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Overview: Galaxies and Cosmology

1.1 Introduction

Attempts to understand extragalactic objects and the universe by using the laws

of physics lead to difficulties that have no parallel in the application of the

laws of physics to systems of a more moderate scale. The key difficulty arises

from the fact that our universe exhibits temporal evolution and is not in steady

state. Thus different epochs in the past evolutionary history of the universe are

unique (and have occurred only once), and the current state of the universe

is a direct consequence of the conditions that were prevalent in the past. For

example, most of the galaxies in the universe have formed sometime in the past

during a particular phase in the evolution of the universe. This is in contrast to

star formation within a galaxy that we can observe directly and study by using

standard statistical methods.

In principle, we should be able to see the events that took place in the universe

in the past because of the finite light travel time. By observing sufficiently far-

away regions of the universe, we will be able to observe the universe as it was in

the past. Although technological innovation will eventually allow us to directly

observe and understand all the past events in the history of the universe (especially

when neutrino astronomy and gravitational wave astronomy start complementing

photon-based observations), we are far from such a satisfactory state of affairs at

present. Direct observational evidence today spans only a tiny fraction in the past

history of the universe and is not available for sufficiently early epochs. Hence

the straightforward approach of starting with known initial conditions for the

laws of physics (expressed as a differential equation, say) and integrating them

forward in time cannot be adopted to the study of the universe.

An alternative procedure is to start with the current state of the universe and

integrate the same equations backwards in time in order to understand its past

history. Even in this attempt, progress is not easy because data available at the

present epoch are insufficient. The primary problem is what was stressed in

Vol. II, Chap. 1: Observational data of adequate quality and quantity become
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2 1 Overview: Galaxies and Cosmology

scarce as we probe larger and larger scales. Further, we have no direct laboratory

evidence regarding nearly 90% of the matter that is present in the universe; there

is also some indirect evidence to suggest that nearly 60% of the matter present

in the universe today obeys a fairly exotic equation of state.

These difficulties – which are unique when we attempt to apply the laws of

physics to an evolving universe – require us to proceed in a multifaceted manner.

Our approach will be to develop a broad paradigm describing the evolution of the

universe and the formation of structures in it and iterate the details by constantly

comparing the theoretical predictions with observational data. This paradigm

is based on the idea that the universe was reasonably homogeneous, isotropic,

and fairly featureless – except for small fluctuations in the energy density – at

sufficiently early times. It is then possible to set up the equations that describe

a model for the universe and integrate them forward in time. The results will

depend on the composition of the universe, its current expansion rate, and the

initial spectrum of density perturbations. Varying these parameters allows us

to construct a library of evolutionary models for the universe that can then be

compared with observations in order to restrict the parameter space.

Our approach in many of the chapters in this volume are based on the preceding

paradigm of parameterised cosmology. The aim will be to deduce as many

features of the observed universe as possible from a small set of parameters. Such

an approach has proved to be extremely successful in the past two decades, mainly

because of the advances in technology that allow good-quality observations.

Some of the observations planned during the next two decades hold the hope

of determining fairly accurately the parameters that characterize the universe,

thereby reducing the problem to one of integration of the relevant equations.

It is possible to consider the study of extragalactic astronomy and cosmology

from a broader perspective and ask why the parameters describing the universe

have the values that are attributed to them. In other words, why does the observed

universe follow one template out of a class of models that can be constructed

based on the known laws of physics? Such a question – although intuitively

appealing – has no mathematically rigorous and unique formulation and hence

will be ignored in our discussion.

A completely different issue will be whether the laws of physics can be used

to reduce the number of independent parameters and assumptions in any cos-

mological model. This is certainly possible once our knowledge of high-energy

interactions of particles gets better. At present direct laboratory evidence exists

for particle interactions only at energies less than about 100 GeV, and particle-

physics models describing higher energies do not have the level of certainty

required for making definite predictions about the evolution of the universe.

Eventually, when our understanding of high-energy particle physics improves

to an adequate level, it can be applied to the early phases of the universe. We

stress the fact that the procedure of applying laws of physics to understand the

behaviour of the universe is hindered only because we are ignorant about the
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1.2 Evolution of the Universe 3

relevant laws of physics at sufficiently high energies.1 (The superscripted num-

bers throughout the book refer to items in the Notes and References chapter at

the end of the book.)

1.2 Evolution of the Universe

Observations suggest that the universe at large scales is homogeneous and

isotropic. The fractional fluctuations (δρ/ρ)R in the mass (and energy) density

ρ (which is due to the existence of structures like galaxies, clusters etc.), within

a randomly placed sphere of radius R, decrease with R as a power law. This sug-

gests that we can model the universe as being made up of a smooth background

with an average density, superposed with fluctuations in the density that are large

at small scales but decrease with scale. At sufficiently large scales, the universe

may be treated as being homogeneous and isotropic with a uniform density.

It was shown in Vol. 1, Chap. 1, that the only large-scale motion compatible

with homogeneity and isotropy is the one with the velocity field of the form

ṙ(t) = v(t) = f (t)r. This allows us to describe the position r of any material body

in the universe in the form r = a(t)x, where a(t) is another arbitrary function

related to f (t) by f (t) = (ȧ/a) and x is a constant for any given material body

in the universe. It is conventional to call x and r the comoving and the proper

coordinates of the body and a(t) the expansion factor. (Even though, if ȧ < 0,

it acts as a contraction factor.)

The dynamics of the universe is entirely determined by the function a(t). The

simplest choice will be a(t) = constant, in which case there will be no motion in

the universe and all matter will be distributed uniformly in a static configuration.

It is, however, clear that such a configuration will be violently unstable when the

mutual gravitational forces of the bodies are taken into account. Any such insta-

bility will eventually lead to the random motion of particles in localized regions,

thereby destroying the initial homogeneity. Observations, however, indicate that

this is not true and that the relation v = (ȧ/a)r does hold in the observed universe

with ȧ > 0. In that case, the dynamics of a(t) can be qualitatively understood

along the following lines. Consider a particle of unit mass at the location r with

respect to some coordinate system. Equating the sum of its kinetic energy v2/2

and gravitational potential energy [−G M(r )/r ] that is due to the attraction of

matter inside a sphere of radius r , to a constant, we find that a(t) should satisfy

the condition

1

2
ȧ2

−
4πGρ(t)

3
a2

= constant, (1.1)

where ρ is the mean density of the universe; that is,

ȧ2

a2
+

k

a2
=

8πG

3
ρ(t), (1.2)
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4 1 Overview: Galaxies and Cosmology

where k is a constant. Although the preceding argument to determine this equation

is fallacious, Eq. (1.2) happens to be exact and arises from the proper application

of Einstein’s theory of relativity to a homogeneous and isotropic distribution of

matter with Ã interpreted as the energy density. We shall now describe some

simple aspects of such an evolution that will be taken up for detailed study in

the later chapters.

Observations suggest that our universe today (at t = t0) is governed by Eq.

(1.2) with (ȧ/a)0 c H0 = 0.3 × 10217h s21, where h j (0.5–1). This is equiv-

alent to H0 = 100h km s21 Mpc21, where 1 Mpc j 3 × 1024 cm is a convenient

unit for cosmological distances. (We will also use the units 1 kpc = 1023 Mpc

and 1 pc = 1026 Mpc in our discussion.) From H0 we can form the time scale

tuniv c H21
0 j 1010h21 yr and the length scale cH21

0 j 3000h21 Mpc; tuniv char-

acterizes the evolutionary time scale of the universe and cH21
0 is of the order

of the largest length scales currently accessible in cosmological observations.

The relation v = f (t)r = (ȧ/a)r = H0r is called Hubble’s law, and H0 is called

Hubble’s constant. From H0 we can also construct a quantity with the dimensions

of density, called the critical density:

Ãc =
3H 2

0

8ÃG
= 1.88h2

× 10229 gm cm23
= 2.8 × 1011h2 Mÿ Mpc23

= 1.1 × 104h2 eV cm23
= 1.1 × 1025h2 protons cm23.

(1.3)

(The last two “equalities” should be interpreted in terms of conversion of mass

into energy by a factor c2 and the conversion of mass into number of baryons

by a factor m21
p , where m p is the proton mass.) It is conventional to measure all

other mass and energy densities in the universe in terms of the critical density. If

Ãi is the mass or the energy density associated with a particular species, then we

define a density parameter ÿi through the ratio ÿi c (Ãi/Ãc). In general, both

Ãi and Ãc can be defined at any given epoch in the universe and not necessarily

at the present moment t = t0; by convention, Ãc is always defined in terms of

the present value of the Hubble constant, although Ãi could, in general, be a

function of time: Ãi = Ãi (t). In this case, ÿi will also depend on time and we

define ÿi (t) c Ãi (t)/Ãc.

It is obvious from Eq. (1.2) that the numerical value of k can be absorbed

into the definition of a(t) by rescaling it so that we can treat k as having one

of the three values (0,21, +1). The choice among these three values for k is

decided by Eq. (1.2) depending on the value of ÿ; we see that k = 1, 0 or 21,

depending on whether ÿ is greater than, equal to, or less than unity. The fact

that k is proportional to the total energy of the dynamical system described by

Eq. (1.2) shows that a(t) will have a maximum value followed by a contracting

phase to the universe if k = 1 and ÿ > 1.

To determine the nature of the cosmological model we need to determine the

value of ÿ for the universe, taking into account all forms of energy densities
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1.2 Evolution of the Universe 5

that exist at present. Further, to determine the form of a(t) we need to determine

how the energy density of any given species varies with time. We now briefly

describe the issues involved in this task.

If a particular kind of energy density is described by an equation of state of the

form p = wÃ, where p is the pressure and w is a constant, then the equation for

energy conservation in an expanding background, d(Ãa3) = −pd(a3), can be

integrated to give Ã ∝ a−3(1+w). Equation (1.2) can be now written in the form

ȧ2

a2
= H 2

0

∑

i

ÿi

(a0

a

)3(1+wi )

−
k

a2
, (1.4)

where each of these species is identified by density parameter ÿi and the equa-

tion of state is characterized by wi . The most familiar forms of energy densities

are those due to pressureless matter with wi = 0 (that is, nonrelativistic matter

with rest-mass-energy density Ãc2 dominating over the kinetic-energy density,

Ãv2/2) and radiation with wi = (1/3). The density parameter contributed today

by visible, nonrelativistic, baryonic matter in the universe is ÿB ≈ (0.01–0.2)

and the density parameter that is due to radiation is ÿR ≈ 2 × 10−5. Unfortu-

nately, models for the universe with just these two constituents for the energy

density are in violent disagreement with observations. As we shall see in later

chapters, it appears to be necessary to postulate (1) the existence of pressure-

less (w = 0) nonbaryonic dark matter that does not couple with radiation and

has a density of at least ÿDM ≈ 0.3; because it does not emit light, it is called

dark matter; (2) an exotic form of matter (called either cosmological constant

or vacuum-energy density) with an equation of state p = −Ã (that is, w = −1)

that has a density parameter of ÿV ≈ 0.7. The evidence for the existence of

nonbaryonic dark matter seems to be fairly definitive whereas the evidence for

the existence of cosmological constant is somewhat less definitive. Keeping this

in mind, we will concentrate on two typical cosmological models throughout this

volume. The first one will have ÿV = 0 and 0 ≤ ÿDM ≤ 1; the second one will

have ÿV + ÿDM = 1.

Figure 1.1 provides an inventory of the density contributed by different forms

of matter in the universe, and these entries will be discussed in different sections

of this chapter. The x axis is actually a combination of ÿ and the Hubble para-

meter h because different components are measured by different techniques.

(Usually n = 1 or 2; numerical values are for h = 0.7.) The top two positions

in the contribution to ÿ are from a cosmological constant and nonbaryonic dark

matter. It is unfortunate that we do not have laboratory evidence for the existence

of the first two dominant contributions to the energy density in the universe.

This feature alone could make most of the cosmological paradigm described

in this book irrelevant at a future date. Alternatively, laboratory detection of a

nonbaryonic dark-matter candidate will be an important discovery in establishing

the standard paradigm of structure formation.
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6 1 Overview: Galaxies and Cosmology

Fig. 1.1. Cosmic inventory of energy densities. See text for description.

Exercise 1.1

Determining the matter content: Let us assume that the universe contains material with

several different equations of state, each characterized by a constant value w = p/Ã.

Introduce the parameter ³ c 3(1 + w) and the function ÿ(³) that describes the amount

of energy density contributed by a species with a given value of ³. Explain how the

knowledge of the function a(t) can be used to determine ÿ(³). [Answer: We first note

that the term (k/a2) can be thought of as contributed by a hypothetical species of matter

with w = 2(1/3). Hence Eq. (1.4) can be written in the form

ȧ2

a2
= H 2

0

∑

i

ÿi

(a0

a

)3(1+wi )

, (1.5)

with a term having wi = 2(1/3) added to the sum. In the continuum limit, this equation

can be rewritten as

(

dq

dÇ

)2

=

∫

∞

−∞

d³ ÿ(³)e−³q , (1.6)

where (a/a0) = exp(q) and Ç = H0t . The function ÿ(³) is assumed to have finite support

or to decrease fast enough for the expression on the right-hand side to converge. If the

observations determine the function a(t), then the left-hand side can be expressed as
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1.2 Evolution of the Universe 7

a function of q . An inverse Laplace transform of this equation will then determine the

form of ÿ(³), thereby determining the composition of the universe, as long as all matter

can be described by an equation of state of the form p = wÃ.]

The evolution of the universe, with the energy content as described above, is

straightforward to determine and we shall illustrate it for a simple model with

ÿDM + ÿB + ÿR ≈ 1; ÿV = 0. If neither particles nor photons are created or

destroyed during the expansion, then the number density of particles or photons

will decrease as a−3 as a increases. In the case of photons, the wavelength will

also get stretched during expansion with λ ? a; because the energy density of

material particles is nmc2 whereas that of photons of frequency ν is nhν =

(nhc/λ), it follows that the energy densities of radiation and matter vary as

Ãrad ? a24 and Ãmatter ? a23. Combining with the result Ãrad ? T 4 for thermal

radiation, it follows that any thermal spectrum of photons in the universe will

have its temperature varying as T ? a21. In the past, when the universe was

smaller, it would also have been (1) denser, (2) hotter, and – at sufficiently early

epochs – (3) dominated by radiation-energy density.

The light emitted at an earlier epoch by an object will reach us today with

the wavelengths stretched because of the expansion. If the light was emitted at

a = ae and received today (when a = a0), the wavelength will change by the

factor (1 + ze) = (a0/ae), where ze is called the redshift, which corresponds to

the epoch of emission ae. Because the observed luminosity L of a source is

proportional to (p³ c) d3 p³ ? ¿3 d¿ ? (1 + z)24, where p³ = (ÿ/c) = (h¿/c)

is the photon momentum, it will decrease as (1 + z)24.

When the temperature of the universe is higher than the temperatures corre-

sponding to the atomic ionisation energy, the matter content in the universe will

be a high-temperature plasma. Further, when the temperature of the universe is

higher than the binding energy of the nuclei (>MeV), none of the heavy elements

(helium and the metals) could have existed in the universe. Starting from such a

hot initial plasma stage, the universe cools as it expands and nucleosynthesis of

some amount of deuterium, helium and lithium takes place when kB T <
> MeV.

This process does not proceed to form any other heavier elements in significant

quantities. This is because – for the observed range of matter and radiation-

energy densities – the universe expands too fast to allow the synthesis of heavier

metals. The primordial abundance of helium and deuterium is therefore a sensi-

tive test of the different parameters of the universe and will be explored in detail

in Chap. 4. The three terms in Fig. 1.1 marked BBN give the constraints arising

from big bang nucleosynthesis.

In the early hot phase, the radiation will be in thermal equilibrium with matter;

as the universe cools below kB T ÿ (ÿa/10), where ÿa is the binding energy of

atoms, the electrons and ions will combine to form neutral atoms and radiation

will decouple from matter. This occurs at Tdec ÿ 3 × 103 K. As the universe

expands further, these photons will exist in the form of thermal background
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8 1 Overview: Galaxies and Cosmology

radiation with a temperature that scales as T ? (1/a). It turns out that the major

component of the extragalactic background light (EBL) that exists today is in

the microwave band and can be fitted very accurately by a thermal spectrum

at a temperature of >2.7 K. It seems reasonable to interpret this radiation as a

relic arising from the early hot phase of the evolving universe. The intensity per

logarithmic band of frequency, νBν , for this radiation peaks at a wavelength of

1 mm and the maximum intensity is 5.3 × 1027 W m22 rad22 over the entire

sky. The intensity per square arcsecond of the sky is approximately 1.33 × 10217

W m22 arcsec22. The energy density that is due to this radiation today will

be ργ ÿ (kB T )4/(h2c)3
ÿ 5.7 × 10213 ergs cm23, which corresponds to a mass

density of (ργ /c2) = 5.7 × 10234 gm cm23 (this is marked as the entry EBL-

CMBR in Fig. 1.1; CMBR stands for cosmic microwave background radiation).

Taking the matter density today as ρ0 = 10230 gm cm23, we find that ργ ÿ

5.7 × 1024ρ0; radiation (with ργ ? a24) would have dominated over matter

(with ρ ? a23) when the redshift was larger than zeq c (ρ/ργ ) j 1.7 × 103.

1.3 Formation of Dark-Matter Halos

The considerations of the last section were independent of the explicit form of

a(t). We now turn to the solutions of Eq. (1.2) that determine a(t) and the issue of

the formation of structures. The simplest solution to Eq. (1.2) will occur for k = 0

if we take the matter density in the universe to decrease as a23 with expansion.

Then we get a(t) = (t/t0)2/3 with t22
0 = (6πGρ0), and a(t) is normalised to

a = 1 at the present epoch t = t0.

Such a totally uniform universe, of course, will never lead to any of the inho-

mogeneous structures seen today. However, if the universe has even the slightest

inhomogeneity in the past, then gravitational instability can amplify the density

perturbations. To see how this comes about in the simplest context, consider Eq.

(1.2) written in the equivalent form as

ä = 2
4πGρ0

3a2
= 2

(

2

9t2
0

)

1

a2
, (1.7)

where we have putρ = (ρ0a3
0/a3) and differentiated Eq. (1.2) once with respect to

t . If we perturb a(t) slightly to a(t) + δa(t) such that the corresponding fractional

density perturbation is δ c (δρ/ρ) = 23(δa/a), we find that δa satisfies the

equation

d2

dt2
δa =

(

4

9t2
0

)

δa

a3
=

4

9

δa

t2
. (1.8)

This equation has the growing solution δa ? t4/3
? a2. Hence the density per-

turbation δ = 23(δa/a) grows as δ ? a. When the perturbations have grown

sufficiently, their self-gravity will start dominating and the matter can collapse
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1.3 Formation of Dark-Matter Halos 9

to form a gravitationally bound system. The dark matter will form virialised,

gravitationally bound structures with different masses and radii. The baryonic

matter will cool by radiating energy, sink to the centres of the dark-matter halos,

and form galaxies. We now discuss some of the features of such a case for struc-

ture formation, starting with the formation of dark-matter haloes. The formation

of galaxies will be discussed in the next section.

To describe the growth of structures in the universe, it is convenient to use

the spatial Fourier transform δk(t) of the density contrast δ(t, x) c [ρ(t, x) 2

ρbg]/ρbg, where ρbg(t) is the smooth background density. We treat the density

fluctuation δk(t) as a realisation of a random processes. Then we can define the

power spectrum of fluctuations at a given wave number k by P(k, t) c ÿ|δk(t)|2ÿ,

where the averaging symbol denotes that we are treating P(k, t) as a statistical

quantity averaged over an ensemble of possibilities; statistical isotropy of the

universe implies that the power spectrum can depend on only the magnitude |k|

of the wave number. The power per logarithmic band in k is given by

ÿ2
k(t) =

k3 |·k(t)|2

2Ã2
=

k3 P(k, t)

2Ã2
. (1.9)

For a smoothly varying power spectrum, this quantity is related to the mean-

square fluctuation in density (or mass) at the scale R j k21 in the universe by

ÿ2
k =

(

·Ã

Ã

)2

Rÿk21

=

(

·M

M

)2

Rÿk21

>= Ã 2(R, t). (1.10)

Since we can associate a mass scale M = (4Ã/3)Ãbg(t0)R3 with a length scale

R, one can also treat Ã 2 as a function of mass scale: Ã 2 = Ã 2(M, t). We shall

see in Chap. 5 that the power spectrum of fluctuations in the universe is fairly

smooth and hence can be approximated by a power law in k locally at any given

time so that P(k) ? kn . From the result derived above, · ? a, it follows that

ÿ2
k(t) ? a2kn+3, Ã 2(R, t) ? a2 R2(n+3) (1.11)

as long as Ã ÿ 1, with n being a slowly varying function of scale k or R.

The pattern of density fluctuations is thus characterised by the power spec-

trum P(k, t) at any given time. The gravitational potential that is due to a density

perturbation ·Ã = Ã̄· in a region of size R will be Ç ? (·M/R) ? Ã̄·R2. In an

expanding universe Ã̄ ? a23 and R ? a, and the perturbation · grows as · ? a

[see the discussion following Eq. (1.8)], making Ç constant in time. In particular,

the fluctuations that existed in the universe at the time when radiation decoupled

from matter would have left their imprint on the radiation field. Because photons

climbing out of a potential well of size Ç will lose energy and undergo a red-

shift (ÿ¿/¿) j (Ç/c2), we would expect to see a temperature anisotropy in the

microwave radiation of the order of (ÿT/T ) j (ÿ¿/¿) j (Ç/c2). The largest

potential wells would have left their imprint on the cosmic background radiation
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10 1 Overview: Galaxies and Cosmology

at the time of decoupling of radiation and matter. We shall see later that the galaxy

clusters constitute the deepest gravitational potential wells in the universe from

which the escape velocities are vclus ≈ (G M/R)1/2
≈ 103 km s−1. This will lead

to a temperature anisotropy of ÿT/T ≈ (vclus/c)2
= 10−5. Such a temperature

perturbation has indeed been observed in the microwave background radiation,

vindicating the case for structure formation.

The entry marked gravitational binding energy in Fig. 1.1 is essentially a mea-

sure of (v/c)2 for the largest scales that are gravitationally bound. Equivalently,

it can be thought of as the amount of power in the gravitational potential per log-

arithmic band in Fourier space. Its value can be determined from the temperature

anisotropies in CMBR and will be discussed in Chap. 6.

When Ã (R, t) ³ 1, that particular scale characterized by R will go nonlinear

and matter at that scale will collapse and form a bound structure. Because this

occurs when the density contrast Ã reaches some critical value Ãc j 1, it follows

from relations (1.11) that the scale that goes nonlinear at any given time t in the

past (corresponding to a redshift z) obeys the relation

RNL(t) ? a(t)2/(n+3)
= RNL(t0)(1 + z)22/(n+3). (1.12)

Equivalently, structures with mass M ? R3
NL will form at a redshift z where

MNL(z) = MNL(t0)(1 + z)26/(n+3). (1.13)

Such virialised, gravitationally bound structures – once formed – will remain

frozen at a mean density Ã̄, which is approximately fc ÿ 200 times the back-

ground density of the universe at the redshift of formation, z (see Chap. 5). Taking

the background density of the universe at redshift z to be Ãbg(z) = Ãcÿ(1 + z)3,

we find that the mean density Ã̄ of an object that would have collapsed at redshift

z is given by Ã̄ ÿ ÿÃc fc(1 + z)3. We define the circular velocity vc for such a

collapsed body as

v2
c c

G M

r
c

4ÃG

3
Ã̄r2. (1.14)

If Ã̄ is eliminated in terms of vc, the redshift of formation of an object can be

expressed in the form

(1 + z) >= 5.8

(

200

ÿ fc

)1/3
(vc/200 km s21)2/3

(r/h21 Mpc)2/3
. (1.15)

It is interesting that such a fairly elementary calculation leads to an acceptable

result regarding the redshift for the formation of first structures. If we consider

small-scale halos (approximately a few kiloparsecs), the formation redshift can

go up to, say, 20. This calculation also introduces the notion of hierarchical

clustering in which smaller scales go nonlinear and virialise earlier on and the

merging of these smaller structures leads to hierarchically bigger and bigger

structures. Of course, the process is supplemented by the larger scales going

www.cambridge.org/9780521566308
www.cambridge.org

