

Cambridge University Press 978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden Frontmatter More information

THE RISE OF THE STANDARD MODEL

Editors Lillian Hoddeson, Laurie Brown, Michael Riordan, and Max Dresden have brought together a distinguished group of elementary particle physicists and historians of science to explore the recent history of particle physics. Based on a conference held at Stanford University, this is the third volume of a series recounting the history of particle physics and offers the most up-to-date account of the rise of the Standard Model, which explains the microstructure of the world in terms of quarks and leptons and their interactions

Major contributors include Murray Gell-Mann, John Heilbron, Leon Lederman, Michael Redhead, Silvan Schweber, and Steven Weinberg. The wide-ranging articles explore the detailed scientific experiments, the institutional settings in which they took place, and the ways in which the many details of the puzzle fit together to account for the Standard Model.

978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden

Frontmatter More information

THE RISE OF THE STANDARD MODEL

Particle Physics in the 1960s and 1970s

Edited by

LILLIAN HODDESON

University of Illinois at Urbana-Champaign

LAURIE BROWN

Northwestern University

MICHAEL RIORDAN

Stanford Linear Accelerator Center

MAX DRESDEN

 $Stanford\ Linear\ Accelerator\ Center$

Cambridge University Press 978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden Frontmatter More information

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521570824

© Lillian Hoddeson, Laurie Brown, Michael Riordan, Max Dresden 1997

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1997

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

The rise of the standard model: particle physics in the 1960s and 1970s / edited by Lillian Hoddeson . . . [et al.].

p. cm.

ISBN 0-521-57082-4 (hardcover : alk. paper). – ISBN 0-521-57816-7 (pbk. : alk paper)

Standard model (Nuclear physics) – History.
 Particles (Nuclear physics) – History.
 Hoddeson, Lillian QC794.6.S75R57 1997
 539.7'4 – dc20 96-5397

CIP

CI

ISBN-13 978-0-521-57082-4 hardback ISBN-10 0-521-57082-4 hardback

ISBN-13 978-0-521-57816-5 paperback ISBN-10 0-521-57816-7 paperback

Transferred to digital printing 2006

Cambridge University Press 978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden Frontmatter More information

Contents

Co	ntributors	page ix
Ed	$itors'\ Acknowledgments$	xiii
Ph	otographs of the Symposium	xvi
Ab	breviations and Acronyms	xxii
$M\alpha$	athematical Notation	xxvi
Pa	rt One: Introduction	
1	The Rise of the Standard Model: 1964–1979	
	Laurie M. Brown, Michael Riordan, Max Dresden,	
	and Lillian Hoddeson	3
2	Changing Attitudes and the Standard Model	
	Steven Weinberg	36
3	Two Previous Standard Models	
	J. L. Heilbron	45
Pa	art Two: Quarks and Leptons	
4	From the Psi to Charmed Mesons: Three Years with the	
	SLAC-LBL Detector at SPEAR	
	Gerson Goldhaber	57
5	The Discovery of the Tau Lepton	
	Martin Perl	79
6	The Discovery of the Upsilon, Bottom Quark, and B Meson	ns
	Leon M. Lederman	101

Cambridge University Press 978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden

Frontmatter More information

vi	Contents	
7	The Discovery of <i>CP</i> Violation James Cronin	114
8	Flavor Mixing and CP Violation Makoto Kobayashi	137
Par	rt Three: Toward Gauge Theories	
9	The Path to Renormalizability Martinus Veltman	145
10	Renormalization of Gauge Theories Gerard 't Hooft	179
11	Asymptotic Freedom and the Emergence of QCD $David\ Gross$	199
12	Quark Confinement Leonard Susskind	233
13	A View from the Island Alexander Polyakov	243
14	On the Early Days of the Renormalization Group Dmitrij V. Shirkov	250
Par	rt Four: Accelerators, Detectors, and Laboratories	
15	The Rise of Colliding Beams Burton Richter	261
16	The CERN Intersecting Storage Rings: The Leap into the Hadron Collider Era Kjell Johnsen	285
17	Development of Large Detectors for Colliding-Beam	
	Experiments Roy Schwitters	299
18	Pure and Hybrid Detectors: Mark I and the Psi Peter Galison	308
19	Building Fermilab: A User's Paradise Robert R. Wilson and Adrienne Kolb	338
20	Panel Session: Science Policy and the Social Structure of Big Laboratories Catherine Westfall	364
21	Some Sociological Consequences of High-Energy Physicists' Development of the Standard Model	
	Mark Bodnarczuk	384

Cambridge University Press 978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden Frontmatter

	Contents	vii
22	Comments on Accelerators, Detectors, and Laboratories $John\ Krige$	394
Par	t Five: Electroweak Unification	
23	The First Gauge Theory of the Weak Interactions Sidney Bludman	403
24	The Early History of High-Energy Neutrino Physics Melvin Schwartz	411
25	Gargamelle and the Discovery of Neutral Currents Donald Perkins	428
26	What a Fourth Quark Can Do John Iliopoulos	447
27	Weak-Electromagnetic Interference in Polarized Electron-Deuteron Scattering Charles Prescott	459
28	Panel Session: Spontaneous Breaking of Symmetry Laurie M. Brown, Robert Brout, Tian Yu Cao, Peter Higgs, and Yoichiro Nambu	478
Par	rt Six: The Discovery of Quarks and Gluons	
29	Early Baryon and Meson Spectroscopy Culminating in the Discovery of the Omega-Minus and Charmed Baryons	
	Nicholas Samios	525
30	Quark Models and Quark Phenomenology Harry Lipkin	542
31	From the Nonrelativistic Quark Model to QCD and Back Giacomo Morpurgo	561
32	Deep-Inelastic Scattering and the Discovery of Quarks Jerome Friedman	566
33	Deep-Inelastic Scattering: From Current Algebra to Partons James Bjorken	589
34	Hadron Jets and the Discovery of the Gluon	003
	Sau Lan Wu	600
Par	rt Seven: Personal Overviews	
35	Quarks, Color, and QCD Murray Gell-Mann	625

Cambridge University Press 978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden Frontmatter

viii	Contents	
36	The Philosopher Problem Paul Teller	634
37	Should We Believe in Quarks and QCD? Michael Redhead	637
38	A Historical Perspective on the Rise of the Standard Model Silvan Schweber	645
Inde	ex	685

978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden Frontmatter

More information

Contributors

James Bjorken

Mail Stop 81, Stanford Linear Accelerator Center, Stanford, CA 94309

Sidney Bludman

Department of Physics, University of Pennsylvania, Philadelphia, PA 19104

Mark Bodnarczuk

Breckenridge Consultants Group, P.O. Box 7399-329, Breckenridge, CO 80424-7399

Robert Brout

Universite Libre de Bruxelles, Service de Physique Theorique, Campus Plaine CP 225, Blvd. du Triomphe, 1050 Bruxelles, Belgium

Laurie M. Brown

Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60201

Tian Yu Cao

Department of Philosophy, Boston University, 745 Commonwealth Avenue, Boston, MA 02215

James Cronin

Enrico Fermi Institute, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637

Max Dresden

Mail Stop 61, Stanford Linear Accelerator Center, Stanford, CA 94309

978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden Frontmatter

More information

x

Contributors

Jerome Friedman

Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139

Peter Galison

Department of History of Science, Harvard University, Cambridge, MA 02138

Murray Gell-Mann

Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87505

Gerson Goldhaber

Physics Department, 50A-2160, Lawrence Berkeley Laboratory, Berkeley, CA 94720

David Gross

Department of Physics, P.O. Box 708, Jadwin Hall, Princeton, NJ 08544

J. L. Heilbron

Office of the Chancellor, University of California, Berkeley, CA 94720

Peter Higgs

Department of Physics, James Clerk Maxwell Building, The University of Edinburgh, Edinburgh EH9 3JZ, UK

Lillian Hoddeson

Department of History, Gregory Hall on Wright St., University of Illinois, Urbana, Illinois 61801

Gerard 't Hooft

Institute for Theoretical Physics, Princetonplein 5, P.O. Box 80.006, 3508 TA Utrecht, The Netherlands

John Iliopoulos

Laboratoire de Physique Théorique, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris, France

Kjell Johnsen

CERN, Building 584, CH-1211 Geneva 23, Switzerland

Makoto Kobayashi

Theory Group, National Laboratory for High Energy Physics, 1-1 Oho, Tsukuba-shi, Ibaraki-ken 305, Japan

Adrienne Kolb

Fermilab, Post Office Box 500, Batavia, IL 60510

John Krige

Centre de Recherch en Histoire des Sciences, Parc de La Villette, 211, Avenue Jean Jaures, 75019 Paris, France

978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden Frontmatter

More information

Contributors

хi

Leon Lederman

Directors Office, Fermilab, Post Office Box 500, Batavia, IL 60510

Harry Lipkin

Nuclear Physics Department, Weizmann Institute of Science, Post Office Box 26, Rehovot 76100, Israel

Giacomo Morpurgo

Dipt. di Fisica, Univ. di Genova, via Dodecaneso 33, I-16146 Genova, Italy

Yoichiro Nambu

Enrico Fermi Institute, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637

Donald Perkins

Nuclear Physics Lab, University of Oxford, Keble Road, Oxford, OX1 3RH, UK

Martin Perl

Mail Stop 61, Stanford Linear Accelerator Center, Stanford, CA 94309

Alexander Polyakov

Department of Physics, Post Office Box 708, Jadwin Hall, Princeton, NJ 08544

Charles Prescott

Mail Stop 78, Stanford Linear Accelerator Center, Stanford, CA 94309

Michael Redhead

Department of History and Philosopy of Science, University of Cambridge, Free School Lane, Cambridge CB2 3RH, UK

Burton Richter

Directors Office, Stanford Linear Accelerator Center, Stanford, CA 94309

Michael Riordan

Mail Stop 80, Stanford Linear Accelerator Center, Stanford, CA 94309

Nicholas Samios

Directors Office, Building 460, Brookhaven National Laboratory, Upton, NY 11973

Melvin Schwartz

Department of Physics, Columbia University, New York, NY 10027

Silvan Schweber

Department of Physics, Brandeis University, Post Office Box 9110, Waltham, MA 02254

978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden Frontmatter

More information

xii

Contributors

Roy Schwitters

Center for Particle Physics, University of Texas, Austin, TX 78712

Dmitrij V. Shirkov

Laboratory for Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia

Leonard Susskind

Department of Physics, Stanford University, Stanford, CA 94305

Paul Teller

Department of Philosophy, University of California, Davis, CA 95616

Martinus Veltman

Department of Physics, University of Michigan, Ann Arbor, MI 48109

Steven Weinberg

Department of Physics, University of Texas, Austin, TX 78712

Catherine Westfall

Lyman Briggs School, Michigan State University, East Lansing, MI 48824

Robert R. Wilson

916 Stewart Avenue, Ithaca, NY 14850

Sau Lan Wu

EP Division, CERN, Building 32-RA05, CH-1211 Geneva 23, Switzerland

Cambridge University Press 978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden Frontmatter More information

Editors' Acknowledgments

We are deeply grateful to all the people who contributed to the success of the Third International Symposium on the History of Particle Physics. Without their efforts it would have been a much smaller and far less enjoyable gathering. Limits of space prevent us from thanking each and every one of them by name, but certain individuals deserve special recognition.

We thank laboratory directors Burton Richter and John Peoples for their strong support of this Symposium. In assembling the program, we benefited extensively from the sage advice of Barry Barish, James Bjorken, Peter Galison, Gerson Goldhaber, Sam Schweber, and Lenny Susskind, who served with us as members of the Program Committee.

In hosting the Symposium and attending to the myriad details that contributed to making it an enjoyable and successful gathering, the untiring efforts of Nina Adelman Stolar stand out from all the rest. She arranged lodging and transportation for speakers and participants, distributed the invitations and registration forms, and supervised a small army of SLAC and Fermilab staff members who supported us for the four-day event; the Symposium would not have been such a success without her contributions. Nina was ably assisted in these tasks by Juanita O'Malley, who handled communications with speakers and participants. Herbert McIntyre coordinated all the audio-visual services, while Bernie Lighthouse took care of the specific needs of individual speakers. Rene Donaldson designed and produced the Symposium program, based on period photographs of leading physicists located by Robin Chandler;

978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden Frontmatter

More information

xiv

$Editors'\ Acknowledgments$

blow-ups of these photos also graced the walls of the auditorium lobby. In addition, we wish to thank the following people for their help:

Joe Faust, for photographing Symposium speakers and participants; Angela Gonzalez, for designing the Symposium poster and the dust jacket of this book;

Susan Grommes, Adrienne Kolb, and May West, for their gracious support and assistance during the Symposium sessions;

Jeff Machado, for catering the Symposium banquet and other social events;

Michael Peskin, for organizing and supervising scientific secretaries; Helen Quinn, for coordinating activities for science teachers;

Pauline Wethington, for her extensive help with registration and in many other Symposium activities.

The scientific secretaries, who helped us in recording the questionand-answer sessions after the speakers' presentations, were: Jin Dai, Rob Elia, Adam Falk, Ovid Jacob, Ross King, Amit Lath, Hung Jung Lu, Carl Schmidt, Yael Shadmi, Matthew Strassler.

In addition, the following people gave generously of their time to help us before, during, and after the Symposium: Louise Addis, Gregory Bologoff, Andrea Chan, Maura Chatwell, Doug Dupen, Bette-Jane Ferandin, Diana Gregory, Bruce Hemingway, Karen Hernandez, Sharon Ivanhoe, Dona Jones, Jeff Leiter, Cortney Lighthouse, Gina Mastrantonio, Sally McFadden, Judy Meo, Brad Moore, Neal Morrison, Rocky Nilan, Robbin Nixon, Luana Plunkett, David Price, Nader Saghafi, Allison Sato, Jennifer Simmons, Ida Stelling, Neil Strand, Noreen Sugrue, and Steve Tieger.

In preparing the manuscript for this book, the efforts of Shirley Boozer, Tonya Lillie, and Dan Lewart were invaluable. They helped us with the difficult task of converting the chapters submitted by the speakers into a uniform electronic format. With help from May West, Tonya also verified and corrected many of their references, and entered our seemingly endless editorial corrections. Terry Anderson, Kevin Johnston, and Sylvia MacBride provided quality graphic support.

We also benefited from strong financial support. A grant from the Alfred P. Sloan Foundation permitted us to bring invited speakers from all over the world to Stanford, while the National Science Foundation financed our work in editing the chapters that appear within this volume. A grant from the American Institute of Physics Center for the History of Physics allowed us to make audio recordings of the sessions. Finally,

978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden Frontmatter

More information

Editors' Acknowledgments

xv

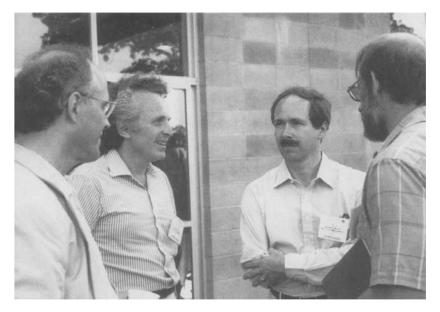
the U.S. Department of Energy supported this Symposium through the generous contributions – both financial and in-kind – of its national laboratories, Fermilab and SLAC, as well as from its contractor, the Universities Research Association.

To all these individuals and organizations, without whose contributions we could not have held this Symposium, we extend our deepest thanks.

Photographs of the Symposium on the following pages are by Joe Faust, and provided courtesy of SLAC.

978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden Frontmatter

Burton Richter helps Steven Weinberg with the microphone before his opening talk.



Peter Higgs and Donald Perkins.

978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden

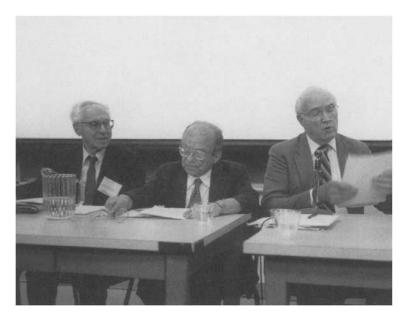
Frontmatter More information

David Gross, Alexander Polyakov, Gerhard 't Hooft, and Lenny Susskind chat during a coffee break.

Gross, Sam Schweber, and Harry Lipkin.

Cambridge University Press 978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden Frontmatter

Michael Riordan and Sidney Bludman discussing the sequence of speakers.



John Heilbron and Laurie Brown.

978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden

Frontmatter More information

Maurice Goldhaber, Pief Panofsky, and Bill Wallenmeyer during the panel session on Science Policy and the Sociology of Big Laboratories.

John Krige speaking during the panel session, while Mark Bodnarczuk and Robert Seidel listen.

Cambridge University Press 978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s

978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970 Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden Frontmatter

Fermilab's first Director, Robert R. Wilson, talks with Norman Ramsey, the first President of Universities Research Association.

Jim Cronin, Nick Samios, Maurice Goldhaber, and Alan Wattenberg.

Cambridge University Press 978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden Frontmatter

Maurice Goldhaber greets Murray Gell-Mann at the Symposium banquet, while Lillian Hoddeson and Matt Sands look on.

Gell-Mann, Gosta Ekspong, and Nina Adelman Stolar.

Cambridge University Press 978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden Frontmatter More information

Abbreviations and Acronyms

Acta Phys. Pol Acta Physica Polonica

Am. J. Phys. American Journal of Physics

Ann. Phys. Annals of Physics

Ann. Rev. Nucl. Part. Sci. Annual Reviews of Nuclear and Particle

Science

Comm. Math. Phys. Communications in Mathematical Phy-

sics

Dokl. Akad. Nauk SSR
Helv. Phys. Acta

Doklady Akademii Nauk SSR
Helvetica Physica Acta

Hist. Stud. Phys. Biol. Sci. Historical Studies in the Physical and

Biological Sciences

Hist. Stud. Phys. Sci. Historical Studies in the Physical

Sciences

JETP Lett. Journal of Experimental and Theoretical

Physics Letters

J. Math. Phys. Journal of Mathematical Physics

J. Phys. Journal de Physique Lett. Nuovo Ciimento Lettres al Nuovo Cimento

Natl. Acad. Sci. USA Proceedings of the National Academy of

Sciences (USA)

Nucl. Phys.Nuclear PhysicsPhys. Lett.Physics LettersPhys. Rep.Physics ReportsPhys. Rev.Physical Review

xxii

978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden

Frontmatter

More information

Abbreviations and Acronyms

Phys. Rev. Lett. Physical Review Letters

Proc. Roy. Soc. Proceedings of the Royal Society

(London)

Prog. Theor. Phys. Progress of Theoretical Physics

Prog. Theor. Phys. Supp. Progress of Theoretical Physics Sup-

plement

Rep. Prog. Phys. Reports on Progress in Physics
Rev. Mod. Phys. Reviews of Modern Physics

Sov. J. Part. Nucl. Soviet Journal of Particles and Nuclei

Sov. Phys. Dokl. Soviet Physics - Doklady

Sov. Phys. JETP Soviet Physics - Journal of Experimen-

tal and Theoretical Physics

Stud. Hist. Phil. Sci. Studies in the History and Philosophy

of Science

Supp. Nuovo Cimento Supplemento al Nuovo Cimento

Z. Phys. Zeitschrift fur Phyzik

AdA Anello di Accumulatione (i.e., storage

ring)

ADONE "big AdA"

AEC Atomic Energy Commission

AGS Alternating Gradient Synchrotron (at

Brookhaven)

ARGUS third-generation particle detector

built at DORIS; also the collaboration

BCS Bardeen-Cooper-Schrieffer (theory)
BEPC Beijing Electron-Positron Collider
BES Beijing Spectrometer at BEPC
BNL Brookhaven National Laboratory
BRS Becci-Rouet-Stora (invariance or

transformation)

CDF Collider Detector at Fermilab; also the

experimental collaboration

CEA Cambridge Electron Accelerator

CELLO solenoidal particle detector at PETRA;

also the collaboration

CERN Centre European pour la Recherche Nu-

cleaire (now known as the European

Center for Particle Physics)

CESR Cornell Electron Storage Ring

CKM Cabibbo–Kobayashi–Maskawa (matrix)

xxiii

978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s

Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden

Frontmatter

More information

xxiv	Abbreviations	and	A cronyms
------	---------------	-----	-----------

CLEO solenoidal particle detector and exper-

imental collaboration at CESR

CRT cathode-ray tube

CUSB Columbia University/Stony Brook de-

tector and collaboration at CESR

CVC conserved vector current (hypothesis) DASP Double-Arm Spectrometer (DESY);

also the experimental collaboration

DELCO Direct Electron Counter detector built

at SPEAR.

Deutsches Elektronen Synchrotron DESY

DOE Department of Energy

D0large particle detector (at Fermilab);

also the experimental collaboration

DORIS Double-Ring Storage electron-positron

collider at DESY

ERDA Energy Research and Development

Administration

Fermi National Accelerator Labora-**FNAL**

tory (a.k.a. Fermilab)

GIM Glashow-Iliopolous-Maiani (mecha-

nism)

GWS Glashow-Weinberg-Salam (model or

theory)

large particle detector at PEP; also the HRS

experimental collaboration

unfinished proton collider (at ISABELLE

Brookhaven)

ISR. Intersecting Storage Rings (CERN) JADE solenoidal particle detector at PETRA;

also the collaboration

Lawrence Berkeley Laboratory LBL LEP Large Electron-Positron collider

(CERN)

solenoidal particle detector and exper-MAC

imental collaboration at PEP

MARK I The first SLAC-LBL particle detector

at the SPEAR e^+e^- collider (SLAC)

MARK II solenoidal particle detector built at

SPEAR and moved to PEP (SLAC)

978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden

Frontmatter

More information

Abbreviations and Acronyms

MARK III third-generation detector built at SPEAR; also the collaboration

MARK-J large particle detector at PETRA; also

the collaboration

MIT Massachusetts Institute of Technology MURA Midwestern Universities Research

Association

NAL National Accelerator Laboratory

(renamed Fermilab)

PCAC partially conserved axial current
PEP Positron Electron Project (at SLAC)
PETRA Positron-Electron Tandem Ring

Accelerator (at DESY)

PLUTO detector built at DORIS and moved to

PETRA; also the collaboration

QCD quantum chromodynamics QED quantum electrodynamics

SALT Strategic Arms Limitations Talks
SLAC Stanford Linear Accelerator Center
SPEAR Stanford Positron-Electron Asymmet-

ric Ring (at SLAC)

TASSO Two-Armed Solenoidal Spectrometer

at PETRA; also the collaboration

TPC solenoidal particle detector at PEP;

also the experimental collaboration

UA1 magnetic particle detector and collab-

oration at CERN $p\bar{p}$ collider

UA2 major particle detector and collabora-

tion at CERN $p\bar{p}$ collider

URA Universities Research Association

XXV

978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden

Frontmatter More information

Mathematical Notation

A	axial-vector interaction (or current); also a scattering
A	amplitude
$A\mu$	four-vector electromagnetic potential
$B(X \to Y)$	branching ratio for interaction $X \to Y$
$B, B^0, B_{oldsymbol{u}}, B_{oldsymbol{d}}$	B mesons – heavy mesons containing a bottom quark
B^+	baryon-matter field (in the Nagoya model); also used
	for B meson
BeV	billion electron volts (old usage, now written as GeV)
$b(ar{b})$	bottom quark (antiquark); also the Yang-Mills field
C	charge-conjugation operator or quantum number
CP	charge-conjugation-parity operator or quantum
	number
CPT	charge-conjugation-parity-time-reversal operator;
	also a theorem
$c(ar{c})$	charm quark (antiquark); also the speed of light in
	vacuum
D^0,D^+,D^-	charmed mesons – containing a charm quark and an
	up or down quark
D^{0*}, D^{+*}	charmed meson resonances
$d(ar{d})$	down quark (antiquark)
E	energy
$E^-(E^+)$	hypothetical electron-like heavy lepton (antilepton)
E_{cm}	center-of-mass energy
e, e^-	electron; e is also the magnitude of the electron charge
,	, 3

xxvi

978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden

Frontmatter More information

Mathematical Notation

xxvii

	Mathematical Notation XXVII
e^+	positron – the antiparticle of the electron
e^+e^-	electron-positron (as in electron-positron collisions)
F, F^+, F^*	F mesons - composed of a charm quark and a strange
	antiquark
$F_{\mu u}$	electromagnetic tensor
G_F	Fermi coupling constant
G	G-parity operator or quantum number
${ m GeV}$	billion electron volts, or gigaelectronvolts
g,g'	generalized coupling constants
I	isospin quantum number
I	isospin operator
I_1,I_2,I_3	isospin components
J	total angular momentum operator or quantum
	number
J	angular momentum operator
$J,J/\psi$	J or J-psi particle – a heavy neutral meson of mass 3.1
_	${ m GeV}$
J^P	spin-parity quantum numbers (e.g., $0^+, 1^-, \ldots$) of a
20	particle
J^{PC}	spin, parity and charge-conjugation quantum numbers
	of a particle
K,K^+,K^-	K mesons, or kaons – mesons that contain a strange
	quark
K^*	kaon resonance
$K^0, K^0_L, K^0_S \ K^0_1, K^0_2$	neutral K mesons
K_{1}^{0},K_{2}^{0}	neutral K mesons (now more commonly written as
	(K_S^0,K_L^0)
$L^-(L^+)$	hypothetical heavy lepton (antilepton)
L (11)	Lagrangian (of a system)
$l, l^-(l^+)$	lepton (antilepton); l is also used to denote orbital
	angular momentum
M	generalized mass of a subatomic particle
$M^-(M^+)$	hypothetical muon-like heavy lepton (antilepton)
MeV	million electron volts, or megaelectron volts
m_x	mass of a subatomic particle x
N*	nucleon resonance
$n(ar{n})$	neutron (antineutron); also the neutron current
P	parity operation or quantum number
P	quantum state with orbital angular momentum $l=1$

spin-1 particle (also known as χ) produced in ψ decays

 P_c

978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden

Frontmatter More information

xxviii	Mathematical Notation
$P_{\mu}, P_{ u}$	four-momentum components of a particle
${}^{3}P_{0}, {}^{3}P_{1}, {}^{3}P_{2}$	P states with third component of angular momentum
	m=0,1,2
p_T or P_t	transverse momentum
$p(ar{p})$	proton (antiproton); also the proton current
$p ext{ or } P$	particle four-momentum; P also used for probability
\overrightarrow{p}	three-vector momentum of a particle
Q	charge quantum number; also decay energy in K
	decays
$q(ar{q})$	generalized quark (antiquark); q also generalized
	charge on a particle
$R = \sigma_{had} / \sigma_{\mu\mu}$	ratio of hadron to muon-pair production in e^+e^-
	collisions
$R = \sigma_L/\sigma_T$	ratio of longitudinal to transverse photoabsorption in
	e- N scattering
S	strangeness operator or quantum number
$S, 1S, 2S, \dots$	S states of a particle system – having orbital angular
a	momentum $l=0$
S-matrix	scattering matrix
SU(N)	special unitary group in N dimensions
$s(ar{s})$	strange quark (antiquark); also the center-of-mass energy squared
T	time-reversal operator or quantum number
TeV	trillion electron volts, or teraelectronvolts
$t(ar{t})$	top quark (antiquark)
U	"unknown" particle (e.g., the particle later called the
	tau lepton)
$u(ar{u})$	up quark (antiquark)
\overrightarrow{v}	vector interaction (or current)
V	Cabibbo-Kobayashi-Maskawa matrix; V also used for
	V particle
V– A	vector minus axial-vector interaction (or current)
$V_{ij}(V_{ij}^*)$	ijth element (or its hermitian conjugate) of CKM
- · y	matrix
W,W^+,W^-	charged vector bosons
W_{μ}	charged vector-boson field
Z,Z^0	neutral vector boson
Z_3,Z_S	transverse, longitudinal components of the neutral
	vector boson field

978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden

Mathematical Notation

fine-structure constant; also $a^2/4\pi$, where a = general

Frontmatter More information

 α

a	coupling constant coupling constant
$oldsymbol{eta}$	beta particle – an electron or positron emitted in nu-
<i>P</i>	clear beta decay; also a parameter in Callan–Symanzik
	equation
β decay	nuclear decay by emission of a beta particle (plus a
ρ decay	- \-
רד	neutrino)
Γ	width of a resonance or interaction strength; also scat-
	tering amplitude
γ	photon, or gammy ray
γ_{μ},γ_{5}	Dirac matrices
δ	CP-violating phase in the Cabibbo-Kobayashi-
	Maskawa matrix
ε	dielectric constant (of a medium)
$\varepsilon, \varepsilon'$	CP-violating parameters measured in neutral kaon
	decays
η,η^0	eta meson – neutral, composed of up and down quarks
η_{+-},η_{00}	eta plus-minus, eta zero zero-neutral kaon decay
	parameters
$ heta, heta^0$	theta mesons (now known as kaons); θ also used for
	polar angle
$ heta_c$	Cabibbo angle
Avv	week mixing angle (or Weinberg angle)

θ, θ	theta mesons (now known as kaons); a also used for
	polar angle
$ heta_c$	Cabibbo angle
$ heta_W$	weak mixing angle (or Weinberg angle)
$\theta_1, \theta_2, \theta_3$	mixing angles in the Cabibbo-Kobayashi-Maskawa

$arLambda(\overline{arLambda})$	lambda baryon (antibaryon); also used for QCD scal-
	ing parameter
$\Lambda(\overline{\Lambda})$	charmed lambda harren (antiharren)

matrix

$arLambda_c(\overlineec\Lambda_c)$	charmed lambda baryon (antibaryon)
$\mu,\mu^-(\mu^+)$	muon (antimuon); μ also the magnetic permeability
u(ar u)	neutrino (antineutrino), of any type
$\nu_e(\bar{\nu}_e)$	electron neutrino (antineutrino)

 $\nu_l(\bar{\nu}_l)$ neutrino (antineutrino) of type or lepton "flavor" l $\nu_{\mu}(\bar{\nu}_{\mu})$ muon neutrino (antineutrino) $\nu_{\tau}(\bar{\nu}_{\tau})$ tau neutrino (antineutrino)

 $\pi, \pi^+, \pi^-, \pi^{\circ}$ pi mesons, or pions - spin-0 mesons composed of up and down quarks

rho parameter (in deep-inelastic ν -N scattering) $^{\rho}_{\rho,\,\rho^0,\,\rho^+,\,\rho^-}$ rho mesons - neutral and charged, composed of up and down quarks

generalized cross section; also used for sigma model

 σ

xxix

Cambridge University Press 978-0-521-57816-5 - The Rise of the Standard Model: Particle Physics in the 1960s and 1970s Edited by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden Frontmatter

xxx	$Mathematical\ Notation$
$\sigma(X \to Y)$	cross section for a scattering or decay process $X \to Y$
σ_{had}	cross section for hadron production (especially in e^+e^- collisions)
$\sigma_{\mu\mu}$	cross section for muon-pair production (especially in e^+e^- collisions)
σ_L	cross section for absorption of longitudinal virtual photons
σ_T	cross section for absorption of transverse virtual photons
$ au, au^-(au^+)$	tau (antitau) lepton; also used for particle lifetimes, tau mesons
$ au_x$	mean lifetime of a subatomic particle x
$\Upsilon, \Upsilon', \Upsilon'' \dots$	upsilon particles – composed of a bottom quark and
	its antiquark
ϕ	phi meson—composed of a strange quark and its antiquark
χ	chi particles – neutral spin-1 particles produced in de-
	cays of ψ particles
$\psi,\psi' \ \psi,\psi',\psi''$	wave function or spinor
ψ,ψ',ψ''	psi particles – composed of a charm quark and its
	antiquark
ψ_1, ψ_2	components of a wave function or spinor
Ω^-	omega-minus baryon – composed of three strange
	quarks
ω,ω^0	omega meson – neutral, composed of up and down quarks