Radar Remote Sensing of Planetary Surfaces

This introduction to the use of radar for the remote sensing of natural surfaces provides the reader with a thorough grounding in practical applications, focusing particularly on terrestrial studies that may be extended to other planets.

An historical overview of the subject is followed by three chapters that introduce the nomenclature and methodology pertaining to radar data collection, image interpretation, surface roughness analysis, and dielectric constant measurements. The author then presents a summary of theoretical explanations for the backscatter properties of continuous rough surfaces, collections of discrete objects, and layered terrain. The uses and limitations of common scattering models are reviewed, and in many cases empirical relationships between surface properties and radar echoes are presented as a guide to further theoretical studies. These are illustrated with examples from the natural environment such as lava flows, rock-strewn surfaces, and sand dunes. The final two chapters review radar surveys of the Moon, Mercury, Venus and Mars and demonstrate how radar techniques may be used to further our understanding of these remote bodies.

The subject matter is presented at a level appropriate for students across a broad range of scientific disciplines, although particular emphasis is given to practical geological and geophysical studies of the Earth and planets. This book is therefore suitable for advanced undergraduates, graduate students, and professionals in the Earth and planetary sciences, electrical engineering, and remote sensing.

Bruce Campbell received a Ph.D. in 1991 from the University of Hawaii for his radar polarization studies of volcanic and impact-cratered terrains on the Moon, Earth, and Venus. He took a position at the Smithsonian Institution's Center for Earth and Planetary Studies in 1992. His research interests include comparative studies of planetary terrains using imaging-radar data; high-resolution topographic studies of planetary analogue surfaces; and the analysis of scattering, shadowing and emission relationships in radar and visible/infrared remote sensing. Dr Campbell also managed the NASA Planetary Instrument Definition and Development Program, which develops advanced spacecraft instruments and new remote sensing technologies, from 1996 to 1998. He became Department Chairman of the Center for Earth and Planetary Studies in 1998.
To Barbara
RADAR REMOTE SENSING OF PLANETARY SURFACES

BRUCE A. CAMPBELL

Smithsonian Institution

CAMBRIDGE UNIVERSITY PRESS
Contents

Acknowledgments page ix

1 Introduction 1
 1.1 Radar remote sensing 1
 1.2 Historical context 3
 1.3 Rationale 10
 Outline of the book 11

2 Radar scattering terminology 13
 Outline 13
 2.1 Basic terminology 13
 2.2 Constitutive parameters 17
 2.3 Electromagnetic waves in arbitrary media 19
 2.4 Energy loss in a medium 20
 2.5 Polarization 21
 2.6 Coherence and power 24
 2.7 The Stokes vector 25
 2.8 Polarization terminology 28
 2.9 Reflection and refraction at a plane boundary 29
 2.10 Emission from a surface 33
 2.11 The radar equation 34
 2.12 Polarization ratios 35
 2.13 The scattering matrix 36
 2.14 The Mueller and Stokes matrices 37
 2.15 Polarization synthesis 40
 Summary 41

3 Roughness and dielectric properties 44
 Outline 44
 3.1 Definition of roughness 45
 3.2 Basic statistics of a rough surface 45
Contents

3.3 Correlation \hfill 49
3.4 The Fourier transform \hfill 51
3.5 The power spectrum, aliasing, and filtering \hfill 52
3.6 The importance of horizontal scale \hfill 57
3.7 Introduction to fractal concepts \hfill 58
3.8 Properties of self-affine continuous surfaces \hfill 62
3.9 Properties of surface and volume populations \hfill 65
3.10 Methods of topographic data collection \hfill 67
3.11 Dielectric properties of natural materials \hfill 70
3.12 Mixing of materials with different properties \hfill 75
3.13 Measuring the dielectric constant \hfill 79
Summary \hfill 80

4 Radar data collection and analysis \hfill 82
Outline \hfill 82
4.1 Antennas \hfill 83
4.2 Pulse compression techniques \hfill 85
4.3 Real-aperture radar (RAR) \hfill 88
4.4 Synthetic-aperture radar (SAR) \hfill 90
4.5 Planetary ranging and continuous-wave observations \hfill 95
4.6 Planetary delay-Doppler mapping \hfill 97
4.7 Effect of the ionosphere \hfill 104
4.8 Speckle \hfill 104
4.9 Radar scatterometers and altimeters \hfill 106
4.10 Interferometry \hfill 107
4.11 Geometric effects in radar mapping \hfill 110
4.12 Image geometric corrections \hfill 113
4.13 Data calibration \hfill 117
4.14 Image speckle and texture analysis \hfill 121
4.15 Structural and stereo mapping \hfill 127
Summary \hfill 131

5 Theoretical treatment of scattering by rough surfaces \hfill 132
Outline \hfill 132
5.1 Vector and scalar fields \hfill 133
5.2 Coherent and incoherent reflections \hfill 133
5.3 Scattering at a rough two-dimensional interface \hfill 135
5.4 Roughness criteria \hfill 137
5.5 Scattering by gently undulating surfaces \hfill 138
5.6 Scattering by slightly rough surfaces \hfill 145
5.7 Integral equation methods for rough surface scattering \hfill 151
5.8 Scalar model for coherent scattering by fractal rough surfaces \hfill 152
Contents vii

5.9 Scattering by collections of discrete objects 154
5.10 Numerical methods 161
5.11 The general nature of surface scattering 162
 Summary 166

6 Radar scattering from continuous rough surfaces 167
 Outline 167
 6.1 Topographic and dielectric data for rough surfaces 168
 6.2 Radar data for rough surfaces 173
 6.3 Surface roughness 178
 6.4 General backscatter properties of rough surfaces 180
 6.5 Relationships between echo components 182
 6.6 Very smooth surfaces and the small-perturbation model 187
 6.7 Empirical models for the HH, VV, LR, and RL echoes 190
 6.8 Empirical models for the HV, VH, LL, and RR echoes 193
 6.9 Wavelength dependence in scattering from fractal surfaces 196
 6.10 Blocky surfaces 196
 6.11 Aeolian roughness 197
 6.12 Scattering at high incidence angles 200
 Summary and implications for radar remote sensing 201

7 Radar scattering from collections of objects or layered terrain 203
 Outline 203
 7.1 Statistical descriptions of rock-strewn surfaces 203
 7.2 Example of a rock-strewn field site 208
 7.3 Radar scattering from a rock-strewn surface 213
 7.4 Radar scattering from sand dunes 219
 7.5 Radar scattering from mantled rough surfaces 221
 7.6 Examples of mantled surfaces 227
 7.7 Radar scattering from volume populations 231
 Summary and implications for remote sensing 234

8 Planetary radar studies: the Moon, Mercury, and asteroids 235
 Outline 235
 8.1 General properties of regoliths 235
 8.2 Radar data for the Moon 239
 8.3 Radar data for Mercury 241
 8.4 Scattering models for a planetary regolith 241
 8.5 The lunar mare regolith 247
 8.6 Lunar pyroclastic deposits 254
 8.7 Radar properties of lunar and mercurian impact craters 254
 8.8 Ice at the poles of Mercury and the Moon 259
 8.9 Radar observations of asteroids 262
<table>
<thead>
<tr>
<th>viii</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.10</td>
<td>Radar sounding</td>
</tr>
<tr>
<td></td>
<td>Summary and future directions</td>
</tr>
<tr>
<td>9</td>
<td>Planetary radar studies: Venus and Mars</td>
</tr>
<tr>
<td>Outline</td>
<td>270</td>
</tr>
<tr>
<td>9.1</td>
<td>The surface of Venus</td>
</tr>
<tr>
<td>9.2</td>
<td>Radar data for Venus</td>
</tr>
<tr>
<td>9.3</td>
<td>Surface properties of the Venus plains</td>
</tr>
<tr>
<td>9.4</td>
<td>Surface properties of venusian volcanoes</td>
</tr>
<tr>
<td>9.5</td>
<td>Impact craters on Venus</td>
</tr>
<tr>
<td>9.6</td>
<td>The nature of the Venus highlands</td>
</tr>
<tr>
<td>9.7</td>
<td>The surface of Mars</td>
</tr>
<tr>
<td>9.8</td>
<td>Radar data for Mars</td>
</tr>
<tr>
<td>9.9</td>
<td>Radar scattering from heavily cratered terrain and plains on Mars</td>
</tr>
<tr>
<td>9.10</td>
<td>Surface properties of martian outflow and ejecta deposits</td>
</tr>
<tr>
<td>9.11</td>
<td>Surface properties of martian volcanoes</td>
</tr>
<tr>
<td>9.12</td>
<td>The martian polar caps</td>
</tr>
<tr>
<td></td>
<td>Summary and future directions</td>
</tr>
</tbody>
</table>

List of symbols | 312
References | 316
Index | 329

Color plate section facing page 150
ACKNOWLEDGMENTS

I extend my deepest appreciation to those who read this manuscript in draft form and helped to improve the writing style, content, and presentation: Ray Arvidson, John Grant, Susan Parkinson, Matt Lloyd, R. Keith Raney, Michael Shepard, and Richard Simpson. All remaining errors and omissions are entirely my responsibility. The support of NASA planetary research programs in my work over the past decade is gratefully acknowledged. Finally, I wish to thank Ted Maxwell and the Smithsonian Institution for their support of this project.