Introduction to the Electron Theory of Metals

The electron theory of metals describes how electrons are responsible for the bonding of metals and subsequent physical, chemical and transport properties. This textbook gives a complete account of electron theory in both periodic and non-periodic metallic systems.

The author presents an accessible approach to the theory of electrons, comparing it with experimental results as much as possible. The book starts with the basics of one-electron band theory and progresses to cover up-to-date topics such as high- T_c superconductors and quasicrystals. The relationship between theory and potential applications is also emphasized. The material presented assumes some knowledge of elementary quantum mechanics as well as the principles of classical mechanics and electromagnetism.

This textbook will be of interest to advanced undergraduates and graduate students in physics, chemistry, materials science and electrical engineering. The book contains numerous exercises and an extensive list of references and numerical data.

UICHIRO MIZUTANI was born in Japan on March 25, 1942. During his early career as a postdoctoral fellow at Carnegie–Mellon University from the late 1960s to 1975, he studied the electronic structure of the Hume-Rothery alloy phases. He received a doctorate of Engineering in this field from Nagoya University in 1971. Together with Professor Thaddeus B. Massalski, he wrote a seminal review article on the electron theory of the Hume-Rothery alloys (*Progress in Materials Science*, 1978). From the late 1970s to the 1980s he worked on the electronic structure of amorphous alloys (*Progress in Materials Science*, 1983) provided the first comprehensive understanding of electron transport in such systems. His research field has gradually broadened since then to cover electronic structure and transport properties of quasicrystals and high- T_c superconductors. It involves both basic and practical application-oriented science like the development of superconducting permanent magnets and thermoelectric materials.

He became a professor of Nagoya University in 1989 and was visiting professor at the University of Paris in 1997 and 1999. He received the Japan Society of Powder and Powder Metallurgy award for distinguished achievement in research in 1995, the best year's paper award from the Japan Institute of Metals in 1997 and the award of merit for Science and Technology of High- T_c Superconductivity in 1999 from the Society of Non-Traditional Technology, Japan.

Cambridge University Press 0521583349 - Introduction to the Electron Theory of Metals - Uichiro Mizutani Frontmatter <u>More information</u>

INTRODUCTION TO THE ELECTRON THEORY OF METALS

UICHIRO MIZUTANI

Department of Crystalline Materials Science, Nagoya University

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

> CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011–4211, USA 10 Stamford Road, Oakleigh, VIC 3166, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

> > http://www.cambridge.org

Japanese edition © Uchida Rokakuho 1995 (Vol. 1, pp. 1–260); 1996 (Vol. 2, pp. 261–520) English edition © Cambridge University Press 2001

> This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> > First published 2001

Printed in the United Kingdom at the University Press, Cambridge

Typeface Monotype Times NR 11/14 pt System QuarkXPress[™] [SE]

A catalogue record for this book is available from the British Library

ISBN 0 521 58334 9 hardback ISBN 0 521 58709 3 paperback

Contents

	Preface	<i>page</i> xi
1	Introduction	1
1.1	What is the electron theory of metals?	1
1.2	Historical survey of the electron theory of metals	3
1.3	Outline of this book	8
2	Bonding styles and the free-electron model	10
2.1	Prologue	10
2.2	Concept of an energy band	10
2.3	Bonding styles	13
2.4	Motion of an electron in free space	16
2.5	Free electron under the periodic boundary condition	18
2.6	Free electron in a box	20
2.7	Construction of the Fermi sphere	21
	Exercises	28
3	Electrons in a metal at finite temperatures	29
3.1	Prologue	29
3.2	Fermi–Dirac distribution function (I)	29
3.3	Fermi–Dirac distribution function (II)	34
3.4	Electronic specific heat	37
3.5	Low-temperature specific heat measurement	40
3.6	Pauli paramagnetism	44
3.7	Thermionic emission	50
	Exercise	53
4	Periodic lattice, and lattice vibrations in crystals	54
4.1	Prologue	54
4.2	Periodic structure and reciprocal lattice vectors	54
4.3	Periodic lattice in real space and in reciprocal space	57
4.4	Lattice vibrations in one-dimensional monatomic lattice	64

vi

Cambridge University Press
0521583349 - Introduction to the Electron Theory of Metals - Uichiro Mizutani
Frontmatter
Moreinformation

Contents		
4.5	Lattice vibrations in a crystal	66
	Lattice waves and phonons	69
4.7	Bose–Einstein distribution function	69
4.8	Lattice specific heat	72
4.9	Acoustic phonons and optical phonons	77
4.10	Lattice vibration spectrum and Debye temperature	80
4.11	Conduction electrons, set of lattice planes and phonons	81
	Exercises	83
5	Conduction electrons in a periodic potential	86
5.1	Prologue	86
	Cosine-type periodic potential	86
	Bloch theorem	88
	Kronig–Penney model	93
	Nearly-free-electron model	97
	Energy gap and diffraction phenomena	103
	Brillouin zone of one- and two-dimensional periodic lattices	105
	Brillouin zone of bcc and fcc lattices	106
	Brillouin zone of hcp lattice	113
	Fermi surface–Brillouin zone interaction	116
5.11	Extended, reduced and periodic zone schemes	121
_	Exercises	125
	Electronic structure of representative elements	126
	Prologue	126
	Elements in the periodic table	126
	Alkali metals	126
	Noble metals	130
	Divalent metals	132
	Trivalent metals	135
	Tetravalent metals and graphite Pentavalent semimetals	137 141
	Semiconducting elements without and with dopants	141
	Experimental techniques and principles of electronic	145
/	structure-related phenomena	148
71	Prologue	140
	de Haas–van Alphen effect	148
	Positron annihilation	140
	Compton scattering effect	160
	Photoemission spectroscopy	162
	Inverse photoemission spectroscopy	162
	Angular-resolved photoemission spectroscopy (ARPES)	172
	mgalar resorred photoennission speetroscopy (mit Lb)	1/2

	Contents	vii
7.8	Soft x-ray spectroscopy	176
	Electron-energy-loss spectroscopy (EELS)	181
	Optical reflection and absorption spectra	184
	Exercises	188
8	Electronic structure calculations	190
8.1	Prologue	190
8.2	One-electron approximation	190
8.3	Local density functional method	195
8.4	Band theories in a perfect crystal	199
8.5	Tight-binding method	200
8.6	Orthogonalized plane wave method	203
8.7	Pseudopotential method	204
8.8	Augmented plane wave method	207
8.9	Korringa–Kohn–Rostoker method	211
8.10	LMTO	215
	Exercises	223
9	Electronic structure of alloys	224
9.1	Prologue	224
9.2	Impurity effect in a metal	224
9.3	Electron scattering by impurity atoms and the Linde law	226
9.4	Phase diagram in Au–Cu alloy system and the Nordheim law	228
9.5	Hume-Rothery rule	232
9.6	Electronic structure in Hume-Rothery alloys	235
9.7	Stability of Hume-Rothery alloys	240
9.8	Band theories for binary alloys	245
10	Electron transport properties in periodic systems (I)	249
10.1	Prologue	249
10.2	The Drude theory for electrical conductivity	249
10.3	Motion of electrons in a crystal: (I) – wave packet of	
	electrons	254
10.4	Motion of electrons in a crystal: (II)	257
10.5	Electrons and holes	261
10.6	Boltzmann transport equation	264
10.7	Electrical conductivity formula	267
10.8	Impurity scattering and phonon scattering	270
10.9	Band structure effect on the electron transport equation	271
10.10	Ziman theory for the electrical resistivity	275
10.11	Electrical resistivity due to electron-phonon interaction	280
10.12	Bloch–Grüneisen law	284
	Exercises	291

CAMBRIDGE

Cambridge University Press
0521583349 - Introduction to the Electron Theory of Metals - Uichiro Mizutani
Frontmatter
More information

viii	Contents	
11	Electron transport properties in periodic systems (II)	293
	Prologue	293
	Thermal conductivity	293
	Electronic thermal conductivity	296
	Wiedemann–Franz law and Lorenz number	299
11.5	Thermoelectric power	302
	Phonon drag effect	307
11.7	Thermoelectric power in metals and semiconductors	309
	Hall effect and magnetoresistance	312
11.9	Interaction of electromagnetic wave with metals (I)	317
11.10	Interaction of electromagnetic wave with metals (II)	321
11.11	Reflectance measurement	324
11.12	Reflectance spectrum and optical conductivity	325
11.13	Kubo formula	328
	Exercises	333
12	Superconductivity	334
12.1	Prologue	334
12.2	Meissner effect	335
12.3	London theory	338
12.4	Thermodynamics of a superconductor	341
12.5	Ordering of the momentum	343
12.6	Ginzburg-Landau theory	344
12.7	Specific heat in the superconducting state	346
12.8	Energy gap in the superconducting state	347
12.9	Isotope effect	347
12.10	Mechanism of superconductivity-Fröhlich theory	349
12.11	Formation of the Cooper pair	351
12.12	The superconducting ground state and excited states in the	
	BCS theory	353
	Secret of zero resistance	358
12.14	Magnetic flux quantization in a superconducting	
	cylinder	359
	Type-I and type-II superconductors	360
	Ideal type-II superconductors	362
	Critical current density in type-II superconductors	364
	Josephson effect	368
12.19	Superconducting quantum interference device (SQUID)	
	magnetometer	373
12.20	High- $T_{\rm c}$ superconductors	376
	Exercises	382

	Contents	ix
13	Magnetism, electronic structure and electron transport	
	properties in magnetic metals	383
13.1	Prologue	383
13.2	Classification of crystalline metals in terms of magnetism	383
13.3	Orbital and spin angular momenta of a free atom and of	
	atoms in a solid	386
13.4	Localized electron model and spin wave theory	390
13.5	Itinerant electron model	395
13.6	Electron transport in ferromagnetic metals	400
	Electronic structure of magnetically dilute alloys	403
13.8	Scattering of electrons in a magnetically dilute alloy – "partial	
	wave method"	405
	Scattering of electrons by magnetic impurities	410
	s-d interaction and Kondo effect	414
	RKKY interaction and spin-glass	418
	Magnetoresistance in ferromagnetic metals	420
13.13	Hall effect in magnetic metals	428
	Exercises	431
	Electronic structure of strongly correlated electron systems	432
	Prologue	432
	Fermi liquid theory and quasiparticle	433
14.3	Electronic states of hydrogen molecule and the Heitler-London	
	approximation	434
14.4	Failure of the one-electron approximation in a strongly	
	correlated electron system	438
14.5	Hubbard model and electronic structure of a strongly	
	correlated electron system	441
	Electronic structure of 3d-transition metal oxides	444
14.7	High- $T_{\rm c}$ cuprate superconductors	447
	Exercise	450
15	Electronic structure and electron transport properties of liquid	
1 7 1	metals, amorphous metals and quasicrystals	451
	Prologue	451
	Atomic structure of liquid and amorphous metals	452
	Preparation of amorphous alloys	462
	Thermal properties of amorphous alloys	464
	Classification of amorphous alloys	466
	Electronic structure of amorphous alloys	467
15./	Electron transport properties of liquid and amorphous	470
	metals	472

Cambridge University Press
0521583349 - Introduction to the Electron Theory of Metals - Uichiro Mizutani
Frontmatter
More information

Subject index

х	Contents	
15.8	Electron transport theories in a disordered system	474
15.8.1	Ziman theory for simple liquid metals in group (V)	475
15.8.2	Baym-Meisel-Cote theory for amorphous alloys in	
	group (V)	479
15.8.3	Mott s-d scattering model	482
15.8.4	Anderson localization theory	483
15.8.5	Variable-range hopping model	486
15.9	Electron conduction mechanism in amorphous alloys	488
15.10	Structure and preparation method of quasicrystals	494
15.11	Quasicrystals and approximants	495
15.12	Electronic structure of quasicrystals	500
15.13	Electron transport properties in quasicrystals and	
	approximants	502
15.14	Electron conduction mechanism in the pseudogap systems	507
15.14.1	Mott conductivity formula for the pseudogap system	507
15.14.2	Family of quasicrystals and their approximants	509
15.14.3	Family of amorphous alloys in group (IV)	510
15.14.4	Family of "unusual" pseudogap systems	512
	Exercises	515
	Appendix 1 Values of selected physical constants	516
	Principal symbols (by chapter)	517
	Hints and answers	539
	References	569
	Materials index	577

577

579

Preface

This book is an English translation of my book on the electron theory of metals first published in two parts in 1995 and 1996 by Uchida Rokakuho, Japan, the content of which is based on the lectures given for advanced undergraduate and graduate students in the Department of Applied Physics and in the Department of Crystalline Materials Science, Nagoya University, over the last two decades. Some deletions and additions have been made. In particular, the chapter concerning electron transport properties is divided into two in the present book: chapters 10 and 11. The book covers the fundamentals of the electron theory of metals and also the greater part of current research interest in this field. The first six chapters are aimed at the level for advanced undergraduate students, for whom courses in classical mechanics, electrodynamics and an introductory course in quantum mechanics are called for as prerequisites in physics. It is thought to be valuable for students to make early contact with original research papers and a number of these are listed in the References section at the end of the book. Suitable review articles and more advanced textbooks are also included. Exercises, and hints and answers are provided so as to deepen the understanding of the content in the book.

It is intended that this book should assist students to further their training while stimulating their research interests. It is essentially meant to be an introductory textbook but it takes the subject up to matters of current research interest. I consider it to be very important for students to catch up with the most recent research developments as soon as possible. It is hoped that this book will be found helpful to graduate students and to specialists in other branches of physics and materials science. It is also designed in such a way that the reader can find interest in learning some more practical applications which possibly result from the physical concepts treated in this book.

I am pleased to acknowledge the valuable discussions that I have had with many colleagues throughout the world, which include Professors T. B.

Cambridge University Press 0521583349 - Introduction to the Electron Theory of Metals - Uichiro Mizutani Frontmatter <u>More information</u>

xii

Preface

Massalski, K. Ogawa, M. Itoh, T. Fukunaga, H. Sato, T. Matsuda and H. Ikuta, also Drs E. Belin-Ferré, J. M. Dubois and T. Takeuchi. I would like to thank them all for their interest and helpfulness. With regard to the actual production of this book, the situation is more straightforward. In this regard, I would especially like to thank Professor M. Itoh, Shimane University and Professor K. Ogawa, Yokohama City University, for allowing me to include some of their own thoughts in my textbook. I am also grateful to Dr Brian Watts of Cambridge University Press for his advice on form and substance, and assistance with the English of the book at the final stage of its preparation.

Uichiro Mizutani Nagoya