River mechanics

This textbook offers a thorough mechanical analysis of rivers from upland areas to oceans. It scrutinizes state-of-the-art methods, underlining both theory and engineering applications.

Each chapter includes a presentation of fundamental principles, followed with an engineering analysis and instructive problems, examples, and case studies illustrating engineering design. The emphasis is on river equilibrium, river dynamics, bank stabilization, and river engineering. Channel stability and river dynamics are examined in terms of river morphology, lateral migration, aggradation, and degradation. The text provides a detailed treatment of riverbank stabilization and engineering methods. Separate chapters cover physical and mathematical models of rivers. This textbook also contains essential reading for understanding the mechanics behind the formation and propagation of devastating floods, and offers knowledge crucial to the design of appropriate countermeasures to reduce flood impact, prevent bank erosion, improve navigation, increase water supply, and maintain suitable aquatic habitat.

More than 100 exercises (including computer problems) and nearly 20 case studies enhance graduate-student learning, while researchers and practitioners seeking broad technical expertise will find it a valuable reference.

Pierre Y. Julien is Professor of Civil Engineering at Colorado State University.

River mechanics

PIERRE Y. JULIEN

Cambridge University Press 0521562848 - River Mechanics Pierre Y. Julien Frontmatter More information

> PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Cambridge University Press 2002

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2002

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times Roman 10/13 pt. System $LAT_EX 2_{\mathcal{E}}$ [TB]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data

Julien, Pierre Y. River mechanics / Pierre Y. Julien.

p. cm.
 Includes bibliographical references and index.
 ISBN 0-521-56284-8 (pc.)

1. River engineering. I. Title. TC405 .J85 2002 627'.12-dc21

2001035678

ISBN 0 521 56284 8 hardback ISBN 0 521 52970 0 paperback

Cambridge University Press 0521562848 - River Mechanics Pierre Y. Julien Frontmatter More information

> Dedicated to Helga and Patrick

Contents

Pre	face	<i>page</i> xi
Notation		xiii
1	Introduction to river mechanics	1
2	Physical properties and equations	9
	2.1. Dimensions and units	9
	2.2. Properties of water	10
	2.3. Properties of sediment	13
	2.4. River flow kinematics	22
	2.5. Conservation of mass	24
	2.6. Equations of motion	25
	2.7. Hydraulic and energy grade lines	27
3	River basins	31
	3.1. River-basin characteristics	31
	3.2. Rainfall precipitation	35
	3.3. Interception and infiltration	46
	3.4. Excess rainfall	51
	3.5. Surface runoff	53
	3.6. Upland-erosion losses	63
	3.7. Sediment source and yield	72
4	Steady flow in rivers	79
	4.1. Steady river flow	79
	4.2. Steady-nonuniform river flow	97
	4.3. Sediment transport in rivers	111
5	Unsteady flow in rivers	122
	5.1. River continuity equation	122
	5.2. River momentum equations	126
	5.3. River floodwaves	130

viii	C	ontents	
	5.4.	Loop-rating curves	136
	5.5.	River flood routing	139
		River flow and sediment-duration curves	142
6	River	equilibrium	158
	6.1.	Particle stability	158
		Channel stability	163
	6.3.	Regime relationships	165
	6.4.	Equilibrium in river bends	166
	6.5.	Downstream hydraulic geometry	170
	6.6.	Bars in alluvial rivers	177
	6.7.	River meandering	179
	6.8.	Lateral river migration	184
7 River dynamics		dynamics	199
	7.1.	River dynamics	199
	7.2.	Riverbed degradation	204
		Riverbed aggradation	214
	7.4.	River confluences and branches	221
	7.5.	River databases	226
8	River	stabilization	234
	8.1.	Riverbank stability	234
	8.2.	Riverbank riprap revetment	238
	8.3.	Riverbank protection	253
	8.4.	River flow-control structures	267
	8.5.	Riverbank engineering	282
9	River	ver engineering 280	
		River flood control	286
	9.2.	River closure	297
	9.3.		306
		Bridge scour	310
	9.5.	Navigation waterways	316
	9.6.	Dredging	325
10	Physi	cal river models	334
	10.1.	Hydraulic similitude	334
	10.2.	Rigid-bed model	337
	10.3.	Mobile-bed river models	342

Contents		ix	
11	Math	ematical river models	352
	11.1.	Finite-difference approximations	353
	11.2.	One-dimensional river models	365
	11.3.	Multidimensional river models	376
12	Wave	s and tides in river estuaries	385
	12.1.	Surface waves	385
	12.2.	Tides in river estuaries	396
	12.3.	Saline wedges in river estuaries	401
Bib	liograp	hy	409
Ind	ex		427

Preface

Rivers have fascinated humanity for centuries. Most prosperous cities around the world have been founded along rivers. Today, river engineers are still designing structures to draw benefits from the fluvial system for developing societies. It is clear that river engineering is not based solely on a simple understanding of local hydrodynamic forces, but also on an encompassing knowledge of the watershed that supplies water and sediment to dynamic river systems. Expertise in river mechanics combines knowledge of watershed climatology, geomorphology, and hydrology, with a deep understanding of hydrodynamic forces governing the motion of water and sediment in complex river systems. State-of-the-art teaching of river mechanics clearly requires study material that emphasizes both theoretical concepts and practical engineering technology. Ideally, scientists should develop new concepts that may be applicable to engineering design, and practitioners should understand why certain structures work and why others fail.

This textbook has been prepared for engineers and scientists seeking broadbased technical expertise in river mechanics. It has been specifically designed for graduate students, for scholars actively pursuing scientific research, and for practitioners keeping up with developments in river mechanics. The prerequisites simply include basic knowledge of undergraduate fluid mechanics and partial differential equations. The textbook *Erosion and Sedimentation*, by the same author and Cambridge University Press, serves as prerequisite material for the graduate course on river mechanics taught at Colorado State University.

Rather than a voluminous encyclopedia, this textbook scrutinizes a selected number of methods to meet pedagogical objectives underlining both theory and engineering applications. This text has been designed to be covered within a regular 45-lecture-hour graduate-level course.

The chapters of this book contain, besides theory and lecture material, various exercises, general problems, data sets, computer problems, examples, and case studies. They illustrate specific aspects of the profession from theoretical derivations through exercises, to practical solutions to real problems through

xii Preface

the analysis of case studies. Most problems can be solved with a few algebraic equations; others require the use of computers. The computer problems offer students the opportunity to develop skills for solving physical problems with computers. No specific computer code or language is required. Instead of using existing software packages, I stimulate student creativity and originality in developing the students' own computer programs. Throughout, a solid diamond (\blacklozenge) denotes equations and problems of particular significance. Problems with a double diamond (\diamondsuit) are considered most important.

I am grateful to D. B. Simons, E. V. Richardson, H. W. Shen, H. Rouse, M. Frenette, J. L. Verrette, Y. Ouellet, C. F. Nordin, S. Schumm, S. R. Abt, and J. Ruff, who influenced my teaching over the years. I am also particularly thankful to P. G. Combs and D. C. Baird for sharing their practical expertise in river engineering. This book also benefits from numerous suggestions formulated by a generation of graduate students at Colorado State University. They helped me tailor this textbook to meet their needs under the constraints of quality, concision, and affordability. Jenifer Davis diligently typed successive draft versions of the manuscript, and Jean Parent prepared the figures. Finally, it has been a renewed pleasure to collaborate with Florence Padgett, Ellen Carlin, Zach Dorsey, and the Cambridge University Press production staff.

Notation

Symbols

- a acceleration
- *a* reference elevation
- a pier width
- *a*_{cent} centrifugal acceleration
- $a_{\rm cor}$ Coriolis acceleration
- a_i incremental cross-section area
- a_{i+1} coefficient of h_{i+1}
- a_t partial watershed area
- a_{θ} particle-stability coefficient
- **ã** wave amplitude
- a, b coefficients of the resistance equation
- *a*, *b* transform coefficients for duration curves
- A surface area
- A_a amplitude factor
- $A_{\rm sb}$ surface area of a settling basin
- A_t watershed drainage area
- $\tilde{\mathbf{A}}, \tilde{\mathbf{B}}$ wave coefficients
- b_r river-bend coefficient
- c wave celerity
- c_G group velocity
- C Chézy coefficient
- C_a reference concentration
- C_s Courant number
- C_{fl} Courant–Friedrich–Levy coefficient
- C_k grid dispersion number
- C_{0i} upstream sediment concentration
- C_r runoff coefficient
- C_u velocity Courant number

$C_v, C_w, C_{\rm ppm}, C_{\rm mg/l}$	sediment concentration
d_{10}, d_{50}	particle size distribution, % finer by weight
d_m	effective riprap size
d_s	particle size
d_*	dimensionless particle diameter
D	pipe diameter
D_d	degree-days
D_p	drop height of a grade-control structure
e	void ratio
Ε	specific energy
$E_{\rm tons}$	expected soil loss in tons
Ē	total energy of a wave
E()	exceedance probability
ΔE	specific energy lost in a hydraulic jump
f	Darcy–Weisbach friction factor
f_1	Lacey silt factor
f(t)	infiltration rate
F	force
F	fetch length of wind waves
F_B	buoyancy force
F_c	centrifugal force
F_D	drag force
F_{g}	gravitational force
F_h	hydrodynamic force
F_i	inertial force
F_L	lift force
F_M	momentum force
F_p	pressure force
F_s	shear force in a bend
F_S	submerged weight of a particle
F_w	weight of water
F_W	weight of a particle
F()	nonexceedance probability
F(t)	cumulative infiltration
$F_a(t)$	actual cumulative infiltration
$F_p(t)$	potential cumulative infiltration
Fr	Froude number
g	gravitational acceleration
G	specific gravity of sediment
Gr	gradation coefficient

Cambridge University Press 0521562848 - River Mechanics Pierre Y. Julien Frontmatter More information

Notation

XV

$G_{\prime\prime}$	universal gravitation constant
h	flow depth
h_c	critical flow depth
h_d	downstream flow depth
h_n	normal flow depth
h_p	pressure head at the wetting front
h_r	rainfall depth
h_s	cumulative snowmelt
h_t	tailwater depth
h_u	upstream flow depth
h_w	partial elevation drop on a watershed
Δh	local change in flow depth
ΔH	energy loss over a meander wavelength
H	Bernoulli sum
H_w	elevation drop on a watershed
	wave height
i	rainfall intensity
i _b	riverbed infiltration rate
i _e	excess rainfall intensity
i_f	snowmelt rate
j	space index
k	time index
k_0	resistance parameter for laminar overland flow
k_s	surface roughness
k'_s	grain roughness
k_t	total resistance to laminar overland flow
Ñ	wave number
K	saturated hydraulic conductivity
K_1, K_2	coefficients of the pier scour equation
K_c	riprap coefficient
K_d	dispersion coefficient
K _{num}	numerical dispersion coefficient
K_p	plunging jet coefficient
K _{sj}	submerged jet coefficient
l_1 to l_4	moment arms
l_c, l_d	moment arms in radial stability of river bends
L_a	abutment length
L_f	depth of the wetting front
L_p	pier length
L_r	river length

xvi	Notation
L_r	length ratio
$L_{\rm sb}$	settling-basin length
L_M	runoff-model grid-cell size
L_R	grid size of rainfall precipitation
L_S	correlation length of a storm
L_W	length scale of a watershed
L_{Δ}	length of arrested saline wedge
т	exponent of the resistance equation
m_s	sediment mass eroded from a single storm
m_E	mass of the Earth
m_M	mass of the Moon
Μ	mass
Μ	specific momentum
M_1, M_2	first and second moments of a distribution
M, N	particle-stability coefficients
n	Manning coefficient <i>n</i>
ñ	wave number index
Ν	number of points per wavelength
Ν	number of storms
<i>O</i> ()	order of an approximation
p	pressure
<i>p</i> ()	probability density function
p_0	porosity
p_{0e}	effective porosity
p_{0i}	initial water content
p_{0r}	residual water content
Δp_c	fraction of material coarser than d_{sc}
Δp_i	sediment size fraction
Δp_0	change in water content at the wetting front
P ~	wetted perimeter
Ρ̈́	total power of a wave
ΔP	power loss in a hydraulic jump
<i>P</i> ()	probability
P_0	power loss
P_{Δ}	grid Peclet number
q	unit discharge
$q_{ m bv}$	unit sediment discharge by volume
$q_{\rm bv}^* = q_{\rm b}$	
q_l	lateral unit discharge
q_m	maximum unit discharge

Cambridge University Press 0521562848 - River Mechanics Pierre Y. Julien Frontmatter More information

Notation

xvii

q_s	unit sediment discharge
q_t	total unit sediment discharge
\hat{Q}	river discharge
$Q_{ m bv}$	bed sediment discharge
\tilde{Q}_e	watershed size correction factor
\overline{Q}_p	peak discharge
\tilde{Q}_s	sediment discharge
r	radial coordinate
r^*	dimensionless radius of curvature
r, θ, z	cylindrical coordinate system θ downstream,
	<i>r</i> lateral, and <i>z</i> upward
R	radius of curvature of a river
ΔR_e	excess rainfall
R_h	hydraulic radius
R_m	minimum radius of curvature of a channel
R_E	radius of the Earth
Re	Reynolds number
Re _*	grain shear Reynolds number
$\operatorname{Re} = Vh/v$	Reynolds number
$\operatorname{Re}_* = u_* d_s / v$	grain shear Reynolds number
$\operatorname{Ro} = \omega / \kappa u_*$	Rouse number
S	slope
S_e	effective saturation
S_0, S_f, S_w	bed, friction, and water-surface slope
S_o, S_f, S_w	radial water-surface slope
S_r^*	dimensionless radial slope
S_r, S_{wr}	radial water-surface slope
$S_{\rm DR}$	sediment delivery ratio
t	time
Δt	time increment
Δt_s	time increment for sediment
t_a	cumulative time with positive air temperature
t_e	time to equilibrium
t_f	cumulative duration of snowmelt
t_r	rainfall duration
$t_r^* = t_r / \bar{t}_r$	normalized storm duration
t_t	transversal mixing time
t_v	vertical mixing time
Т	period of return of extreme events
Т	wave period

Cambridge University Press 0521562848 - River Mechanics Pierre Y. Julien Frontmatter <u>More information</u>

xviii A	lotation
T_E	trap efficiency
T_s	windstorm duration
<i>u</i> , <i>v</i>	velocity along a vertical profile
ū	average flow velocity
u_*	shear velocity
U_w	wind velocity
v_s	velocity against the stone
v_x, v_y, v_z	velocity components
V	cross-section averaged velocity
V_c	critical velocity
V_{Δ}	densimetric velocity
$V_{ heta}$	downstream velocity in cylindrical coordinates
W	channel width
W_m	meander width
W_o	overland plane width
•	coordinates usually x downstream, y lateral, and z upward
x_r, y_r, z_r	length ratios of hydraulic models
Δx	grid spacing
X	runoff length
X_c	reach length
X_e	equilibrium runoff length
Y	sediment yield
z_b	bed elevation
z_w	water-surface elevation
z^*	dimensionless depth
Δz	scour depth

Greek Symbols

α	coefficient of the stage–discharge relationship
α_b	deflection angle of barges
α_e	energy correction factor
β	exponent of the stage-discharge relationship
β	bed particle motion angle
β_m	momentum correction factor
γ	specific weight of water
γ_m	specific weight of a water-sediment mixture
γ_{md}	dry specific weight of a water-sediment mixture
γ_s	specific weight of sediment
$\Gamma(x)$	gamma function

Greek Symbols

xix

δ	angle between streamline and particle direction
ξ	ratio of exceedance probabilities
ξ ξ	displacement in the x direction
η	sideslope stability number
$ ilde\eta$	displacement in the y-direction
λ	streamline deviation angle
λ	wavelength
λ_f	snowmelt intensity
$\lambda_r = t_r/t_e$	hydrograph equilibrium number
Λ	meander wavelength
μ	dynamic viscosity of water
ν	kinematic viscosity of water
ϕ	angle of repose of bed material
ϕ	latitude
ϕ	dimensionless soil mass eroded from a single storm
Φ	velocity potential
ρ	mass density of water
$ ho_m$	mass density of a water-sediment mixture
$ ho_{md}$	dry mass density of a water-sediment mixture
$ ho_s$	mass density of sediment
$ ho_{ m sea}$	mass density of seawater
$\Pi = \ln[-\ln E(x)]$	double logarithm of exceedance probability
ω	settling velocity
ω_E	angular velocity of the Earth
Ω	sinuosity
Ω_R	coefficient of secondary flows in bends
heta	downstream orientation of channel flow
θ	angular coordinate
θ_j	jet angle measured from the horizontal
θ_m	maximum orientation of channel flow
θ_p	flow orientation angle against a pier
θ_r	raindrop angle
θ_0, Θ_0	downstream bed angle
Θ_1	sideslope angle
$\Theta = (t - t_r)/t_e$	dimensionless time
σ	stress components
σ_d	standard deviation of dispersed material
σ_g	gradation coefficient
õ	angular frequency of surface waves
τ	shear stress

XX	Notation
$ au_0, au_b$	bed shear stress
τ_{0x}, τ_{0y}	downstream and lateral bed shear stress
$ au_{bn}$	bed shear stress at a normal depth
$ au_c$	critical shear stress
$ au_r$	radial shear stress
$ au_r^*$	dimensionless radial shear stress
$ au_s$	side shear stress
$ au_{sc}$	critical shear stress on a sideslope
$ au_w$	wind shear stress
$ au_{zx}$	shear stress applied in the x direction in a plane
	perpendicular to z
$ au_*$	Shields parameter
$ au_{*c}$	critical value of the Shields parameter
	i I dimensionless discharge

- $\psi = q/i_e L$ dimensionless discharge ψ, θ weighting coefficients
- Ψ reduced variable
- ζ_n^k Fourier coefficient

Superscripts and Diacriticals

- \hat{a} coefficient of the logarithm resistance equation
- \tilde{n} wave properties
- \hat{C} parameters of the universal soil-loss equation
- \bar{e} average value
- h^k time index k

Subscripts

a_r, a_θ	cylindrical coordinate components
a_x, a_z	Cartesian components
$ au_c$	critical shear stress
h_{j+1}	space index at $j + 1$
L_m, Q_m	model value
L_p, Q_p	prototype value
L_r, Q_r	similitude scaling ratio
ρ_m, γ_m	properties of a water-sediment mixture
ρ_{md}, γ_{md}	properties of a dry water-sediment mixture
ρ_s, γ_s	sediment properties