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Introduction

We take ‘complex’ to mean both a CW (or simplicial) complex in topology
and a chain complex in algebra. An ‘end’ of a complex is a subcomplex
with a particular type of infinite behaviour, involving non-compactness in
topology and infinite generation in algebra. The ends of manifolds are
of greatest interest; we regard the ends of CW and chain complexes as
tools in the investigation of manifolds and related spaces, such as stratified
sets. The interplay of the topological properties of the ends of manifolds,
the homotopy theoretic properties of the ends of CW complexes and the
algebraic properties of the ends of chain complexes has been an important
theme in the classification theory of high dimensional manifolds for over 35
years. However, the gaps in the literature mean that there are still some
loose ends to wrap up! Our aim in this book is to present a systematic
exposition of the various types of ends relevant to manifold classification,
closing the gaps as well as obtaining new results. The book is intended to
serve both as an account of the existing applications of ends to the topology
of high dimensional manifolds and as a foundation for future developments.

We assume familiarity with the basic language of high dimensional man-
ifold theory, and the standard applications of algebraic K- and L-theory to
manifolds, but otherwise we have tried to be as self contained as possible.

The algebraic topology of finite CW complexes suffices for the combinato-
rial topology of compact manifolds. However, in order to understand the dif-
ference between the topological and combinatorial properties it is necessary
to deal with infinite CW complexes and non-compact manifolds. The clas-
sic cases include the Hauptvermutung counterexamples of Milnor [96], the
topological invariance of the rational Pontrjagin classes proved by Novikov
[103], the topological manifold structure theory of Kirby and Siebenmann
[84], and the topological invariance of Whitehead torsion proved by Chap-
man [22]. The algebraic and geometric topology of non-compact manifolds
has been a prominent feature in much of the recent work on the Novikov

ix
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X Ends of complexes

conjectures — see Ferry, Ranicki and Rosenberg [59] for a survey. (In these
applications the non-compact manifolds arise as the universal covers of as-
pherical compact manifolds, e.g. the Euclidean space R? covering the torus
T = 8! x S! x ... x §' = BZ') In fact, many current developments in
topology, operator theory, differential geometry, hyperbolic geometry, and
group theory are concerned with the asymptotic properties of non-compact
manifolds and infinite groups — see Gromov [65], Connes [33] and Roe [135]
for example.

What is an end of a topological space? Roughly speaking, an end of a
non-compact space W is a component of W\ K for arbitrarily large compact
subspaces K C W. More precisely :

Definition 1. (i) A neighbourhood of an end in a non-compact space W is
a subspace U C W which contains a component of W\K for a non-empty
compact subspace K C W.

(ii) An end € of W is an equivalence class of sequences of connected open
neighbourhoods W D U; D Uz D ... such that

o0
(Nel(Us) =0
i=1
subject to the equivalence relation
(W3U13U23...) ~ (WDV1DVQD...)

if for each U; there exists j with U; C V;, and for each Vj there exists ¢ with
V; CUs.
(iii) The fundamental group of an end e is the inverse limit

mi(e) = kiinm(Ui) . a

(3

The theory of ends was initiated by Freudenthal [61] in connection with
topological groups. The early applications of the theory concerned the ends
of open 3-dimensional manifolds, and the ends of discrete groups (which are
the ends of the universal covers of their classifying spaces).

We are especially interested in the ends of manifolds which are ‘tame’,
and in extending the notion of tameness to other types of ends. An end of
a manifold is tame if it has a system of neighbourhoods satisfying certain
strong restrictions on the fundamental group and chain homotopy type. Any
non-compact space W can be compactified by adding a point at infinity,
W =W U {co}. A manifold end is ‘collared’ if it can be compactified by
a manifold, i.e. if the point at infinity can be replaced by a closed manifold
boundary, allowing the end to be identified with the interior of a compact
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Introduction xi

manifold with boundary. A high dimensional tame manifold end can be
collared if and only if an algebraic K-theory obstruction vanishes. The
theory of tame ends has found wide application in the surgery classification
theory of high dimensional compact manifolds and stratified spaces, and in
the related controlled topology and algebraic K- and L-theory.

Example 2. Let K be a connected compact space.
(i) K x [0,00) has one end ¢, with connected open neighbourhoods

U, = K x (i,00) C K x[0,00) ,
such that m1(e) = m1 (K).
(ii) K x R has two ends €T, e, with connected open neighbourhoods

Ub = K x(i,00) , U~ = Kx(-00,—i)CK xR,
such that 71(e*) = m (K).
(iti) K x R? has one end ¢, with connected open neighbourhoods
Ui = K x{(z,y) € R?|z% +4* > 4%},

such that m1(e) = m1(K) x Z. a

Example 3. (i) Let W be a space with a proper map d : W—0, co) which
is onto, and such that the inverse images U; = d~1(t,00) C W (t > 1) are
connected. Then W has one end ¢ with connected open neighbourhoods

x>
W D U; DUs D ... such that cl(Uy) = d 1[t,00), N cl(U;) = 0.
1=0
(ii) Let (W,0W) be a connected open n-dimensional manifold with con-
nected compact boundary. Then W has one end ¢ if and only if there exists
a proper map d : (W,0W)—([0,00),{0}) which is transverse regular at
N={0,1,2,...} C[0,00), with the inverse images
(Wis My, Mig1) = d7 ' ([Li+ 1 {i} {i+1}) (ieN)

connected compact n-dimensional cobordisms such that

o0
(W,0w) = ([J Wi, M) .
1=0
(iii) Given connected compact n-dimensional cobordisms (W;; M;, M; 1)
(i € N) there is defined a connected open n-dimensional manifold with
o
compact boundary (W,0W) = (U W;, M,). The union of Morse func-

1=0
tions d; : (Wi My, My1)—([i,1 + 1]; {£},{i + 1}) defines a proper map
d : (W,0W)—([0,00),{0}), and as in (ii} W has one end e. If the inclu-
sions M;—W;, M;1—W, induce isomorphisms in 7 then

7T1(M0) = 7I'1(W()) = 7|'1(M1) = ... = 7T1(W) = ’/T1(6). @)
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Definition 4. An end € of an open n-dimensional manifold W can be
collared if it has a neighbourhood of the type M x[0,00) C W for a connected
closed (n — 1)-dimensional manifold M. o

Example 5. (i) An open n-dimensional manifold with one end ¢ is (home-
omorphic to) the interior of a closed n-dimensional manifold if and only if
€ can be collared. More generally, if W is an open n-dimensional manifold
with compact boundary OW and one end ¢, then there exists a compact
n-dimensional cobordism (L; 0W, M) with L\M homeomorphic to W rel
OW if and only if € can be collared.

(ii) If (V, 9V') is a compact n-dimensional manifold with boundary then for
any z € V\0V the complement W = V\{z} is an open n-dimensional mani-
fold with a collared end € and OW = 9V, with a neighbourhood M x [0, 00) C
W for M = 5™~ 1. The one-point compactification of W is W = V. The
compactification of W provided by (i) is L = cl{V\D"), for any neigh-
bourhood D™ C V\8V of z, with (L; 0W, M) = (WU S* 1,9V, 85" 1). D

Stallings [154] used engulfing to prove that if W is a contractible open
n-dimensional PL manifold with one end e such that 71(¢) = {1} andn > 5
then W is PL homeomorphic to R* — in particular, the end € can be collared.

Let (W, 0W) be an open n-dimensional manifold with compact boundary
and one end e. Making a proper map d : (W, 0W)——([0, 00), {0}) transverse
regular at some t € (0,00) gives a decomposition of (W, 8W) as

(W,0W) = (L;0W, M) Up (N, M)

with (L; W, M) = d~1([0,t]; {0}, {t}) a compact n-dimensional cobordism
and N = d~![t,00) non-compact. The end € can be collared if and only if
N can be chosen such that there exists a homeomorphism N & M x [0, co)
rel M = M x {0}, in which case L\M = L Up g0y M x [0,00) = W
rel OW. In terms of Morse theory: it is possible to collar ¢ if and only
if (W, 0W) admits a proper Morse function d with only a finite number of
critical points. Browder, Levine and Livesay [14] used codimension 1 surgery
on M C W to show that if m1(W) = m1(e) = {1} and n > 6 then ¢ can be
collared if and only if the homology groups H,(W) are finitely generated
(with H.(W) = 0 for all but finitely many values of r). Siebenmann [140]
combined codimension 1 surgery with the finiteness obstruction theory of
Wall [163] for finitely dominated spaces, proving that in dimensions > 6
a tame manifold end can be collared if and only if an algebraic K-theory
obstruction vanishes.

Definition 6. A space X is finitely dominated if there exist a finite CW
complex K and maps f: X— K, g: K—X withgf ~1: X—X. u]

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521576253
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
0521576253 - Ends of Complexes
Bruce Hughes and Andrew Ranicki
Frontmatter

More information

Introduction xili

Example 7. Any space homotopy equivalent to a finite CW complex is
finitely dominated. u]

Example 8. A connected CW complex X with m(X) = {1} is finitely
dominated if and only if H,(X) is finitely generated, if and only if X is
homotopy equivalent to a finite CW complex. o

For non-simply-connected X the situation is more complicated:

Theorem 9. (Wall [163,164]) A connected CW complex X is finitely dom-
inated if and only if m1(X) is finitely presented and the cellular Z[m(X)]-
module chain complex C’(X' ) of the universal cover X is chain equivalent
to a finite f.g. projective Z{m1(X)]-module chain complex P. The reduced
projective class of a finitely dominated X

o0

[X] = [P] = Y (-)'IP] € Ko(Z[m(X)))
r=0
is the finiteness obstruction of X, such that [X] = 0 if and only if X is
homotopy equivalent to a finite CW complexz. o

Definition 10. An end ¢ of an open manifold W is tame if it admits a
sequence W D U; D Us O ... of finitely dominated neighbourhoods with

ﬁCI(Ui) = @ ; 71’1(U1) = 71'1(U2) = ... = 7r1(e). a

=1

Example 11. If an end € of an open manifold W can be collared then
it is tame: if M x [0,00) C W is a neighbourhood of € then the open
neighbourhoods W 2 U; = M x (1,00) D Uy = M X (2,00) D ... satisfy
the conditions of Definition 10, with cl(U;) = M X [1,00), m1(€) = m(M). ©

Tameness is a geometric condition which ensures stable (as opposed to
wild) behaviour in the topology at infinity of a non-compact space W. The
fundamental example is W = K x [0,00) for a compact space K, in which
the topology at infinity is that of K.

Theorem 12. (Siebenmann [140]} A tame end € of an open n-dimensional
manifold W has a reduced projective class tnvariant, the end obstruction

[ = lm[Ui] € Ko(2[m(9)) = lim Ko(Z[m(Us)])

13 %

such that [€] = 0 if (and for n > 6 only if) € can be collared. o
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Even if a tame manifold end e can be collared, the collarings need not
be unique. The various collarings of a tame end ¢ in an open manifold
W of dimension > 6 with [¢] = 0 € Ko(Z[m1(€)]) are classified by the
Whitehead group Wh(m(e)): if M x [0,00), M’ x [0,00) C W are two
collar neighbourhoods of € then for sufficiently large ¢ > 0 there exists an
h-cobordism (N; M, M') between M x {0} and M’ x {t} C W, with

M x [0,00) = NUM’x{t} M x [t,00) C W .

By the s-cobordism theorem (N; M, M') is homeomorphic to the product
M x (I;{0},{1}) if and only if 7(M ~ N) = 0 € Wh(mi(€)). The non-
uniqueness of collarings of PL manifold ends was used by Milnor [96] in
the construction of homeomorphisms of compact polyhedra which are not
homotopic to a PL homeomorphism, disproving the Hauptvermutung for
compact polyhedra. The end obstruction theory played an important role
in the disproof of the manifold Hauptvermutung by Casson and Sullivan
(Ranicki [131]) — the manifold case also requires surgery and L-theory.

Quinn [114,115,116] developed a controlled version of the Siebenmann
end obstruction theory, and applied it to stratified spaces. (See Ranicki
and Yamasaki [132] for a treatment of the controlled finiteness obstruction,
and Connolly and Vajiac [34] for an end theorem for stratified spaces.)
The tameness condition of Definition 10 for manifold ends was extended by
Quinn to stratified spaces, distinguishing two tameness conditions for ends
of non-compact spaces, involving maps pushing forward along the end and
in the reverse direction. We shall only consider the two-stratum case of a
one-point compactification, with the lower stratum the point at infinity. In
Chapters 7,8 we state the definitions of forward and reverse tameness. The
original tameness condition of Siebenmann [140] appears in Chapter 8 as
reverse mwi-tameness, so called since it is a combination of reverse tameness
and wi-stability. In general, forward and reverse tameness are independent
of each other, but for 7;-stable manifold ends ¢ with finitely presented 71 (¢)
the two kinds of tameness are equivalent by a kind of Poincaré duality.

Definition 13. (Quinn [116]) The end space e(W) of a space W is the
space of proper paths w : [0, 00)—W. o

We refer to Appendix B for a brief history of end spaces.

The end space e(W) is a homotopy model for the ‘space at infinity’ of W,
playing a role similar to the ideal boundary in hyperbolic geometry. The
topology at infinity of a space W is the inverse system of complements of
compact subspaces (i.e. cocompact subspaces or neighbourhoods of infinity)
of W, which are the open neighbourhoods of the point oo in the one-point
compactification W = W U {oo}. The homology at infinity HX®(W) is
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defined to fit into an exact sequence
. — H®*(W) — H. (W) — HY(W) — H® (W) — ...,

and Hif(W) = H, (W, {o0}) for reasonable W. The end space e(W) is
the ‘link of infinity in W*’. There is a natural passage from the algebraic
topology at infinity of W to the algebraic topology of e(W), which is a one-
to-one correspondence for forward tame W, with H.(e(W)) = HZX(W).

If (W,0W) is an open n-dimensional manifold with compact boundary
and one tame end e the end space e(W) is a finitely dominated (n — 1)-
dimensional Poincaré space with m1(e(W)) = mi(e), and (W;0W, e(W)) is
a finitely dominated n-dimensional Poincaré cobordism, regarding e(W) as
a subspace of W via the evaluation map

eW) — W (w:]0,00)—W) — w(0) .

The non-compact spaces of greatest interest to us are the infinite cyclic
covers of ‘bands’:

Definition 14. A band (M, c) is a compact space M withamap ¢ : M—S!
such that the infinite cyclic cover M = ¢*R of M is finitely dominated, and
such that the projection M— M induces a bijection of path components
mo(M) = mp(M). O

Example 15. A connected finite CW complex M with a map ¢ : M ~—S!
inducing an isomorphism ¢, : 71 (M) = Z defines a band (M, ¢) (i.e. the infi-
nite cyclic cover M = ¢*R is finitely dominated) if and only if the homotopy
groups 7y (M) = H,(M) (x > 2) are finitely generated. o

The infinite cyclic cover M of a connected manifold band (M, c) has two
ends. The projection ¢ : M——S" lifts to a proper map ¢ : M—R, such
that the inverse images

M* = '0,00) , M = ¢} (-o00,0)]Cc M

are closed neighbourhoods of the two ends. In Chapter 15 we shall prove
that the two ends of M are tame, with homotopy equivalences

eM™) ~ e(M™) ~ M.

The problem of deciding if an open manifold is the interior of a compact
manifold with boundary is closely related to the problem of deciding if a
compact manifold M fibres over S', i.e. if a map ¢ : M~—S? is homotopic
to the projection of a fibre bundle. In the first instance, it is necessary for
(M, ) to be a band:
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Example 16. Suppose given a fibre bundle F— M —C——> S with F a closed
(n — 1)-dimensional manifold and M = T(h) the mapping torus of a mon-
odromy self homeomorphism h : F—F. If h preserves the path compo-
nents then (M, ¢) is an n-dimensional manifold band, with the infinite cyclic
cover M = F x R homotopy equivalent to a finite CW complex. o

Stallings [153] used codimension 1 surgery on a surface ¢~ !(x) C M to
prove that a map ¢ : M—S' from a compact irreducible 3-dimensional
manifold M with ker(c,: m(M)——2Z) ¥ Z+ is homotopic to the projection
of a fibre bundle if and only if ker(c,) is finitely generated, in which case
ker(c,) = 71 (F') is the fundamental group of the fibre F. In particular, the
complement of a knot k: ST C §3

(M, M) = (cl(S3\(k(S') x D?)),S8' x 1)

fibres over S! if and only if the commutator subgroup [r, 7] of the funda-
mental group 7 = 71 (M) is finitely generated. Browder and Levine [13] used
codimension 1 surgery in higher dimensions to prove that for n > 6 a com-
pact n-dimensional manifold band (M, c) with ¢. : 71 (M) = Z fibres. Thus
a high-dimensional knot k : S"~2 C S” (n > 6) with 71 (S™\k(S"2)) = Z
fibres (i.e. the knot complement fibres over S!) if and only if the higher
homotopy groups 7.(S™\k(S" %)) (x > 2) are finitely generated. More
generally:

Theorem 17. (Farrell [46], Siebenmann [145]) An n-dimensional manifold
band (M, c) has a Whitehead torsion invariant, the fibring obstruction
(M, c) € Wh(m (M) ,

such that ®(M,c) = 0 if (and for n > 6 only if) M fibres over S', with
¢: M— 8 homotopic to a fibre bundle projection. ]

In the main text we shall actually be dealing with the two fibring obstruc-
tions ®T(M,¢), @~ (M, c) € Wh(m1(M)) defined for a CW band (M, c). For
an n-dimensional manifold band (M, ¢) the two obstructions determine each
other by Poincaré duality

o*(M,) = (-)"'6~ (M, )" € Whim (M),

and in the Introduction we write ¥ (M, c) as (M, ¢).
Example 18. For any n-dimensional manifold band (M, ¢) the (n + 1)-

dimensional manifold band (M x S!,d) with d(z,t) = c¢(z) has fibring ob-
struction

O(M x S',d) = 0€ Wh(m(M)xZ).

For n > 5 the geometric construction of Theorem 19 below actually gives a
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canonical fibre bundle
F—Mx8§ 28

w1th p homotopic to d. The fibre F is the ‘wrapping up’ of the tame end

M of M, a closed n-dimensional manifold such that there are defined
homeomorphisms

FxR = MxS", MxS' = T(h)

for a monodromy self homeomorphism h : F—F. The fibring obstruction
®(M,c) € Wh(m(M)) is the obstruction to splitting off an S'-factor from
h: F—F, so that for n > 6 ®(M,c) = 0 if and only if up to isotopy

h=hxl:F=Fx8 —F=FxS§!
with A : F1—F) a self homeomorphism such that M = T'(h). o

Bands are of interest in their own right. For example, the fibring obstruc-
tion theory for bands gives a geometric interpretation of the ‘fundamental
theorem’ of algebraic K-theory of Bass [4]

Whir x Z) = Wh(r) @ Ko(Z[r]) & Nilp(Z[r]) & Nily(Z[x])

— see Ranicki [124] for a recent account. The following uniformization the-
orem shows that every tame manifold end of dimension > 6 has an open
neighbourhood which is the infinite cyclic cover of a manifold band. It was
announced by Siebenmann [141], and is proved here in Chapter 17.

Theorem 19. Let (W,0W) be a connected open n-dimensional manifold
with compact boundary and one end €, with n > 6.

(i) The end € is tame if and only if it has a neighbourhood X = M C W
which 1s the finitely dominated infinite cyclic cover of a compact n-dim-
ensional manifold band X = (M, ¢), the wrapping up of €, such that

7!'1(7\2) = 71’1(6) N 7(‘1(M) = 7r1(e)><Z s G(W) >~ H,
®(M,c) = [e € Ko(z[m(e)]) C Wh(mi(e) x Z),

and such that the covering translation ¢ : M—sM is isotopic to the identity.
The (n+ 1)-dimensional manifold band (M x S*,d) with d(z,t) = c(x) fibres
over S : the map d : M x S'— 81 is homotopic to the projection of a fibre
bundle with fibre M, with a homeomorphism

MxS8' =~ MxR.

Thus ex St can be collared with boundary M : there exists a compact (n+1)-
dimensional cobordism (N;0W x S', M) with a rel & homeomorphism

(N\M,dW x Sy = (W,0W) x S* .
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(ii) For tame € the Siebenmann end obstruction of € is the Wall finiteness
obstruction of M

[ = [M7] e Ko(z[m(e)) ,

with [€] = 0 if and only if € can be collared, in which case there exists a
compact n-dimensional cobordism (K; OW, L) with a rel 3 homeomorphism

(K\L,0W) = (W,0W)
and a homeomorphism
(K;0W,L) x S' = (N;0W x S', M)

(N asin (i)), and (M,c) fibres over S' with M = L x S and M = L x R.
o

A CW complex X is finitely dominated if and only if X x S! is homotopy
equivalent to a finite CW complex, by a result of M. Mather [91]. A manifold
end e of dimension > 6 is tame if and only if € x S can be collared — this
was already proved by Siebenmann [140], but the wrapping up procedure
of Theorem 19 actually gives a canonical collaring of € x S*.

In principle, Theorem 19 could be proved using the canonical regular
neighbourhood theory of Siebenmann [148] and Siebenmann, Guillou and
Hihl [149]. We prefer to give a more elementary approach, using a combi-
nation of the geometric, homotopy theoretic and algebraic methods which
have been developed in the last 25 years to deal with non-compact spaces.
While the wrapping up construction has been a part of the folklore, the new
aspect of our approach is that we rely on the end space and the extensively
developed theory of manifold approzimate fibrations rather than ad hoc en-
gulfing methods. An approximate fibration is a map with an approximate
lifting property. (Of course, manifold approximate fibration theory relies on
engulfing, but we prefer to subsume the details of the engulfing in the the-
ory.) We do not assume previous acquaintance with approximate fibrations
and engulfing.

The proof of Theorem 19 occupies most of Parts One and Two (Chapters
1-20). There are three main steps in passing from a tame end € of W to
the wrapping up band (M, ¢) such that the infinite cyclic cover M C W is
a neighbourhood of €:

(i) in Chapter 9 we show that tameness conditions on a space W imply
that the end space e(W) is finitely dominated and that, near infinity,
W looks like the product e(W) x [0,00);

(ii) in Chapter 16 we use (i) to prove that every tame manifold end e of
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dimension > 5 has a neighbourhood X which is the total space of a
manifold approximate fibration d : X —R;

(iii) in Chapter 17 we show that for every manifold approximate fibration
d : X —R of dimension > 5 there exists a manifold band (M, ¢) such
that X = M, with a proper homotopy d ~¢: X —R.

The construction in (iii) of the wrapping up (M, ¢) of (X, d) is by the mani-
fold ‘twist glueing’ due to Siebenmann [145]. The twist glueing construction
of manifold bands is extended to the CW category in Chapters 19 and 20.

In Part Three (Chapters 21-27) we study the algebraic properties of tame
ends in the context of chain complexes over a polynomial extension ring
and also in bounded algebra. We obtain an abstract version of Theorem
19, giving a chain complex account of wrapping up: manifold wrapping up
induces a CW complex wrapping up, which in turn induces a chain complex
wrapping up, and similarly for the various types of twist glueing.

In Chapter 15 we introduce the notion of a ribbon (X,d), which is a
non-compact space X with a proper map d : X —R with the homotopy
theoretic and homological end properties of the infinite cyclic cover (W,¢)
of a band (W, ¢). Ribbons are the homotopy analogues of manifold approxi-
mate fibration over R. In Chapter 25 we develop the chain complex versions
of CW ribbons as well as algebraic versions of tameness.

The study of ends of complexes is particularly relevant to stratified spaces.
A topologically stratified space is a space X together with a filtration

0= X'cx®cx'c..cx™lcxm =X

by closed subspaces such that the strata X7\X’~! are open topological
manifolds which satisfy certain tameness conditions and a homotopy link
condition. These spaces were first defined by Quinn [116] in order to study
purely topological stratified phenomena as opposed to the smoothly strati-
fied spaces of Whitney [170], Thom [161] and J. Mather [90], and the piece-
wise linear stratified spaces of Akin [1] and Stone [159]. Quinn’s paper
should be consulted for more precise definitions. Our results only apply
directly to the very special case obtained from the one-point compactifi-
cation W = X of an open manifold W, regarded as a filtered space by
X0 = {00} € W*® = X. Then X is a topologically stratified space with
two strata if and only if W is tame. (The general case requires controlled
versions of our results.) Earlier, Siebenmann [147] had studied a class of
topologically stratified spaces called locally conelike stratified spaces. The
one-point compactification of an open manifold W with one end is locally
conelike stratified if and only if the end of W can be collared. Hence,
Quinn’s stratified spaces are much more general than Siebenmann’s. The
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conditions required of topologically stratified spaces by Quinn are designed
to imply that strata have neighbourhoods which are homotopy equivalent
to mapping cylinders of fibrations, whereas in the classical cases the strata
have neighbourhoods which are homeomorphic to mapping cylinders of bun-
dle projections in the appropriate category: fibre bundle projections in the
smooth case, block bundle projections in the piecewise linear case. Strata in
Siebenmann’s locally conelike stratified spaces have neighbourhoods which
are locally homeomorphic to mapping cylinders of fibre bundle projections,
but not necessarily globally.

A stratified homotopy equivalence is a homotopy equivalence in the strat-
ified category (maps must preserve strata, not just the filtration). In the
special case of one-point compactifications, stratified homotopy equivalences
(W, {o00})—>(V>, {oo}) are exactly the proper homotopy equivalences
W —V. Weinberger [166] has developed a stratified surgery theory which
classifies topologically stratified spaces up to stratified homotopy equiva-
lence in the same sense that classical surgery theory classifies manifolds
up to homotopy equivalence. Weinberger outlines two separate proofs of
his theory. The first proof [166, pp. 182-188] involves stabilizing a stratified
space by crossing with high dimensional tori in order to get a nicer stratified
space which is amenable to the older stratified surgery theory of Browder
and Quinn [15]. The obstruction to codimension ¢ destabilization involves
the codimension i lower K-group K1 ;(Z[r]) C Wh(r x Z%). (Example 18
and Theorem 19 treat the special case ¢ = 1.) The second proof outlined in
[166, Remarks p. 189] uses more directly the existence of appropriate tubular
neighbourhoods of strata called teardrop neighbourhoods. These neighbour-
hoods were shown to exist in the case of two strata by Hughes, Taylor,
Weinberger and Williams [76] and in general by Hughes [74]. In 16.13 we
give a complete proof of the existence of teardrop neighbourhoods in the
special case of the topologically stratified space (W, {oco}) determined by
an open manifold W with a tame end. The result asserts that W contains
an open cocompact subspace X C W which admits a manifold approximate
fibration X —R. In the more rigid smoothly stratified spaces, the tubular
neighbourhoods would be given by a genuine fibre bundle projection. The
point is that Quinn’s definition gives information on the neighbourhoods
of strata only up to homotopy. The existence of teardrop neighbourhoods
means there is a much stronger geometric structure given in terms of man-
ifold approximate fibrations.

We use the theory of manifold approximate fibrations to perform geomet-
ric wrapping up constructions. This is analogous to Weinberger’s second
approach to stratified surgery, in which teardrop neighbourhoods of strata
are used in order to be able to draw on manifold approximate fibration
theory rather than stabilization and destabilization. We expect that the
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general theory of teardrop neighbourhoods will likewise allow generaliza-
tions of the wrapping up construction to arbitrary topologically stratified
spaces, using the homotopy theoretic and algebraic properties of the rib-
bons introduced in this book. Such a combination of geometry, homotopy
theory and algebra will be necessary to fully understand the algebraic K-
and L-theory of stratified spaces.

This book grew out of research begun in 1990-91 when the first-named
author was a Fulbright Scholar at the University of Edinburgh. We have re-
ceived support from the National Science Foundation (U.S.A.), the Science
and Engineering Research Council (U.K.), the European Union K-theory
Initiative under Science Plan SCI-CT91-0756, the Vanderbilt University
Research Council, and the Mathematics Departments of Vanderbilt Univer-
sity and the University of Edinburgh. We have benefited from conversations
with Stratos Prassidis and Bruce Williams.

The book was typeset in TEX, with the diagrams created using the IAp(S-
TEX, PICTEX and Xy-pic packages.

Errata (if any) to this book will be posted on the WWW Home Page
http://www.maths.ed.ac.uk/people/aar
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Part One, Topology at infinity, is devoted to the basic theory of the general,
geometric and algebraic topology at infinity of non-compact spaces. Various
models for the topology at infinity are introduced and compared.

Chapter 1, End spaces, begins with the definition of the end space e(W)
of a non-compact space W. The set of path components mg(e{(W)) is shown
to be in one-to-one correspondence with the set of ends of W (in the sense
of Definition 1 above) for a wide class of spaces.

Chapter 2, Limits, reviews the basic constructions of homotopy limits
and colimits of spaces, and the related inverse, direct and derived limits of
groups and chain complexes. The end space e{W) is shown to be weak ho-
motopy equivalent to the homotopy inverse limit of cocompact subspaces of
W and the homotopy inverse limit is compared to the ordinary inverse limit.
The ‘fundamental group at infinity’ #{°(W) of W is defined and compared
to 71 (e(W)).

Chapter 3, Homology at infinity, contains an account of locally finite sin-
gular homology, which is the homology based on infinite chains. The ho-
mology at infinity H>®(W) of a space W is the difference between ordinary
singular homology H,.(W) and locally finite singular homology HY (w).

Chapter 4, Cellular homology, reviews locally finite cellular homology, al-
though the technical proof of the equivalence with locally finite singular
homology is left to Appendix A.

Chapter 5, Homology of covers, concerns ordinary and locally finite sin-
gular and cellular homology of the universal cover (and other covers) W of
W. The version of the Whitehead theorem for detecting proper homotopy
equivalences of CW complexes is stated.

Chapter 6, Projective class and torsion, recalls the Wall finiteness ob-
struction and Whitehead torsion. A locally finite finiteness obstruction is
introduced, which is related to locally finite homology in the same way that
the Wall finiteness obstruction is related to ordinary homology, and the
difference between the two obstructions is related to homology at infinity.

xxil
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Chapter 7, Forward tameness, concerns a tameness property of ends,
which is stated in terms of the ability to push neighbourhoods towards
infinity. It is proved that for forward tame W the singular chain complex
of the end space e(W) is chain equivalent to the singular chain complex at
infinity of W, and that the homotopy groups of (W) are isomorphic to the
inverse limit of the homotopy groups of cocompact subspaces of W. There
is a related concept of forward collaring.

Chapter 8, Reverse tameness, deals with the other tameness property of
ends, which is stated in terms of the ability to pull neighbourhoods in from
infinity. It is closely related to finite domination properties of cocompact
subspaces of W. There is a related concept of reverse collaring.

Chapter 9, Homotopy at infinity, gives an account of proper homotopy
theory at infinity. It is shown that the homotopy type of the end space,
the two types of tameness, and other end phenomena are invariant under
proper homotopy equivalences at infinity. It is also established that in most
cases of interest a space W is forward and reverse tame if and only if W is
bounded homotopy equivalent at oo to e(W) x [0,00), in which case e(W)
is finitely dominated.

Chapter 10, Projective class at infinity, introduces two finiteness obstruc-
tions which the two types of tameness allow to be defined. The finiteness
obstruction at infinity of a reverse tame space is an obstruction to reverse
collaring. Likewise, the locally finite finiteness obstruction at infinity of
a forward tame space is an obstruction to forward collaring. For a space
W which is both forward and reverse tame, the end space e(W) is finitely
dominated and its Wall finiteness obstruction is the difference of the two
finiteness obstructions at infinity. It is also proved that for a manifold
end forward and reverse tameness are equivalent under certain fundamental
group conditions.

Chapter 11, Infinite torsion, contains an account of the infinite simple ho-
motopy theory of Siebenmann for locally finite CW complexes. The infinite
Whitehead group of a forward tame CW complex is described algebraically
as a relative Whitehead group. The infinite torsion of a proper homotopy
equivalence is related to the locally finite finiteness obstruction at infinity.
A CW complex W is forward (resp. reverse) tame if and only if W x §1
is infinite simple homotopy equivalent to a forward (resp. reverse) collared
CW complex.

Chapter 12, Forward tameness is a homotopy pushout, deals with Quinn’s
characterization of forward tameness for a o-compact metric space W in
terms of a homotopy property, namely that the one-point compactification
W is the homotopy pushout of the projection e(W)—W and e(W)—
{00}, or equivalently that W is the homotopy cofibre of e(W)—W.

Part Two, Topology over the real line, concerns spaces W with a proper
map d: W—R
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Chapter 13, Infinite cyclic covers, proves that a connected infinite cyclic
cover W of a connected compact ANR W has two ends W, W, and
establishes a duality between the two types of tameness: W™ is forward
tame if and only if W~ is reverse tame. A similar duality holds for forward
and reverse collared ends.

Chapter 14, The mapping torus, works out the end theory of infinite cyclic
covers of mapping tori.

Chapter 15, Geometric ribbons and bands, presents bands and ribbons.
It is proved that (M,c: M——S8') with M a finite CW complex defines a
band (i.e. the infinite cyclic cover M = c*R of M is finitely dominated) if
and only if the ends M+, M ™ are both forward tame, or both reverse tame.
The Siebenmann twist glueing construction of a band is formulated for a
ribbon (X, d : X—R) and an end-preserving homeomorphism h : X — X.

Chapter 16, Approxzimate fibrations, presents the main geometric tool used
in the proof of the uniformization Theorem 19 (every tame manifold end of
dimension > 5 has a neighbourhood which is the infinite cyclic cover of a
manifold band). It is proved that an open manifold W of dimension > 5
is forward and reverse tame if and only if there exists an open cocompact
subspace X C W which admits a manifold approximate fibration X —R.

Chapter 17, Geometric wrapping up, uses the twist glueing construction
with A = 1: X— X to prove that the total space X of a manifold approx-
imate fibration d : X —R is the infinite cyclic cover X = M of a manifold
band (M, ¢).

Chapter 18, Geometric relazation, uses the twist glueing construction with
h = covering translation : M— M to pass from a manifold band (M, ¢) to
an h-cobordant manifold band (M’, ¢') such that ¢ : M'—S! is a manifold
approximate fibration.

Chapter 19, Homotopy theoretic twist glueing, and Chapter 20, Homotopy
theoretic wrapping up and relazation, extend the geometric constructions
for manifolds in Chapters 17 and 18 to CW complex bands and ribbons.
Constructions in this generality serve as a bridge to the algebraic theory of
Part Three. Moreover, it is shown that any CW ribbon is infinite simple
homotopy equivalent to the infinite cyclic cover of a CW band, thereby
justifying the concept.

Part Three, The algebraic theory, translates most of the geometric, homo-
topy theoretic and homological constructions of Parts One and Two into
an appropriate algebraic context, thereby obtaining several useful algebraic
characterizations.

Chapter 21, Polynomial extensions, gives background information on chain
complexes over polynomial extension rings, motivated by the fact that the
cellular chain complex of an infinite cyclic cover of a CW complex is defined
over a Laurent polynomial extension.
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Chapter 22, Algebraic bands, discusses chain complexes over Laurent poly-
nomial extensions which have the algebraic properties of cellular chain com-
plexes of CW complex bands.

Chapter 23, Algebraic tameness, develops the algebraic analogues of for-
ward and reverse tameness for chain complexes over polynomial extensions.
This yields an algebraic characterization of forward {and reverse) tameness
for an end of an infinite cyclic cover of a finite CW complex. End complexes
are also defined in this algebraic setting.

Chapter 24, Relazxation techniques, contains the algebraic analogues of the
constructions of Chapters 18 and 20. When combined with the geometry of
Chapter 18 this gives an algebraic characterization of manifold bands which
admit approximate fibrations to S!.

Chapter 25, Algebraic ribbons, explores the algebraic analogue of CW rib-
bons in the context of bounded algebra. The algebra is used to prove that
CW ribbons are infinite simple homotopy equivalent to infinite cyclic covers
of CW bands.

Chapter 26, Algebraic twist glueing, proves that algebraic ribbons are sim-
ple chain equivalent to algebraic bands.

Chapter 27, Wrapping up in algebraic K- and L-theory, describes the ef-
fects of the geometric constructions of Part Two on the level of the algebraic
K- and L-groups.

Part Four consists of the three appendices:

Appendix A, Locally finite homology with local coefficients, contains a
technical treatment of ordinary and locally finite singular and cellular ho-
mology theories with local coefficients. This establishes the equivalence of
locally finite singular and cellular homology for regular covers of CW com-
plexes.

Appendix B, A brief history of end spaces, traces the development of end
spaces as homotopy theoretic models for the topology at infinity.

Appendix C, A brief history of wrapping up, outlines the history of the
wrapping up compactification procedure.
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