SOLAR AND STELLAR MAGNETIC ACTIVITY

C. J. SCHRIJVER

Stanford-Lockhead Institute for Space Research, Palo Alto

C. ZWAAN Astronomical Institute, University of Utrecht

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK http://www.cup.cam.ac.uk 40 West 20th Street, New York, NY 10011-4211, USA http://www.cup.org 10 Stamford Road, Oakleigh, Melbourne 3166, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain

© Cambridge University Press 2000

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2000

Printed in the United States of America

Typeface Times Roman 10.5/12.5 pt. and Gill Sans System $\bowtie Z_{\mathcal{E}}$ [TB]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data Schrijver, Carolus J. Solar and stellar magnetic activity / Carolus J. Schrijver, Cornelis Zwaan. p. cm. – (Cambridge astrophysics series ; 34) ISBN 0-521-58286-5 (hc.) 1. Solar magnetic fields. 2. Stars – Magnetic fields. I. Zwaan, Cornelis. II. Title. III. Series. QB539.M23S37 1999 523.7'2 – dc21 99-21364 CIP

ISBN 0 521 58286 5 hardback

Contents

List of Illustrations List of Tables Preface		page xii page xv page xvii
1	Introduction: solar features and terminology	1
2	Stellar structure	10
2.1	Global stellar structure	10
2.2	Convective envelopes: classical concepts	14
2.3	Radiative transfer and diagnostics	19
2.4	Stellar classification and evolution	38
2.5	Convection in stellar envelopes	45
2.6	Acoustic waves in stars	60
2.7	Basal radiative losses	65
2.8	Atmospheric structure not affected by magnetic fields	70
3	Solar differential rotation and meridional flow	73
3.1	Surface rotation and torsional patterns	74
3.2	Meridional and other large-scale flows	77
3.3	Rotation with depth	79
4	Solar magnetic structure	82
4.1	Magnetohydrodynamics in convective envelopes	83
4.2	Concentrations of strong magnetic field	92
4.3	Magnetohydrostatic models	98
4.4	Emergence of magnetic field and convective collapse	105
4.5	Omega loops and toroidal flux bundles	108
4.6	Weak field and the magnetic dichotomy	110
5	Solar magnetic configurations	115
5.1	Active regions	115
5.2	The sequence of magnetoconvective configurations	126
5.3	Flux positioning and dynamics on small scales	126

Contents X

5.4	The plage state	132
5.5	Heat transfer and magnetic concentrations	137
6	Clobal properties of the solar magnetic field	138
61	The solar activity cycle	138
6.2	I arge-scale patterns in flux emergence	130
63	Distribution of surface magnetic field	145
6.4	Removal of magnetic flux from the photosphere	167
7	The solar dynamo	173
7.1	Mean-field dynamo theory	174
7.2	Conceptual models of the solar cycle	178
7.3	Small-scale magnetic fields	182
7.4	Dynamos in deep convective envelopes	184
8	The solar outer atmosphere	186
8.1	Topology of the solar outer atmosphere	186
8.2	The filament-prominence configuration	197
8.3	Transients	199
8.4	Radiative and magnetic flux densities	209
8.5	Chromospheric modeling	217
8.6	Solar coronal structure	220
8.7	Coronal holes	227
8.8	The chromosphere–corona transition region	229
8.9	The solar wind and the magnetic brake	231
0	Stallar outer atmospheres	228
9	Uistorical aketah of the study of stallar astivity	238
9.1	Steller magnetic fields	238
9.2	The Mt. Wilson Co. II. UV. project	238
9.5	Balationshing between steller activity diagnostics	242
9.4	The power law pature of stellar flux, flux	240
9.5	relationships	252
06	Steller core of structure	252
9.0	Stenar coronal structure	238
10	Mechanisms of atmospheric heating	266
11	Activity and stellar properties	277
11.1	Activity throughout the H–R diagram	277
11.2	Measures of atmospheric activity	281
11.3	Dynamo, rotation rate, and stellar parameters	283
11.4	Activity in stars with shallow convective envelopes	291
11.5	Activity in very cool main-sequence stars	294
11.6	Magnetic activity in T Tauri objects	296
11.7	Long-term variability of stellar activity	299

	Contents	xi
12	Stellar magnetic phenomena	303
12.1	Outer-atmospheric imaging	303
12.2	Stellar plages, starspots, and prominences	305
12.3	The extent of stellar coronae	310
12.4	Stellar flares	312
12.5	Direct evidence for stellar winds	314
12.6	Large-scale patterns in surface activity	318
12.7	Stellar differential rotation	319
13	Activity and rotation on evolutionary time scales	324
13.1	The evolution of the stellar moment of inertia	324
13.2	Observed rotational evolution of stars	326
13.3	Magnetic braking and stellar evolution	329
14	Activity in binary stars	336
14.1	Tidal interaction and magnetic braking	336
14.2	Properties of active binaries	340
14.3	Types of particularly active stars and binary systems	342
15	Propositions on stellar dynamos	344
	Appendix I: Unit conversions	351
	Bibliography	353
	Index	375

List of Illustrations

1.1	Full-disk solar images and magnetogram	2
1.2	Active-region image set	5
1.3	H α filtergrams	8
2.1	Solar convection-zone model	16
2.2	Definitions of radiative intensity and of a plane-parallel atmosphere	20
2.3	Extinction coefficient in the solar photosphere	24
2.4	Coronal radiative loss function	27
2.5	I and V profiles	31
2.6	Ca II K profiles	36
2.7	Hertzsprung–Russell diagrams	39
2.8	Color-magnitude diagrams and MK classification	40
2.9	Mass-luminosity relation	41
2.10	Evolutionary tracks	42
2.11	Stellar parameters along the main sequence	45
2.12	CH band head image and magnetogram for granular scales	46
2.13	Supergranular flow and cell pattern, on magnetogram	47
2.14	Size distribution for granulation and supergranulation	49
2.15	Subsurface convection topology	55
2.16	Voronoi tesselations of Poisson-distributed generator points	59
2.17	Ca II H+K flux densities in a sample of cool stars	66
2.18	Mg II h+k basal flux densities	67
3.1	Solar differential rotation	76
3.2	Meridional flow	78
3.3	Internal solar rotation rate	80
4.1	Magnetic field in a stationary, cellular flow	86
4.2	Flux-tube concept	87
4.3	Radiative time scale	90

	List of Illustrations	xiii
4.4	Sunspot and pores	94
4.5	Flux-tube model	99
4.6	Sunspot field	101
4.7	Emerging flux region	106
4.8	Ωloop	107
4.9	Orientation of an active region	107
4.10	Toroidal roots of a large bipolar active region	109
4.11	Internetwork field	111
5.1	Facular flows in an emerging flux region	116
5.2	Theoretical configuration for emerging flux tube	118
5.3	High-resolution magnetogram	123
5.4	Histograms of fluxes contained in photospheric concentrations	128
5.5	The sensitivity of the plage perimeter to the threshold flux density	132
5.6	Plage magnetic flux against plage area	133
5.7	Abnormal granulation in a region with a high magnetic flux density	134
6.1	Comparison of activity indices	138
6.2	Sunspot number against time	140
6.3	Butterfly diagram	141
6.4	Nests in magnetograms	143
6.5	Sunspot nests	145
6.6	Compactness of sunspot nests	146
6.7	Composite nests	147
6.8	Size distribution of bipolar regions	148
6.9	Orientations of bipolar active regions	149
6.10	Dynamo aspects	152
6.11	Magnetic flux arch	152
6.12	Examples of synoptic magnetograms	155
6.13	Time-dependent distribution function for $ \varphi $	156
6.14	Disk-averaged magnetic flux density through a sunspot cycle	156
6.15	Flux cancellation	166
6.16	Formation of a \cup loop	168
6.17	Elimination of toroidal flux	169
6.18	Magnetic features streaming out from a spot across the moat	170
7.1	Solar $\alpha \Omega$ dynamo	176
8.1	Canopy supported by monopolar flux tubes	186
8.2	Topology of the outer atmosphere	186
8.3	Solar corona as observed with NIXT at 64 Å (Fe XVI, Mg X)	188

xiv List of Illustrations

8.4	White-light corona	191
8.5	Solar corona as observed with TRACE at 171 Å (Fe IX/X)	195
8.6	Development of a solar flare	204
8.7	Dynamic spectrum of radio bursts	206
8.8	Ca II K-line core intensity vs. magnetic flux density at 2.4"	208
8.9	Ca II K line-core intensity vs. magnetic flux density at 14.4"	211
8.10	C IV vs. magnetic flux densities for solar and stellar data	214
8.11	SOHO/LASCO image of the outer solar corona	232
8.12	Weber-Davis solutions for the solar wind	235
9.1	Characteristic field strengths for cool stars	240
9.2	Wilson–Bappu effect	242
9.3	The Ca II H+K emission from solar-neighborhood stars	245
9.4	Relationship between coronal and chromospheric excess fluxes	247
9.5	Simulated relationships between surface-averaged flux densities	255
9.6	Exponents for flux-flux relationships	256
9.7	Cumulative contributions in Ca II H+K and soft X-rays	256
9.8	Stellar coronal emission-measure distributions	259
10.1	Potential-field extrapolation over mixed-polarity network	273
11.1	Activity across H-R diagram	278
11.2	Rotation vs. activity in main-sequence stars I	285
11.3	Rotation vs. activity in main-sequence stars II	286
11.4	Rotation vs. activity in young cluster stars	287
11.5	Magnetic flux and activity vs. rotation rate	288
11.6	Dynamo efficiency function vs. the fractional volume of the	
	envelope	292
11.7	Flux-flux relations for T Tauri objects	297
11.8	Ca II HK, 25-yr records	300
11.9	Distribution of chromospheric activity	301
13.1	Moments of inertia of evolving stars	325
13.2	Moments of inertia of radiative core and convective envelope	326
13.3	Evolution of rotation in young main-sequence stars	327
13.4	Rotation rates of a sample of LC III giants	328
13.5	Rotation rates of a sample of LC IV subgiants	329
13.6	Timescales for magnetic braking	333
14.1	Equipotential surfaces in a binary system	337
14.2	Eccentricity-period diagram for main-sequence binaries	339
14.3	Power-law parameterization for active single and binary stars	341

List of Tables

2.1	Radiative losses from the solar atmosphere	26
2.2	Selected diagnostics for solar and stellar activity	35
2.3	Duration of H-fusion phases	44
2.4	Convective scales in the solar photosphere	48
2.5	Dimensionless numbers	53
2.6	Properties of photospheres of selected cool stars	54
2.7	List of basal flux densities in Mg II, Si II, C II, Si IV, and C IV	68
3.1	Solar differential rotation	75
5.1	Active region sizes	115
5.2	Scaling relationships for active regions	133
6.1	The rules of solar activity	139
6.2	Diffusion coefficients for flux dispersal	160
8.1	Power-law exponents for relationships between solar intensities	215
9.1	Power-law exponents of stellar flux-flux relationships	248
9.2	Nomenclature of single cool stars and cool-star binary systems	249
9.3	Stellar coronal electron densities	263
10.1	Sources and mechanisms of nonradiative heating	267

Introduction: solar features and terminology

The Sun serves as the source of inspiration and the touchstone in the study of stellar magnetic activity. The terminology developed in observational solar physics is also used in stellar studies of magnetic activity. Consequently, this first chapter provides a brief illustrated glossary of nonmagnetic and magnetic features, as they are visible on the Sun in various parts of the electromagnetic spectrum. For more illustrations and detailed descriptions, we refer to Bruzek and Durrant (1977), Foukal (1990), Golub and Pasachoff (1997), and Zirin (1988).

The *photosphere* is the deepest layer in the solar atmosphere that is visible in "white light" and in continuum windows in the visible spectrum. Conspicuous features of the photosphere are the *limb darkening* (Fig. 1.1*a*) and the *granulation* (Fig. 2.12), a time-dependent pattern of bright *granules* surrounded by darker *intergranular lanes*. These nonmagnetic phenomena are discussed in Sections 2.3.1 and 2.5.

The magnetic structure that stands out in the photosphere comprises dark *sunspots* and bright *faculae* (Figs. 1.1*a* and 1.2*b*). A large sunspot consists of a particularly dark *umbra*, which is (maybe only partly) surrounded by a less dark *penumbra*. Small sunspots without a penumbral structure are called *pores*. Photospheric faculae are visible in white light as brighter specks close to the limb.

The *chromosphere* is the intricately structured layer on top of the photosphere; it is transparent in the optical continuum spectrum, but it is optically thick in strong spectral lines. It is seen as a brilliantly purplish-red crescent during the first and the last few seconds of a total solar eclipse, when the moon just covers the photosphere. Its color is dominated by the hydrogen Balmer spectrum in emission. *Spicules* are rapidly changing, spikelike structures in the chromosphere observed beyond the limb (Fig. 4.7 in Bruzek and Durrant, 1977, or Fig. 9-1 in Foukal, 1990).

Chromospheric structure can always be seen, even against the solar disk, by means of monochromatic filters operating in the core of a strong spectral line in the visible spectrum or in a continuum or line window in the ultraviolet (see Figs. 1.1*b*, 1.1*c*, 1.2*c* and 1.3). In particular, filtergrams recorded in the red Balmer line H α display a wealth of structure (Fig. 1.3). *Mottle* is the general term for a (relatively bright or dark) detail in such a monochromatic image. A strongly elongated mottle is usually called a *fibril*.

The photospheric granulation is a convective phenomenon; most other features observed in the photosphere and chromosphere are magnetic in nature. Sunspots, pores, and faculae are threaded by strong magnetic fields, as appears by comparing the magnetograms in Figs. 1.1 and 1.2 to other panels in those figures. On top of the photospheric 2

Fig. 1.1. Four faces of the Sun and a magnetogram, all recorded on 7 December 1991. North is to the top; West is to the right. Panel a: solar disk in white light; note the limb darkening. Dark sunspots are visible in the sunspot belt; the bright specks close to the solar limb are the photospheric faculae (NSO-Kitt Peak). Panel b: solar disk recorded in the Ca II K line core. Only the largest sunspots remain visible; bright chromospheric faculae stand out throughout the activity belt, also near the center of the disk. Faculae cluster in *plages*. In addition, bright specks are seen in the *chromospheric network*, which covers the Sun everywhere outside sunspots and plages (NSO-Sacramento Peak). Panel c: solar disk recorded in the H α line core. The plages are bright, covering also the sunspots, except the largest. The dark ribbons are called *filaments* (Observatoire de Paris-Meudon). Panel d: the solar corona recorded in soft X-rays. The bright coronal condensations cover the active regions consisting of sunspot groups and faculae. Note the intricate structure, with loops. Panel e: magnetogram showing the longitudinal (line-of-sight) component of the magnetic field in the photosphere; light gray to white patches indicate positive (northern) polarity, and dark gray to black ones represent negative (southern) polarity. Note that the longitudinal magnetic signal in plages and network decreases toward the limb (NSO-Kitt Peak).

faculae are the *chromospheric faculae*, which are well visible as bright fine mottles in filtergrams obtained in the Ca II H or K line (Fig. 1.1*b*) and in the ultraviolet continuum around 1,600 Å (Fig. 1.2*c*). Whereas the faculae in "white light" are hard to see near the center of the disk,* the chromospheric faculae stand out all over the disk.

The magnetic features are often found in specific configurations, such as *active regions*. At its maximum development, a large active region contains a group of sunspots and faculae. The faculae are arranged in *plages* and in an irregular network, called the *enhanced network*. The term plage indicates a tightly knit, coherent distribution of faculae; the term is inspired by the appearance in filtergrams recorded in one of the line cores of the Ca II resonance lines (see Figs. 1.1*b* and 1.3*a*). Enhanced network stands out in

^{*} Some of the drawings in Father Schreiner's (1630) book show faculae near disk center.

1.1 b

1.1 c

Figs. 1.2b and 1.2c. All active regions, except the smallest, contain (a group of) sunspots or pores during the first part of their evolution.

Active regions with sunspots are exclusively found in the *sunspot belts* on either side of the solar equator, up to latitudes of $\sim 35^{\circ}$; the panels in Fig. 1.1 show several large active regions. In many young active regions, the two magnetic polarities are found in a nearly E–W bipolar arrangement, as indicated by the magnetogram of Fig. 1.1*e*, and better in the orientations of the sunspot groups in Fig. 1.1*a*. Note that on the northern solar hemishere in Fig. 1.1*e* the western parts of the active regions tend to be of negative

1.1 *d*

1.1 e

polarity, whereas on the southern hemisphere the western parts are of positive polarity. This polarity rule, discovered by G. E. Hale, is discussed in Section 6.1.

Since many active regions emerge close to or even within existing active regions or their remnants, the polarities may get distributed in a more irregular pattern than a simple bipolar arrangement. Such a region is called a complex active region, or an *activity complex*. Figure 1.2 portrays a mildly complex active region.

1.2 a

1.2 b

Fig. 1.1. Complex active region AR 8,227 observed on 28 May 1998 around 12 UT in various spectral windows. Panels: *a*, magnetogram (NSO-Kitt Peak); *b*, in white light (*TRACE*); *c*, in a 100-Å band centered at ~1,550 Å, showing the continuum emission from the high photosphere and C IV transition-region emision (*TRACE*); *d*, at 171 Å, dominated by spectral lines of Fe IX and Fe X, with a peak sensitivity at $T \approx 1$ MK (*TRACE*).

6

1.2 c

1.2 *d*

Introduction: solar features and terminology

When a large active region decays, usually first the sunspots disappear, and then the plages crumble away to form enhanced network. One or two stretches of enhanced network may survive the active region as a readily recognizable bipolar configuration. Stretches of enhanced network originating from several active regions may combine into one large strip consisting of patches of largely one dominant polarity, a so-called unipolar region. On the southern hemisphere of Fig. 1.1*e*, one such strip of enhanced network of positive (white) polarity stands out. Enhanced network is a conspicuous configuration on the solar disk when activity is high during the sunspot cycle.

Outside active regions and enhanced network, we find a *quiet network* that is best visible as a loose network of small, bright mottles in Ca II K filtergrams and in the UV continuum. Surrounding areas of enhanced network and plage in the active complex, the quiet network is indicated by tiny, bright mottles; see Fig. 1.2c. Quiet network is also visible on high-resolution magnetograms as irregular distributions of tiny patches of magnetic flux of mixed polarities. This mixed-polarity quiet network is the configuration that covers the solar disk everywhere outside active regions and their enhanced-network remnants; during years of minimum solar activity most of the solar disk is dusted with it. The areas between the network patches are virtually free of strong magnetic field in the photosphere; these areas are often referred to as internetwork cells. Note that in large parts of the quiet network, the patches are so widely scattered that a system of cells cannot be drawn unambiguously.

The distinctions between plages, enhanced network, and quiet network are not sharp. Sometimes the term plagette is used to indicate a relatively large network patch or a cluster of faculae that is too small to be called plage.

Bright chromospheric mottles in the quiet network are usually smaller than faculae in active regions and mottles in enhanced network, but otherwise they appear similar. Historically, the term facula has been reserved for bright mottles within active regions; we call the bright mottles outside active regions *network patches*. (We prefer the term patch over point or element, because at the highest angular resolution these patches and faculae show a fine structure.)

The comparison between the magnetograms and the photospheric and chromospheric images in Figs. 1.1 and 1.1 shows that near the center of the solar disk there is an unequivocal relation between sites of strong, vertical magnetic field and sunspots, faculae, and network patches. As a consequence, the adjectives magnetic and chromospheric are used interchangeably in combination with faculae, plages, and network.

In most of the magnetic features, the magnetic field is nearly vertical at the photospheric level, which is one of the reasons for the sharp drop in the line-of-sight magnetic signal in plages and network toward the solar limb in Fig. 1.1*e*. Markedly inclined photospheric fields are found within tight bipoles and in sunspot penumbrae.

Filtergrams obtained in the core of H α are much more complex than those in the Ca II H and K lines (see Fig. 1.3, and Zirin's 1988 book, which is full of them). In addition to plages and plagettes consisting of bright mottles, they show a profusion of elongated dark fibrils. These fibrils appear to be directed along inclined magnetic field lines in the upper chromosphere (Section 8.1); they are rooted in the edges of plages and in the network patches. The fibrils stand out particularly well in filtergrams obtained at ~0.5 Å from the line core (see Fig. 1.3*b*).

Fig. 1.3. Nearly simultaneous H α filtergrams of active complex McMath 14,726 on 18 April 1977, observed in the line core (panel *a*) and at $\Delta\lambda = +0.65$ Å in the red wing (panel *b*). The letter symbols indicate the following: S, sunspot; P, plage; pl, plagette; F, filament; FC, filament channel; EN, enhanced network cell. Signs are appended to indicate the magnetic polarities. Fibrils are prominent in both panels. Exceptionally long and well-ordered fibrils are found in the northwestern quadrants. Several features are discussed in Sections 8.1 and 8.2. The chirality of filament F1 is sinistral (figure from the archive of the Ottawa River Solar Observatory, National Research Council of Canada, courtesy of V. Gaizauskas.)

Introduction: solar features and terminology

The longest dark structures visible in the core of the H α line are the *filaments* (Figs. 1.1c and 1.3). Many filaments are found at borders of active regions and within active complexes, but there are also filaments outside the activity belts, at higher latitudes. Most filaments differ from fibrils by their length and often also by their detailed structure. Small filaments can be distinguished from fibrils by their reduced contrast at distances $|\Delta\lambda| \gtrsim 0.5$ Å from the line core. Large filaments are visible outside the solar limb as *prominences* that are bright against a dark background.

The *corona* is the outermost part of the Sun, which is seen during a total eclipse as a pearly white, finely structured halo, locally extending to several solar radii beyond the photospheric limb; see Figs. 8.4 and 8.11, Fig. 1.2 in Golub and Pasachoff (1997), or Fig. 9-10 in Foukal (1990). The coronal plasma is extremely hot ($T \sim 1 \times 10^6 - 5 \times 10^6$ K) and tenuous. The radiation of the white-light corona consists of photospheric light, scattered by electrons in the corona and by interplanetary dust particles; the brightness of the inner corona is only $\sim 10^{-6}$ of the photospheric brightness. The thermal radiation of the corona is observed in soft X-rays, in spectral lines in the ultraviolet and optical spectrum, except in radio waves and a few resonance lines in the extreme ultraviolet and in soft X-rays.

The coronal structure in front of the photospheric disk can be observed from satellites in the EUV and in X-rays; see Figs. 1.1*d* and 1.2*d*. In these wavelength bands, the coronal plasma, however optically thin, outshines the much cooler underlying photosphere. The features depend on the magnetic field in the underlying photosphere. The corona is particularly bright in "coronal condensations" immediately above all active regions in the photosphere and chromosphere. Coronal loops trace magnetic field lines connecting opposite polarities in the photosphere. Note that in Fig. 1.1*d* there are also long, somewhat fainter, loops that connect magnetic poles in different active regions. The finest coronal structure is displayed in Fig. 1.2*d*, where the passband reveals radiation from bottom parts of loops with $T \leq 1 \times 10^6$ K, without contamination by radiation from hotter loops with $T \gtrsim 2 \times 10^6$ K.

Coronal holes stand out as regions that emit very little radiation; these have been identified as regions where the magnetic field is open to interstellar space. Usually large coronal holes are found over the polar caps; occasionally smaller coronal holes are observed at low latitudes.