TABLE OF CONTENTS

Preface

1 **PRINCIPLES OF REFLECTION AND REFRACTION**
 1.1 Snell’s Law of Refraction
 1.2 Huygens’ Principle
 1.3 Refraction and Reflection
 1.4 Spherical Wave and Image Formation
 1.5 Total Reflection and Dispersion
 1.6 Polarization
 1.7 Polarizers
 1.8 Fresnel Equations of Reflection
 References
 Problems

2 **LENSES AND ABERRATIONS**
 2.1 Image Formation
 2.2 Simple Lenses
 2.3 Phase Retardation by Thin Lenses
 2.4 Primary Aberrations
 2.5 Resolution Limit
 References
 Problems

3 **OPTICAL INSTRUMENTS**
 3.1 The Human Eye
 3.2 Camera and Photographic Film
 3.2.1 Camera

Page xiii
TABLE OF CONTENTS

3.2.2 Photographic Film 72
3.3 Telescope 76
3.4 Microscope 79
3.5 Projection Systems 83
References 86
Problems 87

4 DETECTORS 89
4.1 Photoconductive Detectors 89
4.2 Semiconductor Photodiodes 92
 4.2.1 The p-n Junction 92
 4.2.2 Junction Photodiodes 94
4.3 PIN and Avalanche Photodiodes 96
 4.3.1 PIN Diodes 97
 4.3.2 Avalanche Photodiodes 98
4.4 Photomultipliers 98
4.5 Charge Coupled Devices 101
4.6 Noise and Sensitivity of Electro-optic Detectors 103
 4.6.1 Video Detection Mode 104
 4.6.2 Heterodyne Detection Mode 106
References 109
Problems 109

5 SPATIAL LIGHT MODULATORS 111
5.1 Acousto-optic modulators 112
5.2 Magneto-optic modulators 114
5.3 Pockel’s Readout Optical Modulators 116
5.4 Liquid Crystal Light Valves 119
5.5 Liquid Crystal Television 122
5.6 Microchannel Plate Spatial Light Modulators 124
5.7 Photoplastic Devices 127
5.8 Deformable Mirror Array Devices 129
5.9 Optical Discs 130
Table of Contents

5.10 Photorefractive Crystals
References 136
Problems 136

6 Lasers

6.1 Quantum Behavior of Light 141
6.2 Spontaneous and Stimulated Emission 143
6.3 Population Inversion 147
6.3.1 Three- and Four-level Lasers 147
6.3.2 Optical and Electric Pumping 149
6.4 Optical Resonant Cavity 150
6.5 Modes of Laser Beam 154
6.5.1 Longitudinal Mode 154
6.5.2 Transverse Mode 157
6.6 Spectral Bandwidth and Coherence Length 158
6.7 Types of Lasers 160
6.7.1 Gas Laser 161
6.7.2 Solid State Laser 162
6.7.3 Semiconductor Laser 164

References 167
Problems 167

7 Linear System Transforms

7.1 Linear Spatially Invariant System 170
7.2 Fourier Transformation and Fourier Spectrum 174
7.3 Dirac Delta Function 178
7.4 Convolution and Correlation 181
7.4.1 Convolution 181
7.4.2 Correlation 185
7.5 Properties of Fourier Transformation 189
7.5.1 Fourier Translation Property 189
7.5.2 Reciprocal Translation Property 191
7.5.3 Scale Changes of Fourier Transforms 193
Table of Contents

7.5.4 Convolution Property 195
7.5.5 Cross-correlation Property 197
7.5.6 Autocorrelation Property 199
7.5.7 Conservation Property 201
7.5.8 Symmetric Properties 202

References 203
Problems 203

8 Diffraction 207

8.1 Fraunhofer and Fresnel Diffractions 207
8.2 The Fresnel–Kirchhoff Integral 210
8.3 Fourier Transform in Fraunhofer Diffraction 214
8.4 The Fresnel Zone Plate 217
8.5 Partial Coherence 222
8.6 Spatial and Temporal Coherence 228
8.6.1 Spatial Coherence 229
8.6.2 Temporal Coherence 231
8.7 Coherence Measurement 235

References 239
Problems 240

9 Interference 245

9.1 Condition for Interference 245
9.2 Young’s Experiment 249
9.3 Visibility of Fringes 251
9.4 Michelson Interferometer 253
9.5 Mach–Zehnder Interferometer 257
9.6 Two-beam Interference with Dielectric Plates 260
9.7 Multiple Beam Interference 264
9.8 Optical Thin Film 268

References 272
Problems 272
Table of Contents

10 Holography 275

10.1 On-axis Holography 276
10.2 Off-axis Holography 282
10.3 Holographic Magnifications 291
10.4 Reflection Holography 295
10.5 Rainbow Holography 299
10.6 One-step Rainbow Holograms 305
10.7 Color Holography 310
10.8 Photorefractive Holograms 312

References 316
Problems 316

11 Signal Processing 323

11.1 An Optical System Under Coherent and Incoherent Illumination 323
11.2 Coherent Optical Signal Processing 329
11.3 Synthesis of a Complex Spatial Filter 333
11.4 The Joint Transform Correlator 337
11.5 White-light Optical Signal Processing 341
11.6 Hybrid Optical Signal Processing 346
11.7 Photorefractive Matched Filters 350

References 354
Problems 354

12 Fiber Optics 360

12.1 Fiber Construction 360
12.2 Fiber Waveguides 363
12.3 Modal Description 369
12.4 Types of Optical Fiber 373
12.5 Optical Fiber Communications 376
 12.5.1 Fiber Communication Systems 377
 12.5.2 Splices and Connectors 378
 12.5.3 Couplers and Switches 380
 12.5.4 Time- and Wavelength-division Multiplexing 383
TABLE OF CONTENTS

12.6 Coherent Light Wave Communication 386
12.7 Fiber Sensors 390
 12.7.1 Intensity Attenuation Fiber Sensors 391
 12.7.2 Interferometric Fiber Sensors 393
 12.7.3 Fiber Specklegram Sensors 395

References 399
Problems 399

Index 403