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Translator’s introduction

0.1 General remarks

Dedekind’s invention of ideals in the 1870s was a major turning point in
the development of algebra. His aim was to apply ideals to number the-
ory, but to do this he had to build the whole framework of commutative
algebra: fields, rings, modules and vector spaces. These concepts, to-
gether with groups, were to form the core of the future abstract algebra.
At the same time, he created algebraic number theory, which became
the temporary home of algebra while its core concepts were growing
up. Algebra finally became independent in the 1920s, when fields, rings
and modules were generalised beyond the realm of numbers by Emmy
Noether and Emil Artin. But even then, Emmy Noether used to say
“Es steht schon bei Dedekind” (“It’s already in Dedekind”), and urged
her students to read all of Dedekind’s works in ideal theory.

Today this is still worthwhile, but not so easy. Dedekind wrote for
an audience that knew number theory — especially quadratic forms —
but not the concepts of ring, field or module. Today’s readers probably
have the opposite qualifications, and of course most are not fluent in
German and French. In an attempt to overcome these problems, I have
translated the most accessible of Dedekind’s works on ideal theory, Sur
la Théorie des Nombres Entiers Algébrigues, Dedekind (1877), which he
wrote to explain his ideas to a general mathematical audience. This
memoir shows the need for ideals in a very concrete case, the numbers
m + ny/—5 where m, n € Z, before going on to develop a general theory
and to prove the theorem on unique factorisation into prime ideals.

The algebraic integers in Dedekind’s title are a generalisation of the
ordinary integers — created in response to certain limitations of classical
number theory. The ordinary integers have been studied since ancient
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4 Translator’s introduction

times, and their basic theory was laid down in Euclid’s Elements (see
Heath (1925)) around 300 BC. Yet even ancient number theory contains
problems not solvable by Euclid’s methods. Sometimes it is necessary
to use irrational numbers, such as v/2, to answer questions about the
ordinary integers. A famous example is the so-called Pell equation

22—l =1

where ¢ is a nonsquare integer and the solutions z, y are required to be
integers. Solutions for certain values of ¢ were known to the ancients, but
the complete solution was not obtained until Lagrange (1768) related the
equation to the continued fraction expansion of v/c. He also showed that
each solution is obtained from a certain “minimum” solution (zg, yo) by
the formula

Tk + Yk Ve = (o + Yov/O)*.

The irrational numbers z, + yx+/¢ in this formula are examples of alge-
braic integers, which are defined in general to be roots of equations of

the form

a®+ap_108" 1+ +aa+ag=0

where a,,_1,...,aq are ordinary integers, that is, a,—1,...,a9 € Z.

Algebraic integers are so called because they share some properties
with the ordinary integers. In particular, they are closed under sum,
difference and product, and the rational algebraic integers are just the
ordinary integers (for more details, see 0.6.2 and §13 of Dedekind’s mem-
oir). Because of the second fact, the ordinary integers are also known
as rational integers. The first fact implies that the algebraic integers
form a ring. However, we are not interested in the ring of all algebraic
integers so much as rings like

ZV2) = {z+yv2:z,y € Z}

and
Zil={zx+yi:z,y € Z}.

In general we use the notation Z[a] to denote the closure of the set
Z U {a} under +, — and x. The reason for working in rings Z[a] is
that they more closely resemble Z, and hence are more likely to yield
information about Z:

Any ring R of algebraic integers includes Z, so theorems about Z
may be obtainable as special cases of theorems about R (we shall see
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0.1 General remarks 5

several examples later). However, useful theorems about R are provable
only when R has all the basic properties of Z, in particular, unique
prime factorisation. This is not always the case. Z[/—5] is the simplest
example where unique prime factorisation fails, and this is why Dedekind
studies it in detail. His aim is to recapture unique prime factorisation by
extending the concept of integer still further, to certain sets of algebraic
integers he calls ideals. This works only if the size of R is limited in some
way. The ring A of all algebraic integers is “too big” because it includes
o along with each algebraic integer . This gives the factorisation
a = y/ay/a and hence “primes” do not exist in A, let alone unique
prime factorisation.

Dedekind found the appropriate “small” rings R in algebraic number
fields of finite degree, each of which has the form Q(a), where a is an
algebraic integer. Q(c) denotes the closure of Q U {a} under +,—,x
and -+ (by a nonzero number), and each Q(a) has its own integers,
which factorise into primes. In particular, Z]v/=5] is the ring of integers
of Q(v/=5), and 6 = 2 x 3 is a prime factorisation of 6. Not the prime
factorisation, alas, because 6 = (14++/—5)(1—+/=5) is also a factorisation
into primes (see 0.4.5). However, unique prime factorisation is regained
when one passes to the ideals of Z[/—5], and Dedekind generalises this
to any Q(a). The result is at last a theory of algebraic integers capable
of yielding information about ordinary integers.

A lot of machinery is needed to build this theory, but Dedekind ex-
plains it well. Suffice to say that fields, rings and modules arise very
naturally as sets of numbers closed under the basic operations of arith-
metic. Fields are closed under 4+, —, x and +, rings are closed under +,
— and X, while modules are closed under + and —. The term “ring” was
actually introduced by Hilbert (1897); Dedekind calls them “domains”
here, and I have thought it appropriate to retain this terminology, since
these particular rings are prototypes of what are now called Dedekind
domains. Dedekind presumably chose the name “module” because a
module M is something for which “congruence modulo M” is meaning-
ful. His name for field, Kérper (which also means “body” in German),
was chosen to describe “a system with a certain completeness, fullness
and self-containedness; a naturally unified, organic whole”, as he ex-
plained in his final exposition of ideal theory, Dedekind (1894), §160.

What Dedekind does not explain is where Z[v/=5] comes from, and
why it is important in number theory. This is understandable, because
his first version of ideal theory was a supplement to Dirichlet’s number
theory lectures, Vorlesungen iber Zahlentheorie (Dirichlet (1871)). In
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6 0.2 Squares

the present memoir he also refers to the Vorlesungen frequently, so his
original audience was assumed to have a good background in number
theory, and particularly the theory of quadratic forms. Such a back-
ground is less common today, but is easy and fun to acquire. Even
experts may be surprised to learn how far back the story goes. The
specific role of /=5 can be traced back to the anomalous behaviour of
the quadratic form z2 + 532, first noticed by Fermat, and later explained
in different ways by Lagrange, Gauss and Kummer. But the reason for
Fermat’s interest in x2 + 5y? goes back much further, perhaps to the
prehistory of mathematics in ancient Babylon. Let us begin there.

0.2 Squares
0.2.1 Pythagorean triples

Integers a, b, ¢ such that
a?+b02=¢2

are one of the oldest treasures of mathematics. Such numbers occur as
the sides of right-angled triangles, and they may even have been used to
construct right angles in ancient times. They are called Pythagorean
triples after Pythagoras, but they were actually discovered indepen-
dently in several different cultures. The Babylonians were fascinated
by them as early as 1800 BC, when they recorded fifteen of them on a
tablet now known as Plimpton 322 (see Neugebauer and Sachs (1945)).
Pythagorean triples other than the simplest ones (3,4,5), (5,12,13) or
(8,15,17) are not easily found by trial and error, so the Babylonians
probably knew a general formula such as
a=2uw, b=u?-12 c=u?+v?

which yields an unlimited supply of Pythagorean triples by substituting
different integers for u, v.

The general solution of a2 + b% = 2

is in fact
a=2uvw, b= (u?-v)w, c=(@?+v)w,

as may be found in Euclid’s Flements Book X (lemma after Proposition
29). A key statement in Euclid’s proof is: if the product of relatively
prime integers is a square, then the integers themselves are squares.
Euclid first used the general formula for Pythagorean triples in his the-
ory of irrational numbers, and it is in a different book from his theory
of integers. The assumption that relatively prime integers are squares
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0.2.2 Divisors and prime factorisation 7

when their product is a square is justified by a long chain of proposi-
tions, stretching over several books of the Elements. However, a direct
Jjustification is possible from his theory of integer divisibility, which is in
Book VII. This theory is fundamental to the theory of ordinary integers,
and also the inspiration for Dedekind’s theory of ideals, so we should re-
call its main features before going any further. Among other things, it
identifies the important but elusive role of primes.

0.2.2 Divisors and prime factorisation

An integer m divides an integer n if n = ml for some integer [. We also
say that m is a divisor of n, or that n is a multiple of m. An integer
p whose only divisors are £1 and =+p is called a prime, and any integer
can be factorised into a finite number of primes by successively finding
divisors unequal to +1 but of minimal absolute value. However, it is not
obvious that each factorisation of an integer n involves the same set of
primes. There is conceivably a factorisation of some integer

n=mpp2---pPi =qiq2---4qj

into primes p1,p2,...,p; and g1, ¢z, . . ., g; respectively, where one of the
primes p is different from all the primes gq.

Nonunique prime factorisation is ruled out by the following proposi-
tion of Euclid (Elements, Book VII, Proposition 30).

Prime divisor property. If p is prime and p divides the product ab of
integers a, b, then p divides a or p divides b.

An interesting aspect of the proof is its reliance on the concept of
greatest common divisor (ged), particularly the fact that

ged(a,b) = ua + vb for some integers u, v.

The set {ua+vb: u,v € Z} is in fact an ideal, and unique prime factori-
sation is equivalent to the fact that this ideal consists of the multiples
of one of its members, namely ged(a, b).

It should be mentioned that Euclid proves only the prime divisor prop-
erty, not unique prime factorisation. In fact its first explicit statement
and proof are in Gauss (1801), the Disquisitiones Arithmeticae, article
16. As we shall see, this is possibly because Gauss was first to recognise
generalisations of the integers for which unique prime factorisation is
not valid.
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8 0.2 Squares

0.2.3 Irrational numbers

As everybody knows, Pythagorean triples also have significance as the
sides of right-angled triangles. In any right-angled triangle, the side
lengths a, b, ¢ satisfy

a®+b =

whether or not a, b and ¢ are integers (Pythagoras’ theorem). Hence it
is tempting to try to interpret a right-angled triangle as a Pythagorean
triple by choosing the unit of length so that a, b and c all become integer
lengths. Pythagoras or one of his followers made the historic discovery
that this is not always possible. The simplest counterexample is the
triangle with sides 1, 1, V2. It is impossible to interpret this triangle as
a Pythagorean triple because v/2 is not a rational number.

A proof of this fact, which also proves the irrationality of v/3, v/5,
v/6 and so on, uses unique prime factorisation to see that each prime
appears to an even power in a square. Then the equation

2n? = m?

is impossible because the prime 2 occurs an odd number of times in the
prime factorisation of 2n?, and an even number of times in the prime
factorisation of m?2.
The irrationality of v/2 led the Greeks to study the so-called Pell
equation
2?2 -2t =1.

They found it could used to approach /2 rationally, via increasingly
large integer solutions, &, ¥,. Since z2 — 2y2 = 1, the quotient z,/y,
necessarily tends to v/2. The general Pell equation

z? —cy? =1, where c is a nonsquare integer,

can similarly be used to approach the irrational number /c. This equa-
tion later proved fruitful in many other ways; Dedekind even used it to
prove the irrationality of 1/c (Dedekind (1872), Section IV).

0.2.4 Diophantus

The equations a2+b? = c? and 22 —2y? = 1 are examples of what we now
call Diophantine equations, after Diophantus of Alexandria. Diophantus
lived sometime between 150 AD and 350 AD and wrote a collection of
books on number theory known as the Arithmetica (Heath (1910)). They
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0.2.4 Diophantus 9

consist entirely of equations and ingenious particular solutions. The
term “Diophantine” refers to the type of solution sought: either rational
or integer. For Diophantus it is usually a rational solution, but for some
equations, such as the Pell equation, the integer solutions are of more
interest. The Pell equation was actually not studied by Diophantus, but
he mentioned an integer solution to another remarkable equation: the
solution = 5, ¥y = 3 of > = 22 4+ 2. (See 0.4.1 for the astonishing
sequel to this solution.)

Although all Diophantus’ solutions are special cases, they usually seem
chosen to illustrate general methods. Euler (1756) went so far as to say

Nevertheless, the actual methods that he uses for solving any of his problems
are as general as those in use today . .. there is hardly any method yet invented
in this kind of analysis not already traceable to Diophantus. (Euler Opera
Omnia 1,2, p. 429-430.)

And if anyone would know, Euler would. The first mathematician to
understand Diophantus properly was Fermat (1601-1665), but his com-
ments were as cryptic as the Arithmetica itself. Euler spent about 40
years, off and on, reading between the lines of Fermat and Diophantus,
until he could reconstruct most their methods and prove their theorems.
We shall study the connection between Diophantus, Fermat and Euler
more thoroughly later, but one example is worth mentioning here. It
shows how much theory can be latent in a single numerical fact.
In the Arithmetica, Book 111, Problem 19, Diophantus remarks

65 is naturally divided into two squares in two ways, namely into 72 + 42 and
82 4+ 12, which is due to the fact that 65 is the product of 13 and 5, each of

which is the sum of two squares.
It appears from this that Diophantus is aware of the identity
(a? + b2 (? + d?) = (ac £ bd)* + (ad F bc)?

though he makes no such general statement. However, Fermat saw much
deeper than this. Noticing, with Diophantus, that the identity reduces
the representations of a number as a sum of two squares to the repre-
sentations of its prime factors, his comment on the problem is:

A prime number of the form 4n+1 is the hypotenuse of a right-angled triangle
[that is, a sum of squares] in one way only . . . If a prime number which is the
sum of two squares be multiplied by another prime number which is also the
sum of two squares, the product will be the sum of two squares in two ways.
(Heath (1910), p. 268.)
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10 0.8 Quadratic forms

The restriction to primes of the form 4n + 1 is understandable because
a prime p # 2 cannot be the sum of two squares unless it is of the form
4n+1 (by a congruence mod 4 argument). But Fermat’s claim that any
prime p = 4n + 1 is a sum of two squares comes right out of the blue.
No one knows how he proved it and the first known proof is due to Euler
(1756). As we shall see later, Lagrange, Gauss and Dedekind all used
this theorem of Fermat to test the strength of new methods in number

theory.

0.3 Quadratic forms
0.3.1 Fermat

Unlike Euclid or Diophantus, Fermat never wrote a book. His reputa-
tion rests on a short manuscript containing his discovery of coordinate
geometry (independent of Descartes), his letters, and his marginal notes
on Diophantus. He took up number theory only in his late 30s, and
left only one reasonably complete proof, in the posthumously published
Fermat (1670). However, it is a beautiful piece of work, and fully estab-
lishes his credentials as both an innovator and a student of the ancients.
It also has a place in our story, as an application of Pythagorean triples,
and as the first proven instance of Fermat’s last theorem. Fermat’s proof
shows that there are no positive integers z, y, z such that z* + y* = 24,
by showing that there are not even positive integers z, y, z such that
z* 4+ y* = 22. Tt turns out to be the only instance of Fermat’s last the-
orem with a really elementary proof, involving just Euclid’s theory of
divisibility.

The argument is by contradiction, and the gist of it is as follows (omit-
ting mainly routine checks that certain integers are relatively prime).

Suppose that there are positive integers z, y, z such that z%+y* = 22,
or in other words, (z2)% + (y?)2 = 22 . This says that 22, 32, z is a
Pythagorean triple, which we can take to be primitive, hence there are
integers u, v such that

x2=2uv, y2=u2—02, z=u? + 02,

by Euclid’s formulas (0.2.1). The middle equation says that v, y, u
is also a Pythagorean triple, and it is also primitive, hence there are
integers s, ¢ such that

v=2st, y=s°—12, u=s>+1t%

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521565189
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521565189 - Theory of Algebraic Integers - Richard Dedekind
Excerpt

More information

0.3.1 Fermat 11

This gives
x? = 2uv = 4st(s® + %),

so the relatively prime integers s, t and s% + t? have product equal to
the square (z/2)2. It follows that each is itself a square, say

3=$%, t:y%a 82+t2=2'f,

and hence
2

ot +yi =24,
Thus we have found another sum of two fourth powers equal to a square,
and by retracing the argument we find that the new square z? is smaller
than the old, 22, but still nonzero. By repeating the process we can
therefore obtain an infinite descending sequence of positive integers,
which is a contradiction. O

Fermat called the method used in this proof infinite descent, and used
it for many of his other theorems. He claimed, for example, to have
proved that any prime of the form 4n + 1 is a sum of two squares by
supposing p = 4n + 1 to be a prime not the sum of two squares, and
finding a smaller prime with the same property. However, it is very hard
to see how to make the descent in this case. Euler (1749) found a proof
only after several years of effort. In 0.3.4 we shall see an easier proof
of the two squares theorem due to Lagrange. Lagrange’s proof does
use another famous theorem of Fermat, but it is the easy one known
as Fermat’s “little” theorem: for any prime number p, and any integer
a # 0 (mod p), we have a?P~! =1 (mod p) (Fermat (1640b)).

The proof of Fermat’s little theorem most likely used by Fermat uses
induction on @ and the fact that a prime p divides each of the binomial
coefficients

(f) :p(”_l)@_i)"“(p_i“) for 1<i<p-1,

as is clear from the fact that p is a factor of the numerator but not of
the denominator. This proof implicitly contains the “mod p binomial
theorem”,

(a+b)? = a? + V¥ (mod p),

which has its uses elsewhere (see for example Gauss’s proof of quadratic
reciprocity in 0.5.4).
The proof more often seen today is based on that of Euler (1761),
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