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Preface

This book deals with the symbiotic relationship between

(i) function spaces on R” and in domains,
(ii) entropy numbers in quasi-Banach spaces, and

(iii) distributions of eigenvalues of degenerate elliptic differential and

pseudodifferential operators,

as it has evolved in recent years.
We are mainly interested in the two scales of function spaces

B;q and

F,, with s € R,0 < p < 00,0 < ¢ < o0, which cover many well-known
classical spaces such as (fractional) Sobolev spaces, Holder—Zygmund
spaces, Besov spaces and (inhomogeneous) Hardy spaces. The theory of
these spaces has been developed in its full extent in [Tria], [Trif] and
[Triy]. Here we also deal with some recent modifications and refinements
connected with spaces of Orlicz type and logarithmic Sobolev spaces.
Let B;, (Q) be the corresponding spaces on an (arbitrary) bounded

domain Q in R". Then the embedding

id : By, (@) — B2, (Q)

is compact if

1 1
si—s,>n|———) ,0<q; <0,0<qg; <0
Di P2 +

(1)

2)

Let e, (id) be the corresponding entropy numbers. Then there exist two

positive numbers ¢; and ¢, such that

ctk™Em/m < o (id) < ek ke N,

(©)

The history of assertions of this type begins in 1967 when M.S.Birman

and M.Z.Solomyak [BiS1] proved (3) for the embedding of the

ix

Sobolev
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X Preface

(-Besov) spaces W, (Q) in L, (Q), their proof being based on the method
of piecewise-polynomial approximations. Our method for proving (3)
in its full extent relies on Fourier-analytical techniques and has been
developed in the last few years in [ET1], [ET2], [Tri3] and [ET4].

The connection between (ii) and (iii) comes from Carl’s observation
{1980) that

luk| < \2ex, k €N, 4@

where p; and e are respectively the eigenvalues (counted according to
their algebraic multiplicities and ordered by decreasing modulus) and
the entropy numbers of a compact operator acting in a given (quasi-)
Banach space; see [Carll], [CaT]. It is the main aim of this book to
combine observations of type (3) and (4), and to apply them in order
to study eigenvalue distributions of degenerate elliptic differential and
pseudodifferential operators and their inverses on the basis of some recent
progress made in the theory of spaces of B;, and F,, type.

This book may be considered as a research report mostly based on
results of the authors and their co-workers obtained in the last few years.
On the other hand, we review the basic material which is needed and
give proofs of new results and of assertions not available in relevant
books. In this sense we have tried to present a self-contained treatment,
accessible to non-specialists.

There are five chapters. Chapter 1 contains elements of a spectral
theory in quasi-Banach spaces. We also introduce entropy and approx-
imation numbers and establish some of their basic properties in the
context of quasi-Banach spaces, including certain results about the be-
haviour under interpolation of entropy numbers. Although we focus
mainly on entropy numbers in this book, it is helpful to have simulta-
neously a close look at approximation numbers of abstract and concrete
compact operators. Chapter 2 deals with function spaces of type B;,
and F,,. In addition to providing a description of the basic notation and
facts, we prove some specific assertions needed in the following chapters.
Thus the chapter may be considered as a complement to [Tri«], [Trif]
and [Triy]. In Chapter 3 we calculate the entropy and approximation
numbers of compact embeddings between the spaces B;, and F,, on
bounded domains. Chapter 4 concentrates on corresponding problems
for weighted spaces of type By, and F,, on R". Finally, Chapter 5 is
devoted to applications of all these results to the distribution of eigen-
values of degenerate elliptic differential and pseudodifferential operators
(and their inverses) with non-smooth coefficients.
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Preface xi

The book is organised by the decimal system: “nk.m” refers to sub-
section n.k.m, “Theorem nk.m/1” means Theorem | in nk.m, etc. All
unimportant positive numbers will be denoted by ¢ (with additional
indices if there are several c¢s in the same formula).

Brighton and Jena
Winter, 1994,
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