph
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1.2 Self-adjointness 7

of H. If h, € Dom(H), lim, ., h, = h € @ and lim,_,,, Hh, = k then we
have already shown that

<Hf, kn> = <fa th)

In the limit as n — o0 we get

(Hf,h) = (f,k) = (f,Hh)
which establishes that H is symmetric. O

The above lemma enables us to concentrate henceforth on closed
operators. The above definitions and Lemma 1.1.4 allow us to be a little
careless in distinguishing between a closable operator and its closure and
we shall often take advantage of this.

1.2 Self-adjointness

There is a difference between symmetry and self-adjointness for an un-
bounded operator 4 on a Hilbert space 5, which does not correspond to
anything in the theory of bounded linear operators. At first this seems to
be an annoying technicality, but in fact it is of profound importance. The
condition of self-adjointness is much more demanding and difficult to
verify, but unless it is met one cannot apply the very powerful machinery
of spectral theory. In the context of differential operators, the issue is
whether one has fully specified the boundary conditions appropriate to
the particular differential operator one is studying.

Definition If A is a linear operator on a Hilbert space # then the adjoint
operator A" is determined by the condition that

(Af,8) ={f.A"g)

for all f € Dom(4) and g € Dom(4"). The domain of 4™ is defined to
be the set & of all g € # for which there exists k € # such that

(Af,g) = (f.k)
for all f € Dom(A). After showing that k is unique and we will put
A'g =k.

Lemma 1.2.1 If A is a closed linear operator with dense domain then the
adjoint A* is also a closed linear operator with dense domain.
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8 The fundamental ideas
Proof If g € & and k,k’ are two elements of # such that

(Af,8) = (f.k) = {f.K)

for all f € Dom(A) then (f,k —k’) = 0 for all such f. The density of
Dom(A) implies that k = k’. It is thus permissible to define A* on 2 by
A’g = k. If L is the graph of A" then (g,k) € L if and only if (g,k) is
orthogonal to

M = {(Af,—f) € # x # : f € Dom(4)}.

The orthogonal complement M+ of the linear subspace M must be a
closed linear subspace, so A* is a closed linear operator.

It only remains to prove that A* is densely defined. If h € # satisfies
(h,g) = O for all g € 2, then (h,0) is orthogonal to L. But L+ =
M1 = M. Hence there exists a sequence {f,}, € Dom(A) such that
lim, o fn = 0 and lim,_, Af, = h. But A is assumed to be closed, so
h= A0 = 0. Thus 2+ =0, and 9 is a dense linear subspace of . O

If H is a symmetric operator then it is easy to see that the adjoint H*
is an extension of H. We say that H is self-adjoint if H is symmetric
and Dom(H) = Dom(H"). This is equivalent to requiring that H = H",
and implies that H is closed. We say that H is essentially self-adjoint
if it is symmetric and its closure is self-adjoint. Our next lemma gives
a method of proving essential self-adjointness, but it is only useful for
simple operators whose eigenvectors can be determined explicitly. In the
proof of the lemma we assume that # is separable, or equivalently that it
has a countable complete orthonormal set. This is valid in all applications
to differential operators, and the interested reader can no doubt provide
the necessary modification to non-separable Hilbert spaces. We shall
make the same assumption at many other places in the book without
comment.

Lemma 1.2.2 Let H be a symmetric operator on s with domain L, and
let {fu}%, be a complete orthonormal set in #. If each f, lies in L and
there exist A, € R such that Hf, == A,f, for every n, then H is essentially
self-adjoint. Moreover, the spectrum of H is the closure in R of the set of

all 2,.
Proof If f =377, otnf, lies in L and

g:=Hf =Y Bufn

n=1
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1.2 Self-adjointness 9

then

Bm = <g’fm> = <Hfafm> = (f,Hfm> = im(f’fm> = AmOm.

The requirements that f,g € # force

ilan!2<oo s ilﬁni2<oo
n=1

n=1

and hence

> (14 ol < oo.
n=1

We now define an operator H as follows. Let L be the set of all f € #
of the form f = 3"~ | a,f, where

0

D+ Aot < oo,

n=1

and for such f define

o]
Hf == tninfn.
n=1
It is clear that H is an extension of H. We first determine its spectrum.
Let S be the closure of the set {4, : 1 < n < o0}. Each 4, is an

eigenvalue of H, and Spec(H) is closed, so S < Spec(H). If z ¢ S then
the operator A defined on # by

e @) o)
A (Z oc,,f,,) =" tulz — An) "' fi
n=1 n=1
is bounded and one-one. By expanding everything in terms of the
complete orthonormal set {f,}® , one can check that its range is precisely
L and that (z — H)Af = f for all f € #. Thus z ¢ Spec(H) and
A = (z — H)™!. The above together imply that S = Spec(H).

We claim that H is equal to the closure of H. Since Spec(H) is not
equal to C, Lemma 1.1.2 implies that H is a closed operator. If g :=
> onfn € Dom(H) and we put gm =3 otufy then liMy o gn = g
and

m o
WIIHI;){Hgm} = "lllngo {Z O‘nlnfn} = Zanlnfn = ﬁg-
n=1 n=1

This establishes the stated claim.
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10 The fundamental ideas
We finally prove that H is self-adjoint. If f € Dom(H"*) and H*f =k,
then _
(k,fn) = (H"f, fa)
= <f’ an>
= '171 <f, fn>
If f =3, anfn the above implies that k = Y vt Antinfn. It follows that
f € Dom(H), and hence that H* = H. O

Example 1.2.3 The operator Hp defined in Example 1.1.1 is essentially
self-adjoint on its domain Lp. To see this we first define the orthonormal
sequence of functions

) 2\, nn(x —a)
e (55) G

where n € N. The fact that these are eigenfunctions with eigenval-
ues n’n?/(b — a)® is easy to verify. The harder fact needed to apply
Lemma 1.2.2 is that {f,} is a complete orthonormal set in L*(a,b);
this is a standard result of Fourier analysis, but was proved long after
the classic paper of Fourier (1822). A similar argument applies to Hy. O

Example 1.2.4 Another example of a similar type arises in connection
with Legendre’s equation

d 24f 1] _

We show that the symmetric operator H on L2(—1,1) defined by

__9a (. Ldf
Hf:= dx{(1 x)dx}

is essentially self-adjoint on the domain of all twice continuously differ-
entiable functions on [—1,1]. It is elementary but tedious to check that
the Legendre polynomials P,(x) defined for n > 0 by

._ 1 a" 2 n
Py(x) = Tl do {(x*-1) }
satisfy Legendre’s equation with eigenvalues A, = n(n + 1). A further

direct computation, using integration by parts repeatedly, establishes

that the functions
2n+ 1\ 2
ful) = ( ) P(x)

2
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