

978-0-521-58401-2 - Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Volume II - Abstract Hyperbolic-like Systems over a Finite Time Horizon

Irena Lasiecka and Roberto Triggiani

Table of Contents

More information

Contents

Preface		page xv	
7	Son	ne Auxiliary Results on Abstract Equations	645
	7.1	Mathematical Setting and Standing Assumptions	645
	7.2	Regularity of L and L^* on $[0, T]$	648
	7.3	A Lifting Regularity Property When e^{At} Is a Group	651
	7.4	Extension of Regularity of L and L^* on $[0, \infty]$ When e^{At} Is	
		Uniformly Stable	653
	7.5	Generation and Abstract Trace Regularity under Unbounded	
		Perturbation	660
	7.6	Regularity of a Class of Abstract Damped Systems	663
	7.7	Illustrations of Theorem 7.6.2.2 to Boundary Damped Wave	
		Equations	667
	Not	es on Chapter 7	671
	Ref	erences and Bibliography	671
8	Opt	imal Quadratic Cost Problem Over a Preassigned Finite Time	
	Inte	erval: The Case Where the Input → Solution Map Is	
	Unk	oounded, but the Input → Observation Map Is Bounded	673
	8.1	Mathematical Setting and Formulation of the Problem	675
	8.2	Statement of Main Results	679
	8.3	The General Case. A First Proof of Theorems 8.2.1.1 and 8.2.1.2	
		by a Variational Approach: From the Optimal Control Problem	
		to the DRE and the IRE Theorem 8.2.1.3	687
	8.4	A Second Direct Proof of Theorem 8.2.1.2: From the	
		Well-Posedness of the IRE to the Control Problem. Dynamic	
		Programming	714
	8.5	Proof of Theorem 8.2.2.1: The More Regular Case	733
	8.6	Application of Theorems 8.2.1.1, 8.2.1.2, and 8.2.2.1: Neumann	
		Boundary Control and Dirichlet Boundary Observation for	
		Second-Order Hyperbolic Equations	736

978-0-521-58401-2 - Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Volume II - Abstract Hyperbolic-like Systems over a Finite Time Horizon

Irena Lasiecka and Roberto Triggiani

Table of Contents

viii		Contents	
	Note	A One-Dimensional Hyperbolic Equation with Dirichlet Control (<i>B</i> Unbounded) and Point Observation (<i>R</i> Unbounded) That Satisfies (h.1) and (h.3) but not (h.2), (H.1), (H.2), and (H.3). Yet, the DRE Is Trivially Satisfied as a Linear Equation nterior and Boundary Regularity of Mixed Problems for Second-Order Hyperbolic Equations with Neumann-Type BC as on Chapter 8 erences and Bibliography	745 755 761 763
9		imal Quadratic Cost Problem over a Preassigned Finite Time	
,	Inte	rval: The Case Where the Input → Solution Map Is Bounded.	
		erential and Integral Riccati Equations	765
	9.1	Mathematical Setting and Formulation of the Problem	765
	9.2	Statement of Main Result: Theorems 9.2.1, 9.2.2, and 9.2.3	772
	9.3	Proofs of Theorem 9.2.1 and Theorem 9.2.2 (by the Variational	
	0.4	Approach and by the Direct Approach). Proof of Theorem 9.2.3	776
	9.4	Isomorphism of $P(t)$, $0 \le t < T$, and Exact Controllability of	015
	0.5	$\{A^*, R^*\}$ on $[0, T - t]$ When $G = 0$	815
	9.5	Nonsmoothing Observation <i>R</i> : "Limit Solution" of the Differential Riccati Equation under the Sole Assumption (A.1)	
		When $G = 0$	819
	9.6	Dual Differential and Intergral Riccati Equations When A is a	019
	7.0	Group Generator under (A.1) and $R \in \mathcal{L}(Y; Z)$ and $G = 0$.	
		(Bounded Control Operator, Unbounded Observation)	825
	9.7	Optimal Control Problem with Bounded Control Operator and	020
		Unbounded Observation Operator	839
	9.8	Application to Hyperbolic Partial Differential Equations with Point	
		Control. Regularity Theory	842
	9.9	Proof of Regularity Results Needed in Section 9.8	861
	9.10	A Coupled System of a Wave and a Kirchhoff Equation with Point	
		Control, Arising in Noise Reduction. Regularity Theory	884
	9.11	A Coupled System of a Wave and a Structurally Damped	
		Euler-Bernoulli Equation with Point Control, Arising in Noise	
		Reduction. Regularity Theory	901
		Proof of (9.9.1.16) in Lemma 9.9.1.1	908
		Proof of (9.9.3.14) in Lemma 9.9.3.1	910
		es on Chapter 9	913
	Refe	rences and Bibliography	916
10	Diff	erential Riccati Equations under Slightly Smoothing	
		ervation Operator. Applications to Hyperbolic and	
		owski-Type PDEs. Regularity Theory	919
	10.1	Mathematical Setting and Problem Statement	920

978-0-521-58401-2 - Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Volume II - Abstract Hyperbolic-like Systems over a Finite Time Horizon

Irena Lasiecka and Roberto Triggiani

Table of Contents

		Contents	ix
	10.2	Statement of the Main Results	926
	10.3	Proof of Theorems 10.2.1 and 10.2.2	928
	10.4	Proof of Theorem 10.2.3	936
	10.5	Application: Second-Order Hyperbolic Equations with Dirichlet	
		Boundary Control. Regularity Theory	942
	10.6	Application: Nonsymmetric, Nondissipative First-Order	
		Hyperbolic Systems with Boundary Control. Regularity Theory	972
	10.7	Application: Kirchoff Equation with One Boundary Control.	
		Regularity Theory	989
	10.8	Application: Euler–Bernoulli Equation with One Boundary	
		Control. Regularity Theory	1019
	10.9	Application: Schrödinger Equations with Dirichlet Boundary	
		Control. Regularity Theory	1042
		es on Chapter 10	1059
		sary of Selected Symbols for Chapter 10	1065
	Refe	erences and Bibliography	1065
	Con	tents of Volume I	
0	Bac	kground	1
	0.1	Some Function Spaces Used in Chapter 1	3
	0.2	Regularity of the Variation of Parameter Formula When e^{At} Is a	
		s.c. Analytic Semigroup	3
	0.3	The Extrapolation Space $[\mathcal{D}(A^*)]'$	6
	0.4	Abstract Setting for Volume I. The Operator L_T in (1.1.9), or L_{sT}	
		in (1.4.1.6), of Chapter 1	7
	Refe	erences and Bibliography	9
1	_	imal Quadratic Cost Problem Over a Preassigned Finite Time	
	Inte	rval: Differential Riccati Equation	11
	1.1	Mathematical Setting and Formulation of the Problem	12
	1.2	Statement of Main Results	14
	1.3	Orientation	21
	1.4	Proof of Theorem 1.2.1.1 with GL_T Closed	23
	1.5	First Smoothing Case of the Operator G : The Case $(-A^*)^{\beta}G^*G \in$	
		$\mathcal{L}(Y)$, $\beta > 2\gamma - 1$. Proof of Theorem 1.2.2.1	75
	1.6	A Second Smoothing Case of the Operator G: The Case	
	1.7	$(-A^*)^{\gamma}$ $G^*G \in \mathcal{L}(Y)$. Proof of Theorem 1.2.2.2	97
	1.7	The Theory of Theorem 1.2.1.1 Is Sharp. Counterexamples When	00
	1.0	GL_T Is Not Closable	99
	1.8	Extension to Unbounded Operators R and G	103
		Proof of Lemma 1.5.1.1(iii)	112
	INOte	es on Chapter 1	113

978-0-521-58401-2 - Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Volume II - Abstract Hyperbolic-like Systems over a Finite Time Horizon

Irena Lasiecka and Roberto Triggiani

Table of Contents

x		Contents	
	Glos	sary of Symbols for Chapter 1	118
		rences and Bibliography	119
2	Optimal Quadratic Cost Problem over an Infinite Time Interval:		
	_	braic Riccati Equation	121
	2.1	Mathematical Setting and Formulation of the Problem	122
	2.2	Statement of Main Results	125
	2.3	Proof of Theorem 2.2.1	129
	2.4	Proof of Theorem 2.2.2: Exponential Stability of $\Phi(t)$ and	
		Uniqueness of the Solution of the Algebraic Riccati Equation	
		under the Detectability Condition (2.1.13)	155
	2.5	Extensions to Unbounded $R: R \in \mathcal{L}(\mathcal{D}(\hat{A}^{\delta}); Z)$,	
		$\delta < \min\{1 - \gamma, \frac{1}{2}\}$	160
		Sounded Inversion of $[I + SV]$, $S, V \ge 0$	167
		The Case $\theta = 1$ in (2.3.7.4) When A is Self-Adjoint and $R = I$	168
		s on Chapter 2	170
		sary of Symbols for Chapter 2 rences and Bibliography	175 176
	Kele	tences and Biolography	170
3	Illustrations of the Abstract Theory of Chapters 1 and 2 to Partial		
	Diffe	erential Equations with Boundary/Point Controls	178
	3.0	Examples of Partial Differential Equation Problems Satisfying	
		Chapters 1 and 2	179
	3.1	Heat Equation with Dirichlet Boundary Control: Riccati	
		Theory	180
	3.2	Heat Equation with Dirichlet Boundary Control: Regularity	107
	2.2	Theory of the Optimal Pair	187
	3.3	Heat Equation with Neumann Boundary Control A Structurally Downed Platality Equation with Point Control and	194
	3.4	A Structurally Damped Platelike Equation with Point Control and Simplified Hinged BC	204
	3.5	Kelvin–Voight Platelike Equation with Point Control with	207
	5.5	Free BC	208
	3.6	A Structurally Damped Platelike Equation with Boundary Control	
	2.0	in the Simplified Moment BC	211
	3.7	Another Platelike Equation with Point Control and Clamped BC	214
	3.8	The Strongly Damped Wave Equation with Point Control and	
		Dirichlet BC	216
	3.9	A Structurally Damped Kirchhoff Equation with Point Control	
		Acting through $\delta(\cdot - x^0)$ and Simplified Hinged BC	218
	3.10	A Structurally Damped Kirchhoff Equation (Revisited) with Point	
		Control Acting through $\delta'(\cdot - x^0)$ and Simplified Hinged BC	221
	3.11	Thermo-Elastic Plates with Thermal Control and Homogeneous	
		Clamped Mechanical BC	224

978-0-521-58401-2 - Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Volume II - Abstract Hyperbolic-like Systems over a Finite Time Horizon

Irena Lasiecka and Roberto Triggiani

Table of Contents

More information

Contents	xi
3.12 Thermo-Elastic Plates with Mechanical Control in the Bending Moment (Hinged BC) and Homogeneous Neumann Thermal BC3.13 Thermo-Elastic Plates with Mechanical Control as a Shear Force	237
(Free BC)	248
3.14 Structurally Damped Euler–Bernoulli Equations with Damped Free BC and Point Control or Boundary Control	261
3.15 A Linearized Model of Well/Reservoir Coupling for a Monophasic Flow with Boundary Control	269
3.16 Additional Illustrations with Control Operator <i>B</i> and Observation Operator <i>R</i> Both Genuinely Unbounded3A Interpolation (Intermediate) Sobolev Spaces and Their	278
Identification with Domains of Fractional Powers of Elliptic	202
Operators 3B Damped Elastic Operators	282 285
3C Boundary Operators for Bending Moments and Shear Forces on Two-Dimensional Domains	296
3D C_0 -Semigroup/Analytic Semigroup Generation when $A = \mathcal{A}M$, \mathcal{A} Positive Self-Adjoint, M Matrix. Applications to Thermo-Elastic	
Equations with Hinged Mechanical BC and Dirichlet Thermal BC 3E Analyticity of the s.c. Semigroups Arising from Abstract	311
Thermo-Elastic Equations. First Proof 3F Analyticity of the s.c. Semigroup Arising from Abstract	324
Thermo-Elastic Equations. Second Proof 3G Analyticity of the s.c. Semigroup Arising from Abstract	346
Thermo-Elastic Equations. Third Proof	363
3H Analyticity of the s.c. Semigroup Arising from Problem (3.12.1) (Hinged Mechanical BC/Neumann (Robin) Thermal BC) 3I Analyticity of the s.c. Semigroup Arising from Problem (3.13.1) of	370
Section 13 (Free Mechanical BC/Neumann (Robin) Thermal BC) 3J Uniform Exponential Energy Decay of Thermo-Elastic Equations	382
with, or without, Rotational Term. Energy Methods Notes on Chapter 3	402 413
References and Bibliography	425
Numerical Approximations of Algebraic Riccati Equations 4.1 Introduction: Continuous and Discrete Optimal Control Problems	431 431
4.2 Background Material	444
4.3 Convergence Properties of the Operators L_h and L_h^* ; \hat{L}_h and \hat{L}_h^*	446
4.4 Perturbation Results	451
4.5 Uniform Convergence $P_h\Pi_h \to P$ and $B_h^*P_h\Pi_h \to B^*P$	471
4.6 Optimal Rates of Convergence	484
4A A Sharp Result on the Exponential Operator-Norm Decay of a	
Family of Strongly Continuous Semigroups	488

4

978-0-521-58401-2 - Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Volume II - Abstract Hyperbolic-like Systems over a Finite Time Horizon

Irena Lasiecka and Roberto Triggiani

Table of Contents

xii		Contents	
	4B 1	Finite Element Approximations of Dynamic Compensators of Luenberger's Type for Partially Observed Analytic Systems with	
		Fully Unbounded Control and Observation Operators	495
		es on Chapter 4	504
		sary of Symbols for Chapter 4	509
	Refe	erences and Bibliography	509
5	Illus	strations of the Numerical Theory of Chapter 4 to	
	Para	abolic-Like Boundary/Point Control PDE Problems	511
	5.1	Introductory Approximation Results	511
	5.2	Heat Equation with Dirichlet Boundary Control	521
	5.3	Heat Equation with Neumann Boundary Control. Optimal Rates	
		of Convergence with $r \ge 1$ and Galerkin Approximation	531
	5.4	A Structurally Damped Platelike Equation with Interior Point	
		Control with $r \geq 3$	537
	5.5	Kelvin-Voight Platelike Equation with Interior Point Control with	
		$r \ge 3$	544
	5.6	A Structurally Damped Platelike Equation with Boundary Control	
		with $r \geq 3$	549
	Note	es on Chapter 5	554
		ssary of Symbols for Chapter 5, Section 5.1	554
		erences and Bibliography	554
6	Min	-Max Game Theory over an Infinite Time Interval and	
U		ebraic Riccati Equations	556
	8	-	
		Part I: General Case	557
	6.1	Mathematical Setting; Formulation of the Min–Max Game	557
		Problem; Statement of Main Results	557
	6.2	Minimization of $J_{w,T}$ over $u \in L_2(0,T;U)$ for w Fixed	562
	6.3	Minimization of $J_{w,\infty}$ over $u \in L_2(0,\infty; U)$ for w Fixed: The	570
		Limit Process as $T \uparrow \infty$	570
	6.4	Collection of Explicit Formulae for $p_{w,\infty}, r_{w,\infty}$, and $y_{w,\infty}^0$ in	501
		Stable Form	581
	6.5	Explicit Expression for the Optimal Cost $J_{w,\infty}^0(y_0 = 0)$ as a	500
		Quadratic Term	583
	6.6	Definition of the Critical Value γ_c . Coercivity of E_{γ} for $\gamma > \gamma_c$	585
	6.7	Maximization of $J_{w,\infty}^0$ over w Directly on $[0,\infty]$ for $\gamma > \gamma_c$.	-0.
		Characterization of Optimal Quantities	586
	6.8	Explicit Expression of $w^*(\cdot; y_0)$ in Terms of the Data via E_{γ}^{-1} for	
		$\gamma > \gamma_c$	589
	6.9	Smoothing Properties of the Operators \hat{L} , \hat{L}^* , \hat{W} , \hat{W}^* : The	
		Optimal u^* , y^* , w^* Are Continuous in Time	589

978-0-521-58401-2 - Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Volume II - Abstract Hyperbolic-like Systems over a Finite Time Horizon

Irena Lasiecka and Roberto Triggiani

Table of Contents

More information

Contents	xiii	
6.10 A Transition Property for w^* for $\gamma > \gamma_c$	593	
6.11 A Transition Property for r^* for $\gamma > \gamma_c$	595	
6.12 The Semigroup Property for y^* and a Transition Property for	p^*	
for $\gamma > \gamma_c$	596	
6.13 Definition of <i>P</i> and Its Properties	598	
6.14 The Feedback Generator A_F and Its Preliminary Properties	for	
$\gamma > \gamma_c$	600	
6.15 The Operator P is a Solution of the Algebraic Riccati Equation	on,	
ARE_{γ} for $\gamma > \gamma_{c}$	603	
6.16 The Semigroup Generated by $(A - BB^*P)$ Is Uniformly Stab	ole 604	
6.17 The Case $0 < \gamma < \gamma_c$: $\sup J_{w,\infty}^0(y_0) = +\infty$	606	
6.18 Proof of Theorem 6.1.3.2	607	
Part II: The Case Where e^{At} is Stable:	608	
6.19 Motivation, Statement of Main Results	608	
6.20 Minimization of J over u for w Fixed	612	
6.21 Maximization of $J_w^0(y_0)$ over w : Existence of a Unique		
Optimal w^*	616	
6.22 Explicit Expressions of $\{u^*, y^*, w^*\}$ and P for $\gamma > \gamma_c$ in Terms	ms	
of the Data via E_{ν}^{-1}	618	
6.23 Smoothing Properties of the Operators L, L^*, W, W^* : The		
Optimal u^* , y^* , w^* Are Continuous in Time	620	
6.24 A Transition Property for w^* for $\gamma > \gamma_c$	622	
6.25 The Semigroup Property for y^* for $\gamma > \gamma_c$ and Its Stability	626	
6.26 The Riccati Operator, P, for $\gamma > \gamma_c$	627	
6A Optimal Control Problem with Nondefinite Quadratic Cost. The		
Stable, Analytic Case. A Brief Sketch	630	
Notes on Chapter 6	639	
References and Bibliography		

Index