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Chapter One

Introduction

1.1 What is the electron theory of metals?

Each element exists as either a solid, or a liquid, or a gas at ambient tempera-
ture and pressure. Alloys or compounds can be formed by assembling a
mixture of different elements on a common lattice. Typically this is done by
melting followed by solidification. Any material is, therefore, composed of a
combination of the elements listed in the periodic table, Table 1.1. Among
them, we are most interested in solids, which are often divided into metals,
semiconductors and insulators. Roughly speaking, a metal represents a
material which can conduct electricity well, whereas an insulator is a material
which cannot convey a measurable electric current. At this stage, a semicon-
ductor may be simply classified as a material possessing an intermediate char-
acter in electrical conduction. Most elements in the periodic table exist as
metals and exhibit electrical and magnetic properties unique to each of them.
Moreover, we are well aware that the properties of alloys differ from those of
their constituent elemental metals. Similarly, semiconductors and insulators
consisting of a combination of several elements can also be formed.
Therefore, we may say that unique functional materials may well be synthe-
sized in metals, semiconductors and insulators if different elements are inge-
niously combined.

A molar quantity of a solid contains as many as 1023 atoms. A solid is formed
as a result of bonding among such a huge number of atoms. The entities
responsible for the bonding are the electrons. The physical and chemical prop-
erties of a given solid are decided by how the constituent atoms are bonded
through the interaction of their electrons among themselves and with the
potentials of the ions. This interaction yields the electronic band structure
characteristic of each solid: a semiconductor or an insulator is described by
a filled band separated from other bands by an energy gap, and a metal by

1



Table 1.1. Periodic table of the elements

1H

1.008
1s

2He

4.003

1s2

3Li

6.941
2s

4Be

9.012
2s2

5B

10.81
2s22p

6C

12.01
2s22p2

7N

14.01
2s22p3

8O

16.00
2s22p4

9F

19.00
2s22p5

10Ne

20.18
2s22p6

11Na

22.99
3s

12Mg

24.31
3s2

13Al

26.98
3s23p

14Si

28.09
3s23p2

15P

30.97
3s23p3

16S

32.07
3s23p4

17Cl

35.45
3s23p5

18Ar

39.95
3s23p6

31Ga

69.72
4s24p

32Ge

72.59
4s24p2

33As

74.92
4s24p3

34Se

78.96
4s24p4

35Br

79.90
4s24p5

36Kr

83.80
4s24p6

49In

114.8
5s25p

50Sn

118.7
5s25p2

51Sb

121.8
5s25p3

52Te

127.6
5s25p4

53I

126.9
5s25p5

54Xe

131.3
5s25p6

81Tl

204.4
6s26p

82Pb

207.2
6s26p2

83Bi

209.0
6s26p3

84Po

—
6s26p4

85At

—
6s26p5

86Rn

—
6s26p6

19K

39.10
4s

20Ca

40.08
4s2

21Sc

44.96
4s23d

22Ti

47.88
4s23d2

23V

50.94

24Cr

52.00

25Mn

54.94
4s23d5

26Fe

55.85
4s23d6

27Co

58.93
4s23d7

28Ni

58.69
4s23d8

29Cu

63.55
4s3d10

30Zn

65.39
4s23d10

37Rb

85.47
5s

38Sr

87.62
5s2

39Y

88.91
5s24d

40Zr

91.22
5s24d2

41Nb

92.91
5s4d4

42Mo

95.94
5s4d5

43Tc

—
5s4d6

44Ru

101.1
5s4d7

45Rh

102.9
5s4d8

46Pd

106.4
4d10

47Ag

107.9
5s4d10

48Cd

112.4
5s24d10

55Cs

132.9
6s

56Ba

137.3
6s2

Lantha-
nide

72Hf

178.5
6s25d24f14

73Ta

180.9
6s25d3

74W

183.9
6s25d4

75Re

186.2
6s25d5

76Os

190.2
6s25d6

77Ir

192.2
5d9

78Pt

195.1
6s5d9

79Au

197.0
6s5d10

80Hg

200.6
6s25d10

87Fr

—
7s

88Ra

226.0
7s2

Acti-
nide

Lantha-
nide

Acti-
nide

66Dy

162.5
6s24f10

67Ho

164.9
6s24f11

68Er

167.3
6s24f12

69Tm

168.9
6s24f13

70Yb

173.0
6s24f14

71Lu

175.0
6s25d4f14

57La

138.9
6s25d

58Ce

140.1
6s24f2

59Pr

140.9
6s24f3

60Nd

144.2
6s24f4

61Pm

—
6s24f5

62Sm

150.4
6s24f6

63Eu

152.0
6s24f7

64Gd

157.3
6s25d4f7

65Tb

158.9
6s25d4f8

98Cf

—

99Es

—

100Fm

—

101Md

—

102No

—

103Lr

—

89Ac

227.0
7s26d

90Th

232.0
7s26d2

91Pa

231.0
7s26d5f2

92U

238.0
7s26d5f3

93Np

237.0
7s25f5

94Pu

—
7s25f6

95Am

—
7s25f7

96Cm

—
7s26d5f7

97Bk

—

Symbol
atomic
weight

atomic
number

outer electron
configurations

in the ground state

4s23d3 4s3d5



overlapping continuous bands. The resulting electronic structure affects signif-
icantly the observed electron transport phenomena. The electron theory of
metals in the present book covers properties of electrons responsible for the
bonding of solids and electron transport properties manifested in the presence
of external fields or a temperature gradient.

Studies of the electron theory of metals are also important from the point
of view of application-oriented research and play a vital role in the develop-
ment of new functional materials. Recent progress in semiconducting devices
like the IC (Integrated Circuit) or LSI (Large Scale Integrated circuit), as well
as developments in magnetic and superconducting materials, certainly owe
much to the successful application of the electron theory of metals. As another
unique example, we may refer to amorphous metals and semiconductors,
which are known as non-periodic solids having no long-range order in their
atomic arrangement. Amorphous Si is now widely used as a solar-operated
battery for small calculators.

It may be worthwhile mentioning what prior fundamental knowledge is
required to read this book. The reader is assumed to have taken an elementary
course of quantum mechanics. We use in this text terminologies such as the
wave function, the uncertainty principle, the Pauli exclusion principle, the per-
turbation theory etc., without explanation. In addition, the reader is expected
to have learned the elementary principles of classical mechanics and electro-
magnetic dynamics.

The units employed in the present book are mostly those of the SI system,
but CGS units are often conventionally used, particularly in tables and figures.
Practical units are also employed. For example, the resistivity is expressed in
units of V-cm which is a combination of CGS and SI units. Important units-
dependent equations are shown in both SI and CGS units.

1.2 Historical survey of the electron theory of metals

In this section, the reader is expected to grasp only the main historical land-
marks of the subject without going into details. The electron theory of metals
has developed along with the development of quantum mechanics. In 1901,
Planck [1]† introduced the concept of discrete energy quanta, of magnitude hn,
in the theory of a “black-body” radiation, to eliminate deficiencies of the clas-
sical Rayleigh and Wien approaches. Here h is called the Planck constant and
n is the frequency of the electromagnetic radiation expressed as the ratio of
the speed of light c over its wavelength l. In 1905, Einstein [2] explained the

1.2 Historical survey of the electron theory of metals 3
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photoelectric effect (generation of current by irradiation) by making assump-
tions similar to those of Planck. He assumed the incident light to be made up
of energy portions (or “photons” as named later) having discrete energies in
multiples of hn but that it still behaves like waves with the corresponding fre-
quency. The assumption about a relationship between wave-like and particle-
like behavior of light had not been easily accepted at that time.

In 1913, Bohr [3] proposed the electron shell model for the hydrogen atom.
He assumed that an electron situated in the field of a positive nucleus was
restricted to only certain allowed orbits and that it could “fall” from one orbit
to another thereby emitting a quantity of radiation with an energy equal to the
difference between the energies of the two orbits. In 1914, Franck and Hertz [4]
found that electrons in mercury vapor accelerated by an electric field would
cause emission of monochromatic radiation with the wavelength 253.6 nm only
when their energy exceeds 4.9 eV. This was taken as a demonstration for the
correctness of Bohr’s postulate.1

There is, however, a difficulty in the semiclassical theory of an atom pro-
posed by Bohr. According to the classical theory, an electron revolving round
a nucleus would lose its energy by emitting radiation and eventually spiral into
the nucleus. An enormous amount of effort was expended to resolve this
paradox in the period of time between 1913 and 1926, when the quantum
mechanical theory became ultimately established. In 1923, Compton [5] dis-
covered that x-rays scattered from a light material such as graphite contained
a wavelength component longer than that of the incident beam. A shift of
wavelength can be precisely explained by considering the conservation of
energy and momentum between the x-ray photons and the freely moving elec-
trons in the solid. This clearly demonstrated that electromagnetic radiation
treated as particles can impart momenta to particles of matter and it created a
need for constructing a theory compatible with the dual nature of radiation
having both wave and particle properties.

In 1925, Pauli [6] postulated a simple sorting-out principle by thoroughly
studying a vast amount of spectroscopic data including those associated with
the Zeeman effect described below. Pauli found the reason for Bohr’s assign-
ment of electrons to the various shells around the nuclei for different elements
in the periodic table. Pauli’s conclusion, which is now known as the “exclusion
principle”, states that not more than two electrons in a system (such as an
atom) should exist in the same quantum state. This became an important basis

4 1 Introduction

11 Radiation with l5253.6 nm is emitted upon the transition from the 6s6p 3P1 excited state to the 6s2 1S0
ground state in mercury. According to Bohr’s postulate, some excited atoms would fall into the ground
state thereby emitting radiation with the wavelength l5253.6 nm. Insertion of l5253.6 nm into DE5
hc/l exactly yields the excitation energy of 4.9 eV.



in the construction of quantum mechanics. Another important idea was set
forth by de Broglie [7] in 1924. He suggested that particles of matter such as
electrons, might also possess wave-like characteristics, so that they would also
exhibit a dual nature. The de Broglie relationship is expressed as
l5h/p5h/mv, where p is the momentum of the particle and l is the wave-
length. A wavelength is best associated with a wave-like behavior and a
momentum is best associated with a particle-like behavior. According to this
hypothesis, electrons should exhibit a wave-like nature. Indeed, Davisson and
Germer [8] discovered in 1927 that accelerated electrons are diffracted by a Ni
crystal in a similar manner to x-rays. The formulation of quantum mechanics
was completed in 1925 by Heisenberg [9]. Our familiar Schrödinger equation
was established in 1926 [10].

The beginning of the electron theory of metals can be dated back to the
works of Zeeman [11] and J. J. Thomson [12] in 1897. Zeeman studied the pos-
sible effect of a magnetic field on radiation emitted from a flame of sodium
placed between the poles of an electromagnet. He discovered that spectral lines
became split into separate components under a strong field. He supposed that
light is emitted as a result of an electric charge, really an electron, vibrating in
a simple harmonic motion within an atom and could determine from this
model the ratio of the charge e to the mass m of a charged particle.

At nearly the same time, J. J. Thomson demonstrated that “cathode rays” in
a discharge tube can be treated as particles with a negative charge, and he could
independently determine the ratio (2e)/m. Soon, the actual charge (2e) was
separately determined and, as a result, the electron mass calculated from the
ratio (2e)/m turned out to be extremely small compared with that of an atom.
In this way, it had been established by 1900 that the negatively charged parti-
cles of electricity, which are now known as electrons, are the constituent parts
of all atoms and are responsible for the emission of electromagnetic radiation
when atoms become excited and their electrons change orbital positions.

The classical theory of metallic conductivity was presented by Drude [13] in
1900 and was elaborated in more detail by Lorentz [14] originally in 1905. Drude
applied the kinetic theory of gases to the freely moving electrons in a metal by
assuming that there exist charged carriers moving about between the ions with
a given velocity and that they collide with one other in the same manner as do
molecules in a gas. He obtained the electrical conductivity expression
s5ne2t/m, which is still used as a standard formula. Here, n is the number of
electrons per unit volume and t is called the relaxation time which roughly cor-
responds to the mean time interval between successive collisions of the electron
with ions. He also calculated the thermal conductivity in the same manner and
successfully provided the theoretical basis for the Wiedemann–Frantz law

1.2 Historical survey of the electron theory of metals 5



already established in 1853. It states that the ratio of the electrical and thermal
conductivities of any metal is a universal constant at a given temperature.

Lorentz later reinvestigated the Drude theory in a more rigorous manner by
applying Maxwell–Boltzmann statistics to describe the velocities of the electrons.
However, a serious difficulty was encountered in the theory. If the Boltzmann
equipartition law mv25 kBT is applied to the electron gas, one immediately
finds the velocity of the electron to change as . According to the Drude
model, the mean free path is obviously temperature independent, since it is cal-
culated from the scattering cross-section of rigid ions. This results in a resistivity
proportional to , provided that the number of electrons per unit volume n is
temperature independent.2 However, people at that time had been well aware that
the resistivity of typical metals increases linearly with increasing temperature well
above room temperature. In order to be consistent with the equipartition law, one
had to assume n to change as 1/ÏwT in metals. This was not physically accepted.

The application of the equipartition law to the electron system was appar-
ently the source of the problem. Indeed, the true mean free path of electrons is
found to be as long as 20 nm for pure Cu even at room temperature (see Section
10.2).3 Another serious difficulty had been realized in the application of the
Boltzmann equipartition law to the calculation of the specific heat of free elec-
trons, which resulted in a value of R. The well-known Dulong–Petit law holds
well even for metals in which free electrons are definitely present. This means
that the additional specific heat of R is somehow missing experimentally. We
had to wait for the establishment of quantum mechanics to resolve the failure
of the Boltzmann equipartition law when applied to the electron gas.

Quantum mechanics imposes specific restrictions on the behavior of electron
particles. The Heisenberg uncertainty principle [15] does not permit an exact
knowledge of both the position and the momentum of a particle and, as a
result, particles obeying the quantum mechanics must be indistinguishable. In
1926, Fermi [16] and Dirac [17] independently derived a new form of statisti-
cal mechanics based on the Pauli exclusion principle. In 1927, Pauli [18] applied
the newly derived Fermi–Dirac statistics to the calculation of the paramagne-
tism of a free-electron gas.

In 1928, Sommerfeld [19] applied the quantum mechanical treatment to the
electron gas in a metal. He retained the concept of a free electron gas originally
introduced by Drude and Lorentz, but applied to it the quantum mechanics

3
2

3
2

ÏT

ÏT

3
2

1
2

6 1 Introduction

12 The resistivity r is given by r5mv/n(2e)2L, where m is the mass of electron, v is its velocity, n is the
number of electrons per unit volume, L is the mean free path for the electron and (2e) is the electronic
charge (see Section 10.2).

13 By applying quantum statistics to the electron gas, we will find (in Section 10.2) the true electron velocity
responsible for electron conduction in typical metals to be of the order of 106 m/s and temperature inde-
pendent. Instead, the mean free path is shown to be temperature dependent.



coupled with the Fermi–Dirac statistics. The specific heat, the thermionic emis-
sion, the electrical and thermal conductivities, the magnetoresistance and the
Hall effect were calculated quite satisfactorily by replacing the ionic potentials
with a constant averaged potential equal to zero. The Sommerfeld free-electron
model could successfully remove the difficulty associated with the electronic
specific heat derived from the equipartition law.

The Sommerfeld model was, however, unable to answer why the mean free
path of electrons reaches 20 nm in a good conducting metal like silver at room
temperature. Indeed, electrons in a metal are moving in the presence of strong
Coulomb potentials due to ions. Therefore the success based on the concept of
free-electron behavior was received at that time with a great deal of surprise.
The ionic potential is periodically arranged in a crystal. In 1928, Bloch [20]
showed that the wave function of a conduction electron in the periodic poten-
tial can be described in the form of a plane wave modulated by a periodic func-
tion with the period of the lattice, no matter how strong the ionic potential.
The wave function is called the Bloch wave. The Bloch theorem provided the
basis for the electrical resistivity; the entity that is responsible for the scatter-
ing of electrons is not the strong ionic potential itself but the deviation from
its periodicity. Based on the Bloch theorem, Wilson [21] in 1931 was able to
describe a band theory, which embraces metals, semiconductors and insulators.
The main frame of the electron theory of metals had been matured by about
the middle of the 1930s. We can see it by reading the well-known textbooks by
Mott and Jones [22] and Wilson [23] published in 1936.

Before ending this section, the most notable achievements since the 1940s in
the field of the electron theory of metals may be briefly mentioned. Bardeen
and Brattain invented the point-contact transistor in 1948–49 [24]. For this
achievement, the Nobel prize was awarded to Bardeen, Brattain and Shockley
in 1956. Superconductivity is a phenomenon in which the electrical resistivity
suddenly drops to zero at its transition temperature Tc. The theory of super-
conductivity was established in 1957 by Bardeen, Cooper and Schrieffer [25].
The so called BCS theory has been recognized as one of the greatest accom-
plishments in the electron theory of metals since the advent of the Sommerfeld
free-electron theory. Naturally, the higher the superconducting transition tem-
perature, the more likely are possible applications. A maximum superconduct-
ing transition temperature had been thought to be no greater than 30–40 K
within the framework of the BCS theory. However, a new material, which
undergoes the superconducting transition above 30 K, was discovered in 1986
[26] and has received intense attention from both fundamental and practical
points of view. This was not an ordinary metallic alloy but a cuprate oxide with
a complex crystal structure. More new superconductors in this family have
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been discovered successively and the superconducting transition temperature
Tc has increased to be above 90 K in 1987, above 110 K in 1988 and almost
140 K in 1996. The electronic properties manifested by these superconducting
oxides have become one of the most exciting and challenging topics in the field
of the electron theory of metals.

Originally, the electron theory of metals was constructed for crystals where
the existence of a periodic potential was presupposed. Subsequently, an elec-
tron theory treatment of a disordered system, where the periodicity of the ionic
potentials is heavily distorted, was also recognized to be significantly impor-
tant. Liquid metals are typical of such disordered systems. More recently,
amorphous metals and semiconductors have received considerable attention
not only from the viewpoint of fundamental physics but also from many pos-
sible practical applications. In addition to these disordered materials, a non-
periodic yet highly ordered material known as a quasicrystal was discovered by
Shechtman et al. in 1984 [27]. The icosahedral quasicrystal is now known to
possess two-, three- and five-fold rotational symmetry which is incompatible
with the translational symmetry characteristic of an ordinary crystal. The elec-
tron theory should be extended to these non-periodic materials and be cast into
a more universal theory.

1.3 Outline of this book

Chapters 2 and 3 are devoted to the description of the Sommerfeld free-
electron theory. The free-electron model and the concept of the Fermi surface
are discussed in Chapter 2. The Fermi–Dirac distribution function is intro-
duced in Chapter 3 and is applied to calculate the electronic specific heat and
the thermionic emission. Pauli paramagnetism is also discussed as another
example of the application of the Fermi–Dirac distribution function.

Before discussing the motion of electrons in a periodic lattice, we have to
study how the periodic lattice can be described in both real and reciprocal
space. Fundamental properties associated with both the periodic lattice and
lattice vibrations in both real and reciprocal space are dealt with in Chapter 4.
In Chapter 5, the Bloch theorem is introduced and then the energy spectrum
of conduction electrons in a periodic lattice potential is given in the nearly-free-
electron approximation. The mechanism for the formation of an energy gap
and its relation to Bragg scattering are described. The concept of the Brillouin
zone and its construction are then shown. The Fermi surface and its interac-
tion with the Brillouin zone are considered and the definitions of a metal, a
semiconductor and an insulator are given.

In Chapter 6, the Fermi surfaces and the Brillouin zones in elemental metals
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and semimetals in the periodic table are presented. The reader will discover
how the Fermi surface–Brillouin zone interaction in an individual metal results
in its own unique electronic band structure. In Chapter 7, the experimental
techniques and the principles involved in determining the Fermi surface of
metals are introduced. The behavior of conduction electrons in a magnetic field
is also treated in this chapter. In Chapter 8, electronic band structure calcula-
tion techniques are introduced. The electron theory in alloys is treated in
Chapter 9.

Transport phenomena of electrons in crystalline metals are discussed in both
Chapters 10 and 11. The derivation of the Boltzmann transport equation and
its application to the electrical conductivity are discussed in Chapter 10. In
Chapter 11, other transport properties including thermal conductivity,
thermoelectric power, Hall coefficient and optical properties are discussed
within the framework of the Boltzmann transport equation. At the end of
Chapter 11, the basic concept of the Kubo formula is introduced. Super-
conducting phenomena are presented in Chapter 12, including the introduc-
tion of basic theories such as the London theory and BCS theory. The
superconducting properties of high-Tc-superconducting materials are also
briefly discussed. In Chapter 13, we focus on the electronic structure and elec-
tron transport phenomena in magnetic metals and alloys. For example, the
resistivity minimum phenomenon known as the Kondo effect, which is
observed when a very small amount of magnetic impurities is dissolved in a
non-magnetic metal, is described.

The chapters up to 13 are based on the one-electron approximation. But its
failure has been recognized to be crucial in the high-Tc-superconducting
cuprate oxides and related materials. The materials in this family have been
referred to as strongly correlated electron systems. The electronic structure and
electron transport properties of a strongly correlated electron system have been
studied extensively in the last decade. Its brief outline is, therefore, introduced
in Chapter 14. Finally, the electron theory of non-periodic systems, including
liquid metals, amorphous metals and quasicrystals is discussed in Chapter 15.

Exercises are provided at the end of most chapters. The reader is asked to
solve them since this will certainly assist in the understanding of the chapter
content and ideas. Hints and answers are given at the end of the book.
References pertinent to each chapter are listed at the end of the book. Several
modern textbooks on solid state physics that include the electron theory of
metals are also listed [28–32].
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