Cambridge University Press & Assessment
978-0-521-58137-0 — Mathematica ® in the Laboratory
Samuel Dick, Alfred Riddle, Douglas Stein

Excerpt

More Information

CHAPTER 1

Importing data from files

Most experimentally biased scientists and engineers carefully store the data
resulting from past work. These archived data may be stored in many dif-
ferent formats. Indeed, data that you are collecting now may be in several
different formats because it comes from different experiments that use dif-
ferent data acquisition techniques, software, and computer hardware. If you
analyze these data with a system other than that with which they were ac-
quired, chances are that you will need to perform some sort of conversion.
You will certainly need to “import” those data into whichever system you
are using.

Your Mathematica system is no exception to this general rule, but the task of
reading in, or importing, data from non-Mathematica files is really rather easy.
Once the data are in Mathermatica, you will be able to use all of Mathematica’s
functionality to graph and to analyze them — perhaps exporting the data at a
later date. Mathematica gives you considerable flexibility in how you handle
data. For example, if your data have a particular structure, you will be able
to retain that structure, even if it contains a mix of numeric data types and
text. If you are used to dealing with mixed-type structures in C (or records
in Pascal) then you will be able to build upon your experience with such
data groupings when you work with Mathematica.

In this chapter we show you how to import data from ASCII and binary
files; we also show you how, in general terms, to extract data that may be
embedded amidst other, nonpertinent, contents of a file, and to maintain
any structure that might be present. First, we begin by showing you how to
make Mathematica navigate around the filesystem of your computer.

1.1 File operations in general
Before you can import data from a file, you need to tell Mathematica where

that file is to be found. All computer systems operate some kind of filing
system. At the top-most level, the filing system will use as the first element

1

© in this web service Cambridge University Press & Assessment www.cambridge.org

www.cambridge.org/9780521581370
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-58137-0 — Mathematica ® in the Laboratory
Samuel Dick, Alfred Riddle, Douglas Stein

Excerpt

More Information

IMPORTING DATA FROM FILES

of a file’s name the name of the disk on which the data are stored. For
example, the computer on which this is being written has three disks at-
tached, named Macintosh HD, Q127 Alpha, and Q127 Beta; the latter
two disks are actually one physical hard disk that is partitioned into two log-
ical disks by the operating system — so the computer sees two independent
disks. Such physical partitioning does not affect what we are about to show:
it is the name (or symbol) of the disk on which your data are resident that is
significant.

Within each disk there will be some kind of lower-level partitioning. A
disk on a multi-user system will have directories, one for each user. A disk
on a single-user machine (or a user’s directory on a multi-user machine) also
will have directories or folders. These, too, may contain many sets of nested
subdirectories. Typically, each level of directory structure is delineated by
some special character like \, /, or :, depending on which operating system
is in use — DOS, UNIX, or Macintosh respectively.

Before you begin to read and write files using any applications software,
you should feel confident about how your computer system defines the disk
and directories that contain a file, and also what filenames are allowed. For
example, you should know how many characters you can use in a filename,
whether you are disallowed certain characters (like spaces or colons) within a
filename, and which character is used to indicate a new level within the filing
system’s directory structure. We suggestalso that you try out new techniques
only on files for which you have backup copies — which preferably are stored
away on media not connected to your cemputer.

1.1.1 Locating files

Atany time during a Mathematica session, Mathematica has a default directory
for ongoing work. By default, it is this directory that Mathematica will access
for all file operations. You can see the name of the default directory by
using the Directory function, here shown for a Macintosh system in which
filenames can have spaces, and in which levels within the file system are
delineated by colons:

In:
Directory[]
Out:
Ql27Beta:Mathematica 2.2

As returned by Directory, the current default directory is called Math-
ematica 2.2 and is located on a disk called Q127Beta. If the default
directory happens to contain the file you wish Mathematica to read, then you

© in this web service Cambridge University Press & Assessment www.cambridge.org

www.cambridge.org/9780521581370
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-58137-0 — Mathematica ® in the Laboratory
Samuel Dick, Alfred Riddle, Douglas Stein

Excerpt

More Information

1.1 FILE OPERATIONS IN GENERAL

need go no further. If the file is elsewhere, then you have three options. Ei-
ther you can set the default directory to be the directory that contains the file,
you can explicitly specify the full filename whenever you want to access the
file, or you can add the name of the directory in which the file is located to
Mathematica’s $Path variable. $Path is a list of directories through which
Mathematica will search in order to find a file. For example, if you know
the directory name, then you can use the SetDirectory function to make
Mathematica use that directory as the default. The FileNames function will
then list all the files within that directory.

In:
SetDirectory["Ql27Alpha:Sam’s observations"]
Out:
Ql27Alpha:Sam’'s observations
In:
FileNames[]
Out:
{First experiment, noGood.dat}

Note that the filenames within the chosen directory have been returned as
a list, enclosed in curly brackets, like all Mathematica lists. If you get the
directory name wrong, Mathematica will warn you with a message like

Out:

SetDirectory::cdir: Cannot set current directory to
Q127Alpha:Sam’s experiment.

If you are going to work often on a file or on a group of files that will always
be resident in one particular directory, adding that directory to Mathemat-
ica’s default search path can save you time. You can see which device and
directory combinations are already on the default search path by just typing
SPath.

In:
$Path
Out:

{Ql27Beta:Mathematica 2.2:Packages,
Ql27Beta:Mathematica 2.2:Packages:StartUp, :}

You can append your chosen directory’s name to the search path using the
AppendTo function.

In:
AppendTo[$Path, "Ql27Alpha:Sam’s observations"]

© in this web service Cambridge University Press & Assessment www.cambridge.org

www.cambridge.org/9780521581370
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-58137-0 — Mathematica ® in the Laboratory

Samuel Dick, Alfred Riddle, Douglas Stein
Excerpt
More Information

IMPORTING DATA FROM FILES

Out:
{Macintosh HD:Mathematica 2.2.2:Packages,
Macintosh HD:Mathematica 2.2.2:Packages:StartUp, :,
Ql27Alpha:Sam’s observations}

Now, Mathematica will automatically search the directory Sam’s observa-
tions on the disk Q127a1pha. (You can also use the PrependTo function
to make the new directory name the first element in $Path.) Once you have
established that Mathematica can access the directory containing the required
file, you can proceed to make Mathematica read it.

In addition to knowing where a file is located in your computer’s filesys-
tem, you also need to know the type of file and how the data are structured
within the file.

1.2 File types

Data are stored typically in one of two main types of file: ASCII or binary.
In ASCII files, data are stored in a printable format using the ASCII code;
data in binary files are store in base-2 form. The advantage of using ASCII
data files is that usually you can type or print the files to see what is in
them. Accessing data in binary files is not so simple because you need to
know how the data were stored in the files — owing to the different ways
that computers store integers and floating point numbers, just to take two
examples. Trying to type or print a binary file can produce strange results —
including “random” flashing of the terminal screen and multiple formfeeds
from printers — because the device to which the contents of the file are being
sent will interpret some of the binary values as device control codes, which
are interpreted as instructions for the device to behave in a particular way.
However, binary files normally occupy less space, and so they are especially
useful for large sets of data. Mathematica can read and write both binary and
ASCII files with ease.

If your data are contained in multiple files, we show you later in the
chapter how you can use Mathematica to access all the files automatically,
or even how to use the data themselves to specify which files have to be
accessed next or how the data are to be stored.

1.3 Data structures

Before reading in any data, you will find it useful to know both how the data
are arranged in the file to be read and how you want to use the data after itis

© in this web service Cambridge University Press & Assessment www.cambridge.org

www.cambridge.org/9780521581370
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-58137-0 — Mathematica ® in the Laboratory

Samuel Dick, Alfred Riddle, Douglas Stein

Excerpt
More Information

1.3 DATA STRUCTURES

read into Mathematica. The former is essential; the latter is merely desirable.
If the data are in some kind of structure, or are related in some way, then
you might want to keep that structure or relationship. In C or Pascal, such
structures are given special names like struct and record. Mathematica
handles data and structures in a more general way: all groups of data are
lists, and a list can contain identical or differently typed members.

For example, a chronological date might consist of three numbers — the
year, the month, and the day. In Mathematica, you can keep these three quan-
tities within a list. Here is a list (containing a date) that has been assigned to
a variable name myDate:

In:

myDate={1900,1,1}
Out:

{1900, 1, 1}

Of course, you might want to mix data of different types within this date
structure. For example, a different format of date might contain two integers
and a string.

In:

myDate2={1900, "January",1}
Out:

{1900, January, 1}

Note that although Mathematica has not displayed January in quotes, it is
treated as a string; you can verify this by using the Ful1lForm function to
explicitly display the attributes of myDate2.

In:
FullForm[myDate2]
Out:
List[1900, "January", 1]

In each case, you can extract parts of the date without worrying about the
type of data held in that part. Here, we use the double bracket ([[]]) form of
the function Part which returns list parts.

In:
month=2;
myDate[[month]]
Out:
1

© in this web service Cambridge University Press & Assessment www.cambridge.org

www.cambridge.org/9780521581370
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-58137-0 — Mathematica ® in the Laboratory
Samuel Dick, Alfred Riddle, Douglas Stein

Excerpt

More Information

IMPORTING DATA FROM FILES

In:
myDate2 [[month]]
Out:

January

Maintaining any structure inherent in your data has many advantages; re-
lated data can be kept in structures, and you can write object-oriented func-
tions to operate on those structures (for example, see Maeder (1994) and
Riddle & Dick (1994)).

1.4 Simple ASCII files

The simplest method of interchanging information between computer pro-
grams is to use ASCII files to store that information. The information com-
ponents are easily read by eye, by word processor, or by spreadsheet and
most applications programs support the import and export of data in this
format. If you are authoring your own programs, writing information to a
file in ASCII will be supported by the compiler or interpreter that you are
using. For import into Mathematica, you might find it easier to always in-
clude a dividing character or space between, say, numbers. Tightly packed,
formatted FORTRAN output, for example, will require a little more effort to
read into Mathematica compared with the same output where, say, a space
has been placed between every item output. Of course, number-separating
spaces also make that information easier to read by eye.

In this section, we look at importing numbers and strings from files, but we
also cover other nonexclusively related issues - string — number conversion,
accessing variably named files, and content cataloging — that are of more
general interest. So, even if you are disinterested in reading data from ASCII
files for now, you still might want to browse through these other issues.

1.4.1 Numbers and strings from free-format ASCII files

Free-format files, in this context, are files in which each item in the file is
bounded by a delimiting character, normally a space. The most straight-
forward function that you can use to read in free-format data is ReadList,
which takes two arguments: the name of the file from which the data are to
be read, and the type of data that are to be read. Here, we read in data from
a file that contains a short list of metals and their melting points.

In:
myMetals=ReadList ["Q127Alpha:Sam’s observations:metals",
{Word, Number}]

© in this web service Cambridge University Press & Assessment www.cambridge.org

www.cambridge.org/9780521581370
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-58137-0 — Mathematica ® in the Laboratory

Samuel Dick, Alfred Riddle, Douglas Stein
Excerpt
More Information

1.4 SIMPLE ASCII FILES

Out:

{{Bismuth, 271}, {Lead, 327}, {Lithium, 179}, {Iron,
1537}, {Copper, 1085}}

There are several points worth noting. The filename is enclosed in double
quotes and we have specified that we expect to read in one or more struc-
tures and that each structure consists of a word (the metal’s name) and a
number (the numeric melting-point of the metal). We have specified that
each structure has a word and a number by enclosing those type names in
curly brackets, Mathematica’s notation for a list. The types that Mathemat-
ica recognizes are: Byte, Character, Real (an approximate number in a
FORTRAN-like format - for example, 1 or 1.342 or 1.3e4), Number (an exact
number, such as 5 or 1025, or an approximate number in FORTRAN:-like for-
mat), Word (delimited by word-separating characters that you can define),
Record (delimited by record-separating characters that you can define),
String (delimited by a new line), or Expression (a complete Mathematica
expression).

Once these data have been read, we can access them individually or
grouped in their structure by using the Part function. For example, the
second part of the list myMetals can be obtained by

In:

Part [myMetals, 2]
Out:

{Lead, 327}

or by the more usual form of the Part function, with double square brackets:

In:

myMetals[[2]]
Out:

{Lead, 327}

We reach the next level of the structure by specifying a further level with the
Part function:

In:

myMetals[[2,2]]
Out:

327

By specifying Number, we have made Mathematica assume that an exact
number is to be read. The file metalsAgain contains a mix of integer and

)

© in this web service Cambridge University Press & Assessment www.cambridge.org

www.cambridge.org/9780521581370
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-58137-0 — Mathematica ® in the Laboratory

Samuel Dick, Alfred Riddle, Douglas Stein
Excerpt
More Information

IMPORTING DATA FROM FILES

real values. Because we have used Numbexr, numbers read are left in their
purest form: integers as integers, reals as reals.

In:
ReadList["Q127Alpha:Sam’s observations:metalsAgain"”,
{Word, Number}]
Out:
{{Bismuth, 271.1}, {Lead, 327}, {Lithium, 179.3},
{Iron, 1537}, {Copper, 1085}}

Had we specified Real as the type, Mathematica would have converted all
the numbers to their approximate form (identifiable by the omnipresence of
the decimal point), regardless of the original form of the number:

In:
ReadList["Q127Alpha:Sam’s observations:metalsAgain”,
{Word, Real}]
Out:

{{Bismuth, 271.1}, {Lead, 327.}, {Lithium, 179.3},
{Iron,; 1537.}; {Copper; 1085,}}

We also could have read in each line as a string by specifying the imported
type to be String.

In:
myValues=ReadList ["Q127Alpha:Sam’s observations:
metals", {String}]
Out:
{{Bismuth 271}, {}, {Lead 327}, {}, {Lithium 179}, {},
{Iron 1537}, {}, {Copper 1085}}

Note that there are several empty lists, {}, in myValues. These may be
caused, for example, by blank lines in the file. In this instance, using String
makes separating out the names and the melting points more difficult, should
we want to do so later. In general, therefore, it is best to make all parts of your
data as accessible as possible. For example, although we can still access each
member of the list, it is now more difficult to access the numbers as separate
entities — and an error message is generated if we use Part inappropriately.

In:

myValues[[3]]
Qut:

{Lead 327}

© in this web service Cambridge University Press & Assessment www.cambridge.org

www.cambridge.org/9780521581370
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-58137-0 — Mathematica ® in the Laboratory

Samuel Dick, Alfred Riddle, Douglas Stein
Excerpt
More Information

1.4 SIMPLE ASCII FILES

In:
myValues([[3,2]]

Out:
Part::partw: Part 2 of {Lead 327} does not exist.
{{Bismuth 271}, {}, {Lead 327}, {}, {Lithium 179}, {},
{Iron 1537}, {}, {Copper 1085}}[[3,2]]

To overcome this problem, we can read each item within the file as a separate
entity by using the type word.

In:
myNewValues=ReadList ["Q1l27Alpha:Sam’'s
observations:metals”,
{Word}]
Out:

{{Bismuth}, {271}, {Lead}, {327}, {Lithium}, {179},
{Iron}, {1537}, {Copper}, {1085}}

Note that when you read in data as type Woxrd, each entity is read as a string.
You will not be able to perform mathematical operations on the number-like
strings directly because Mathematica treats strings as literals — and you need
to display the full format of the string to see that it is indeed a string.

In:

myNewValues[[4]]+1
Out:

{1 + 327}
In:

FullForm[myNewValues[[4]]]
Out:
List["327"]

Of course, we can still access and mathematically manipulate the numbers,
but to do so we need to know how to convert between strings and numbers.

1.4.2 String - number conversion

The ability to convert between numbers expressed as strings and numbers
proper (expressed as numerals) enables you to extract usable numbers from
strings (and vice versa) and to create variably valued strings that you can then
use, for example, to access multiple files. We have seen that the elements
of the list myNewValues are strings: when we display them fully using
FullForm, the elements are enclosed in double quotes. If you want to

9

© in this web service Cambridge University Press & Assessment www.cambridge.org

www.cambridge.org/9780521581370
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-58137-0 — Mathematica ® in the Laboratory

Samuel Dick, Alfred Riddle, Douglas Stein
Excerpt
More Information

IMPORTING DATA FROM FILES

manipulate a value encoded as a string, then you need to make the string a
Mathematica expression. The function ToExpression convertsits argument
into a Mathematica expression; it will therefore convert a string to a mani-
pulatable number. Here, we create the one-item-long list myNumber, whose
(single) element we can then manipulate.

In:
myNumber=ToExpression[myNewValues[[4]] 1]
Out:
{327}
In:
myNumber+3
Out:
{330}

Here, we have converted a string to a number. You can also use ToEx-
pression to convert any string (say, a symbolic formula) into a usable
Mathematica expression.

The inverse of ToExpression is ToString. You can use the ToString
function to make any Mathematica expression a string. You may find it useful
to apply the function Ful1Form to see exactly how Mathematica is formatting
your data; without using FullForm, the following three expressions — a list
of numbers, a string version of that list, and a list of strings — appear identical:

In:

myNumbers=Table[i, {i,10}]//FullForm
Out:

Ligt[1l, 2, 3; 4, 5, 6, 7; 8, 9, 10]

In:

myString=ToString [myNumbers]//FullForm
Out:

nfd, 2 3.4, 5. b Ty 8.9, 103"
In:

myString2=Table[ToString[i], {i,10}]1//FullForm
Out:
List[lllll’ 112n' |13||’ II4H, n5||, 116"’ !I"?ll’ ||8u' llgll' r|10||]

1.4.3 Files with embedded comments

If your data files have comments, you may want to extract those comments
for, say, alog of what each file contains or else to use the comment information
to decide how to process the file. Most ASCII data files should contain

10

© in this web service Cambridge University Press & Assessment www.cambridge.org

www.cambridge.org/9780521581370
www.cambridge.org

