
1 Introduction

In the past fifty years since it first came to prominence, econometrics has broad-
ened, both in the nature of the data being worked with and in the range of issues
that it addresses. Initially econometricians were primarily interested in relations
between two ormore series, but today they find themselves concernedwithmea-
suring volatility of financial returns, durations of events, and the conditional
probabilities of decisions, inter alia. A textbook such as Greene’s (1997) cap-
tures this expansion extremely well. The same textbook also shows that there
is still an underlying unity in the way analysis proceeds, in that the method
of linear regression and maximum likelihood form the tool kit of an applied
econometrician.

In one area of quantitative economics, namely that concerned with the analy-
sis of observed choices made by economic agents in the sphere of consumption
and production, it has long been felt that the investigation of questions such as
consistency of the data with the maximization principle, homotheticity, and sep-
arability of preferences should not be constrained by the need to make precise
assumptions about the nature of preferences or production relations. Probably
the earliest manifestation of this concern was Samuelson’s (1938) develop-
ment of the revealed preference theory, and since that time there has been a
series of contributions aiming to develop a nonparametric approach to the eco-
nomics of production and consumption, for example, Afriat (1967), Hanoch
and Rothschild (1972), Diewert and Parkan (1978), and Varian (1984). These
papers deal with nonparametric tests of the predictions of economic theory
without specifying particular functional forms for underlying demand and pro-
duction relations, something that would be required if one proceeded to test the
predictions in the traditional framework (e.g., Greene 1997, Chapter 15). Per-
haps the major limitation to these methods has been the fact that the stochastic
nature of the data is ignored, although the recent work of Varian (1985) and
Epstein and Yatchew (1985) attempts to remove some of these difficulties.

A different approach,more in linewith traditionalwork, has been to locate the
source of unease in particular assumptions being made during the application of
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2 Nonparametric Econometrics

the classic techniques. In the case of linear regression, a particular concern has
beenwith the linearity of the functional form connecting the variables appearing
in it. This concern initially spawned an interest in transformations of the depen-
dent and independent variables, leading to the use of flexible functional forms,
such as those of Diewert (1971), Berndt and Khaled (1979) and Christensen
et al. (1973), to approximate the unknown relation. A drawback of this literature
was that it only provided local Taylor series approximations. Consequently, it
is not surprising that interest arose in improving on such approximations.

To do this it was important to realize that, inmany instances, onewas attempt-
ing to estimate an expectation of one variable, Y , conditional upon others, X .
This identification directs attention to the need to be able to estimate the density
of Y conditional upon X , as the knowledge of that quantity would enable one
to extract the conditional mean. Accordingly, Chapter 2 reviews the procedures
that have been advocated for doing that. This is a surprisingly long chapter,
partly because there are many different strategies, and partly because all of
the techniques involve “tuning parameters” whose determination has been the
subject of an enormous literature, which has only now settled down to reflect a
consensus view.

Having determined ways of nonparametrically estimating a conditional den-
sity, the conditional mean at a point x readily follows as a weighted average∑n

i=1 w(xi ; x)yi of the n data points {xi , yi }; here yi are observations on the
dependent variable and xi on the independent variable, and w(xi ; x) are a set of
weights that depend upon xi and the point x at which the conditional expecta-
tion is to be evaluated. Of course there turn out to be many weighting functions
w(xi ; x) that work, and some of the popular ones are detailed in Chapter 3.
Broadly these correspond to whether one wishes to have a local (to the point x)
or a global approximation. This chapter also shows how the procedures extend
to the estimation of any higher order moment, whereas Chapter 4 considers
the modification needed if interest centers upon the derivatives of the function
linking Y and X , either at a point or as the average over an interval.

Perhaps the major complication in a purely nonparametric (NP) approach to
estimation is the “curse of dimensionality.” Every method has some cost asso-
ciated with it and, in the instance of nonparametrics, it is the need for very large
samples if an accurate measurement of the function is to be made. Moreover, the
size of sample required increases rapidly with the number of variables involved
in any relation. Such a feature leads to the proposition that one might well prefer
to restrict some variables to have a linear impact while allowing a much smaller
number to have a nonlinear one. A well-known example of this phenomenon
occurs in studies of thewage paid to an individual. Thewage is regarded as being
influenced by the individual’s personal characteristics as well as the number of
years of job experience, but, whereas the impact of the personal characteristics
is taken to be linear, that for experience is nonlinear. Accordingly, the first part
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Introduction 3

of Chapter 5 deals with such models, allowing the nonlinearity to be located
either in the conditional mean or the conditional variance. Effectively, estima-
tion involves a combination of parametric and nonparametric methods, leading
to the estimators being described as semiparametric (SP).

In the second part of Chapter 5 the nature of the conditional mean is taken
to be known up to a finite number of parameters, and attention switches to the
distributional properties of the error term left over after the conditional mean
has been extracted. Regression analysis either explicitly or implicitly treats this
error as normally distributed, except for those instances in which the depen-
dent variable involves “count” or duration data, whereupon densities such as
the negative binomial or Weibull are invoked. Consequently, it is of interest
to study the estimation of the parameters of the conditional mean when the
error density is unknown. This scenario also falls into the class of semipara-
metric problems, and a range of concepts have been introduced to categorize
the properties of such SP estimators. In parametric models being estimated by
maximum likelihood, questions relating to the efficiency of an estimator and
its dependence on nuisance parameters are most usefully analyzed with the
Cramer–Rao bound and Fisher’s information matrix. There are analogous con-
cepts in the SP literature, such as the SP efficiency bound, and the definition
and construction of such quantities is laid out in Chapter 5 within the context
of the simplest possible environment. Once done, it is natural to seek to design
a fully efficient estimator in the face of an unknown density. It is shown that
the crucial step in performing such a task is the ability to estimate the “score”
of the unknown density – the ratio of the first derivative of the density to the
density itself. Hence, the techniques of Chapter 2 are called upon to estimate
this unknown variable.

Chapter 6 represents an excursion into the estimation of the parameters of
nonlinear simultaneous equations. It has been known for many years that the
optimal instruments are related to the expectation of the endogenous variables
conditional upon the exogenous ones, but when the system is nonlinear there is
no closed form expression for this. Nonparametric techniques therefore appeal
as a way of generating the optimal instruments for later use in estimating the
unknown parameters. A number of such SP estimators exist in the literature
and the sections of this chapter are devoted to an enumeration of them.

The following three chapters concentrate upon some important models in
econometrics where semiparametric methods are likely to be popular – binary
choices (Chapter 7), censored regression (Chapter 8), and selectivity models
(Chapter 9). Mostly, the unknown parameters of these models have been esti-
mated by maximum likelihood. We therefore seek to describe estimators that
do not make assumptions about the density of the observations, with particular
emphasis being given to the construction of an estimator that attains the SP
efficiency bound. It is not always possible to find the latter, and that leads to
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4 Nonparametric Econometrics

the development of a range of alternatives that might be expected to produce
good results without necessarily being optimal. Throughout these chapters a
common strategy, first used in Chapter 5, is employed. This involves describ-
ing what a parametric estimator would look like, and then seeking to replace
the unknown quantities in such an expression with nonparametric estimates.
Our experience has shown this to be a valuable discipline when considering
nonparametric issues. In many instances it is worth enquiring into the limita-
tions of parametric models before engaging in the more general problems that
arise with a nonparametric orientation. Finally, for the benefit of the readers,
we have included an Appendix which contains basic concepts, definitions and
results of Statistics and Probability which have been used in the book.

It is useful to close this introduction with a word about the scope of the book.
Our primary objective is to present a survey of the NP and SP literature that
practitioners might find useful. It is not our intention to provide an account
of the theoretical tools that one would need to conduct research in this area.
A book that did that would treat the subject with much more rigor than we
have tried to do. Indeed, to specialists in the area the degree of rigor of this
book may be distressingly low, but we feel that it is more important to isolate
the essentials in some of the theory than to worry about it being completely
rigorous. Moreover, it is our belief that, when the theory is made rigorous, it
becomes almost impossible to see the “wood for the trees.”

Nevertheless, the theoretical material in the book is not insignificant, being
at the level of complexity of a second-year graduate econometrics course. This
raises the issue of why we spend time on these matters rather than just providing
a “cook book” that would describe the different approaches – as for example
the excellent book on nonparametrics by Härdle (1990). Essentially, this is
because we feel that something important is lost with such an orientation. There
are issues raised in the NP and SP literatures that we do not come across in
parametric literature and, unless one grasps these, it is hard to fully comprehend
the nature of NP and SP methods. As an example, one might cite the “bias”
problem of NP estimators that recurs throughout the book. In the parametric
estimation context, we are used to the idea that, when suitably normalized
by some function of the sample size, estimators are asymptotically normally
distributed around the true value of the parameters. This is not true for NP
estimators, and strategies to eliminate the bias end up accounting for many of
the choices made in both the SP and NP literature. Consequently, understanding
the theory can be important if one wishes to use the methods, although we
feel that this can be done by capturing the flavor of the arguments rather than
presenting their rigorous underpinnings.
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2 Methods of Density Estimation

2.1 Introduction

This chapter describes various methods of estimating the univariate density
function of a random variable, closing with extensions to the multivariate case.
Some motivation needs to be given for why we should be interested in density
estimation at all. An important reason is that the techniques used in, and the
complications arising from, the nonparametric estimation of densities recur
many times in later chapters, and it pays to study them in a simplified setting
first. But, apart from this pragmatic purpose, the need to estimate densities does
arise in practice sufficiently often to make a study of this literature of interest
in its own right.

Broadly, one can distinguish three areas in which the need to estimate den-
sities arises. First, density estimates can be important in capturing the stylized
facts that need explanation and for judging how well a potential model is likely
to fit the data. For example, if it is known that the variable being examined
has a density with fat tails, or strong peaks, any model of data corresponding
to such a variable needs to be capable of generating a density with this char-
acteristic. In other instances, one can efficiently learn about interrelationships
between variables in large data sets from joint density estimates – a feature well
illustrated in Deaton’s (1989) work on rice subsidies in Thailand, in Marron
and Schmitz’s (1992) work on the U.K. income distribution, in Dinardo et al.’s
(1996) study on the U.S. distribution of wages conditional on labor market
institutions, and in Quah’s (1997) cross-country analysis of the growth and
convergence of economies.

Second, it is often desirable to perform a Monte Carlo analysis of a par-
ticular estimator being used in a study. Traditionally, only a few moments of
this estimator are recorded or a test statistic such as Kolmogorov–Smirnov’s
is provided to assess departures from normality. Nonparametric density esti-
mates, however, enable a complete picture of the distribution of the estimator
and therefore seem a preferable way of summarizing the outcome of a Monte
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6 Nonparametric Econometrics

Carlo experiment. An illustration of this point is given as an example in the
concluding section of the chapter.

Finally, it is sometimes the case that parametric estimators have an asymptotic
distribution that depends on a density evaluated at a specific point. For example,
the median of X has variance .25 n−1 f −2(0), where f (0) is the density of X
evaluated at x = 0. Hence, any test statistic involving the median demands an
estimate of f (0). Section 5.9 presents other estimators for which a density
estimate at a point is required.

As before, f = f (x) denotes the continuous density function of a random
variable X at a point x , and x1, . . . , xn are the observations drawn from f . Two
general methods have been advanced for the estimation of f.1

(i) Parametric Estimators: Parametric methods specify a form for f , say,
the normal density,

f (x) = 1

σ
√

2π
exp

[
−1

2

(
x − µ

σ

)2
]

,

where the mean µ and the variance σ 2 are the parameters of f. An estimator
of f can be written as

f̂ (x) = 1

σ̂
√

2π
exp

[
−1

2

(
x − µ̂

σ̂

)2
]

,

where µ and σ are estimated consistently from data as

µ̂ = px = 1

n

n∑
i=1

xi and σ̂ 2 = 1

n − 1

n∑
i=1

(xi − px)2 ,

respectively.
(ii) Nonparametric Estimators: A disadvantage of the parametric method is

the need to stipulate the true parametric density of f . In the nonparamet-
ric alternative f (x) is directly estimated without assuming its form. The
histogram is one such estimator, and it is one of the oldest methods of den-
sity estimation (Van Ryzin (1973) and Scott (1979) among others). But,
although the histogram is a useful method of density estimation, it has the
drawbacks of being discontinuous and too “rough.” Further, it is extremely
complicated to use for two or more variables. In view of these disadvan-
tages, in the past three decades several nonparametric estimators have been
developed with the aim of producing “smooth” estimates of f (x).

1 There have been suggestions to combine the two (e.g., Olkin and Spiegelman, 1987).
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Methods of Density Estimation 7

Section 2.2 of the chapter sets out a variety of ways of nonparametrically
computing a density estimate; Section 2.3 concentrates upon the modifications
needed if it is a derivative of the density which is of interest. An example
of the need for the latter arises when estimating the “score” of the density,
f −1(u)∂ f/∂u, a quantity that appears many times in later chapters, making
it important to discuss its estimation at an early stage. Sections 2.4–2.6 deal
with the sampling properties of the most widely used nonparametric estima-
tor, the kernel method. Many of the complications that arise in describing the
distributions of nonparametric estimators occur in this simple problem, so that
some time is spent studying them. As these sections demonstrate, the important
elements in nonparametrics are the need to choose a smoothing function – the
kernel – and a parameter – the window width – and Section 2.7 discusses the ex-
tensive literature on how to make these choices in practice. Section 2.8 outlines
extensions of the ideas to multivariate density estimation, and Section 2.9 looks
at the techniques that have developed for testing whether a nonparametrically
estimated density has a specified parametric form or whether two estimated
densities are close; that is, it focuses upon measures of the affinity of densities.
Finally, Section 2.10 provides a few examples.

2.2 Nonparametric Density Estimation

There is no unique way to perform nonparametric density estimation, and some
eight approaches are described in this section. Despite this variety it is possible
to achieve a degree of unification by placing each estimator in a common format,
namely as the sample mean of certain functions of the data.

2.2.1 A “Local” Histogram Approach

To understand some of the density estimation techniques discussed later we
begin with the situation when X is a discrete random variable. Let one of the
values it can assume be x and our purpose is to estimate f (x) from the data xi ,
i = 1, . . . n. Estimation of f (x) in the discrete case is essentially the estimation
of the proportion of x values in the population of X . From the data x1, . . . , xn an
obvious and well-known consistent estimator of this is the sample proportion
f̂ 1(x) = n∗/n, where n∗ is the number of x1, . . . , xn equal to x . Alternatively,
f̂ 1(x) = n−1 ∑n

i=1 I (xi = x), with I (xi = x) being an indicator function taking
the value 1 if xi = x and zero otherwise.

Now, considering the case where X is a continuous random variable, the
probability that xi is equal to x is zero, and f (x) will need to be estimated by
averaging those xi that are in an interval around x , say, x ± h/2, where h is the
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8 Nonparametric Econometrics

width of the interval. Thus the empirical density estimator f̂ (x) can be written
as f̂ 1(x) = (nh)−1 ∑n

i=1 I (x − h
2 ≤ xi ≤ x + h

2 ), where I (A) = 1 if A is true
and zero otherwise. Alternatively, we can write

f̂ 1(x) = 1

nh

n∑
i=1

I

(
−1/2 ≤ xi − x

h
≤ 1/2

)

= 1

nh

n∑
i=1

I (−1/2 ≤ ψi ≤ 1/2) , (2.1)

where ψi = (xi − x)/h.
Notice that f̂ 1(x) in (2.1) is the per unit relative frequency in the interval

(x − h/2, x + h/2) whose midpoint is x . In this sense it is exactly the ordinate
of the histogram at x . Thus the estimator (2.1) can be seen to be an attempt to
construct a histogram that is based on the observations “local” to x , and where
every point x is the center of a sampling interval. The width of the interval h
controls the amount by which the data are smoothed (averaged) to produce the
estimate (2.1). The f̂ 1 is also known as the “naive” estimator, following Fix
and Hodges (1951).

Clearly the indicator orweight function I (−1/2 < ψi < 1/2) in (2.1) depends
upon the distance of xi from x . If this absolute distance is less than or equal
to 1/2 the weight is 1; otherwise it is zero. Furthermore, the weight function
I (ψ) = I (−1/2 < ψ < 1/2) is such that

∫ ∞

−∞
I (ψ) dψ =

∫ −1/2

−∞
I (ψ) dψ +

∫ 1/2

−1/2
I (ψ) dψ +

∫ ∞

1/2
I (ψ) dψ

=
∫ 1/2

−1/2
I (ψ) dψ =

∫ 1/2

−1/2
dψ = 1. (2.2)

Thus

∫ ∞

−∞
f̂ 1(x) dx = 1

nh

n∑
i=1

∫ ∞

−∞
I

(
−1

2
<

xi − x

h
<

1

2

)
dx

= 1

n

n∑
i=1

∫ ∞

−∞
I

(
−1

2
< ψi <

1

2

)
dψi = 1, (2.3)

and the density estimate is proper in that it is nonnegative and integrates to
unity. A feature of (2.3) is that the integral was taken over x since it can assume
values over the whole range of X .
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Methods of Density Estimation 9

2.2.2 A Formal Derivation of f̂ 1(x)

Let F(x) = P(X ≤ x) denote the cumulative probability distribution function
of X . Then the density function f (x) is defined by

f (x) = d

dx
F(x) = lim

h→0

F
(
x + h

2

) − F
(
x − h

2

)
h

= lim
h→0

P
(
x − h

2 < X < x + h
2

)
h

. (2.4)

Our problem is to estimate f (x) based on x1, . . . , xn . For this we consider
h to be a positive function of n that goes to zero as n → ∞, and estimate
P(x − h

2 < X < x + h
2 ) by the proportion of sample observations x1, . . . , xn

falling in (x− h
2 , x+ h

2 ). Then an obvious consistent estimator of f (x) in (2.4) is

f̂ 2(x) = 1

nh

[
number of x1, . . . , xn in

(
x − h

2
, x + h

2

)]

= 1

nh

[
number of

x1 − x

h
, . . . ,

xn − x

h
in (−1/2, 1/2)

]

= f̂ 1(x), (2.5)

which is the same as (2.1). The estimator in (2.5) was first proposed by Fix and
Hodges (1951).

2.2.3 Rosenblatt–Parzen Kernel Estimator

The density estimator produced by the indicator function in (2.1) has the prop-
erty that it integrates to unity, but has the disadvantage of being “rough.” Also,
f̂ 1(x) is not a continuous function but has jumps at the points xi ± h/2 with
zero derivative elsewhere. This gives estimates a stepwise nature, and one might
prefer a smoother set of weights. Rosenblatt (1956b) addressed this issue by
replacing the indicator function in (2.1) with a real positive kernel function K
satisfying∫ ∞

−∞
K (ψ) dψ = 1. (2.6)

His general “kernel” estimator is

f̂ (x) = f̂ 3(x) = 1

nh

n∑
i=1

K

(
xi − x

h

)
= 1

nh

n∑
i=1

K (ψi ), (2.7)
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10 Nonparametric Econometrics

where ψi = h−1(xi − x) as in (2.1) and h, the window-width (also called the
smoothing parameter or band width), is a function of the sample size n and
goes to zero as n → ∞.

A number of features that a kernel should possess can be inferred from the
nature of the indicator function. First, for large values of |ψi | (i.e., xi lies far
from x) K (ψi ) should be small, as very small weights need to be assigned
to such data points in constructing the density estimate. In particular, because
h → 0 when n → ∞, it follows that |ψi | → ∞ for any xi �= x , and therefore
K (−∞) = K (∞) = 0, which is implied by the requirement (2.6). This feature
reproduces the “zero” property of the indicator function, whereas the “unity”
part is exhibited by having

∫ ∞
−∞ K (ψ) dψ = 1. This amounts to replacing a

square centered on x with length of unity by a smooth curve, also centered
on x with the same area but no longer necessarily having bounded support.
Moreover, because these features are those of a density function, kernels are
frequently chosen to bewell-known density functions, for example, the standard
normal K (ψ) = (2π)−1/2 exp(−.5ψ2). In this vein the indicator function could
be thought of as a kernel estimator with K (·) being the uniform density over
[−1/2, 1/2]. Parzen (1962) pointed out that allowing K (·) to be negative
could reduce the bias of the estimator f̂ , a theme taken up in Section 2.4.3.
A disadvantage with allowing the kernel to be negative is that f̂ 3(x) may now
be negative, and this may be unsatisfactory for some purposes. There is a vast
literature on kernels. Silverman (1986) and Härdle (1990) are very good guides
to this.Mostly the nature of K is not critical to analysis, and the “optimal” kernel,
discussed in Section 2.4.2, will be found to yield only modest improvements in
the performance of f̂ (x) over selections such as the standard normal.

Suppose that K (·) is restricted to be the standard normal. Then it is well
known that K (ψ) ≈ 0 for |ψ | ≥ 3, and it is apparent that the weights used in
(2.7) depend vitally upon the window width h. For an xi �= x , whether ψi =
(xi − x)/h is less than or greater than 3 will depend solely upon h. Although
it is true that h → 0 as n → ∞, in practice this still leaves the problem of
determining exactly how h should varywith n. Section 2.4 contains an extensive
analysis of this issue.

Usually, but not always, K will be a symmetric density function (e.g., the
standard normal density). Moreover, as long as it is everywhere nonnegative
and satisfies

∫
K (ψ) dψ = 1, f̂ 3, like f̂ 1, will be a probability density in that∫

f̂ 3(x) dx = 1. The kernel estimator f̂ 3 also possesses all the continuity and
differentiability properties of the kernel K . This is unlike f̂ 1, which has jumps
at xi ± h/2 and zero derivatives everywhere else. It is the fact that it produces
a smooth function out of a discontinuous one that makes the kernel attractive,
and a number of times in later chapters it will prove to be advantageous to
replace indicator functions by appropriate kernels, even when the context is not
specifically density estimation.
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