

Contents

	Introduction to the third edition	page xi
	Introduction to the second edition	xii
	Introduction to the first edition	xiii
	List of abbreviations	xv
1	Deoxyribonucleic acid (DNA)	1
1.1	The genetic material	1
1.2	DNA is a polar helical molecule	1
1.3	DNA molecules are very long but can be twisted into compact forms	5
1.4	Replication of DNA is semi-conservative	8
1.5	The gene or cistron is the functional unit of DNA	9
1.6	Proteins bind to DNA	11
1.7	DNA can be damaged and repaired	14
2	Ribonucleic acid (RNA)	19
2.1	Expression of the information in DNA is mediated by RNA	19
2.2	Transcription is a major stage of gene expression	20
2.3	The four major classes of RNA	21
2.4	The genetic code	28
2.5	RNA editing	30
2.6	Translation is a later stage of gene expression	31
3	Methodology	37
3.1	Preparation of DNA samples for investigation	37

viii Contents

3.2	Vectors used in work with recombinant DNA	39
3.3	Electrophoresis of nucleic acids	41
3.4	Footprinting	42
3.5	Reverse transcriptase	44
3.6	Site-directed mutagenesis	46
3.7	Restriction endonucleases	47
3.8	Reporter genes	50
3.9	Restriction fragment length polymorphisms	51
3.10	Hybridisation of nucleic acids	52
3.11	The determination of base sequence in DNA	54
4	Prokaryotic DNA replication and gene expression	58
4.1	Replication	58
4.2	Transcription	63
4.3	Some RNAs are processed after transcription	67
4.4	Transposable genetic elements	68
5	The operon concept	70
5.1	Genes for sets of metabolically related enzymes are transcribed as one long	
	message	70
5.2	The lac operon	74
5.3	The gal operon	75
5.4	The ara operons	77
5.5	The mal regulon	77
5.6	The trp operon; control by attenuation	78
5.7	Arginine biosynthesis	81
5.8	Ribosomal proteins	82
5.9	The stringent response	84
6	Eukaryotic gene organisation and replication	86
6.1	DNA is in the nucleus in discrete linear chromosomes, associated with proteins	86
63	DIAM is in the nucleus in discrete linear emoniosomes, associated with proteins	00
0.2	Histones associate in a regular fashion with DNA to form nucleosomes	88
6.3	Histones associate in a regular fashion with DNA to form nucleosomes	88
6.3 6.4	Histones associate in a regular fashion with DNA to form nucleosomes Eukaryotic replication	88 90

	Content	e iv
	Content	. 3 IA
7.2	RNA polymerase III transcribes the genes of small RNAs	97
7.3	RNA polymerase II transcribes genes encoding proteins and some small $RNAs$	98
7.4	Transcriptional control	101
7.5	Transcriptional control in yeast	105
7.6	Methylation of some cytosine residues may control transcription	106
7.7	Enhancers	109
8	Post-transcriptional processing of RNA	110
	Termination of transcription	110
	mRNA molecules have a cap added after transcription	112
	The coding sequence of many genes is interrupted by non-coding sequences	113
	Introns are transcribed into mRNA and then removed	116
	Some pre-mRNAs can be spliced in different ways	118
	Self-splicing of introns	120
	Stability of mRNA	121
	Post-translational modifications may be needed to produce functional	
	proteins	122
•	Omeonor	435
	Oncogenes	125
	Retroviruses can be oncogenic, causing cancer	125
	Oncogenes affect the growth of cells	127
9.3	Chromosomal alterations in cancer	130
10	Haemoglobin	133
10.1	Genes for globins are found in two clusters	133
10.2	Thalassaemias	136
10.3	Other mutations	139
10.4	Prenatal diagnosis of anaemias	140
11	Proteins of the immune system	141
11.1		141
11.2		143
	L chain genes	144
11.4	H chain genes	144
	DNA processing is employed during the course of the immune response	146
11.6	Transcriptional control of Ig genes	148

11.7 Allelic exclusion

149

x Contents

11.8	T-cell receptors	150
11.9	The major histocompatibility complex	151
11.10	Class I genes are highly polymorphic	155
11.11	Class II genes	156
11.12	Ig superfamily	156
11.13	Complement genes	157
12	Some gene families	159
12.1	Collagen	159
12.2	Cytochrome P450	160
12.3	Serine hydrolases	162
12.4	Lipoproteins	165
12.5	G-protein-coupled receptors	165
12.6	Growth hormone family	166
12.7	Glycoprotein hormones	167
12.8	Polyproteins are proteolytically processed to yield the active hormones	168
13	Mitochondrial and chloroplast genomes	172
13.1	Yeast mitochondrial genome	172
13.2	Animal mitochondrial genomes	177
13.3	Plant mitochondrial genomes	179
13.4	Chloroplast genomes	180
14	Different and evolving genomes	183
	The structures of prokaryotic and eukaryotic genes are different	183
	Control mechanisms in prokaryotes and eukaryotes	184
	Repeated sequences occur widely in many genomes	187
	The plasticity of the genome	189
	Evolution	190
14.6	Future developments	193
	Glossary	197
	Reading lists	201
	Reading lists Index	201 208