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1.1 Fluids and plasmas in the astrophysical context

When a beginning student takes a brief look at an elementary textbook
on fluid mechanics and at an elementary textbook on plasma physics,
he or she probably forms the impression that these two subjects are
very different from each other. Let us begin with some comments why
we have decided to treat these two subjects together in this volume
and why astrophysics students should learn about them.

We know that all substances are ultimately made up of atoms
and molecules. Ordinary fluids like air or water are made up of
molecules which are electrically neutral. By heating a gas to very high
temperatures or by passing an electric discharge through it, we can
break up a large number of molecules into positively charged ions and
negatively charged electrons. Such a collection of ions and electrons is
called a plasma, provided it satisfies certain conditions which we shall
discuss later. Hence a plasma is nothing but a special kind of fluid in
which the constituent particles are electrically charged.

When we watch a river flow, we normally do not think of interacting
water molecules. Rather we perceive the river water as a continuous
substance flowing smoothly as a result of the macroscopic forces act-
ing on it. Engineers and meteorologists almost always deal with fluid
flows which can be adequately studied by modelling the fluid as a con-
tinuum governed by a set of macroscopic equations. Usually most of
the elementary fluid mechanics textbooks deal with these macroscopic
equations without ever bothering about the molecular constitution of
fluids. On the other hand, very often results of laboratory plasma
experiments can be understood best in terms of forces acting on indi-
vidual plasma particles and their motions. Hence elementary plasma
physics textbooks often start from the dynamics of plasma particles.
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4 1 Introduction

Because of these very different approaches, elementary textbooks often
hide the underlying unity in the sciences of fluids and plasmas.

It is intuitively obvious to us that fluids like water and air can be
treated as macroscopic continuum systems. But astrophysicists often
deal with systems like the solar wind or the interstellar medium having
few particles per cm® but extending over vast regions of space. It is
not at once obvious if continuum fluid equations are applicable to
such systems. Hence it is useful for astrophysicists to have some
understanding of the microscopic basis of the continuum equations to
know when they are applicable and when they break down. We shall
try to understand in this book why and under what circumstances
collections of particles can be modelled as continua. Since we shall
develop both the particle and continuum aspects of the theory, it
is useful to approach fluids and plasmas from a unified point of
view, which is often obscured in elementary textbooks by stressing the
continuum aspects of neutral fluids and particle aspects of plasmas.

Most objects in the astrophysical Universe are made up of ionized
material which can be regarded as plasma. Hence it is no wonder that
astrophysicists have to learn about plasmas to understand how the
Universe works. Often, however, the ordinary fluid dynamics equa-
tions are adequate if electromagnetic interactions are not important
in a problem. We have seen that a plasma is a special kind of fluid
in which the constituent particles are charged. Hence the special char-
acter of plasmas becomes apparent only in circumstances in which
electromagnetic interactions play important roles. When electromag-
netic interactions are unimportant, plasmas behave very much like
neutral fluids which obey simpler equations. Stellar structure and os-
cillations are examples of important astrophysical problems for which
ordinary fluid equations are almost adequate, even though stars are
made up of plasma. If the star has a strong magnetic field, it may be
necessary to apply very small plasma corrections. One of the current
research topics in the study of solar oscillations is to understand the
very small effect of magnetic fields on these oscillations.

Since neutral fluid equations in a sense can be thought to constitute
a special case of plasma equations in which the electromagnetic terms
are set to zero, there may be some logical appeal in first developing
the full plasma equations in complete glory and then considering the
neutral fluids as a special case. For pedagogical reasons, however,
we have decided to present things in the opposite order. The first
half of the book is devoted to neutral fluids, which obey simpler
equations than plasmas. Then, in the second half, we develop the
theory of plasmas, which are governed by more complicated and
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1.2 Characteristics of dynamical theories 5

more general equations. Within each half, we begin from microscopic
or particle considerations and then develop the continuum models.
It will be seen that the microscopic theory of neutral fluids is not
exactly of the nature of a special case of the microscopic theory of
plasmas with electromagnetic forces set to zero. The particles in a
neutral fluid interact only when they collide, whereas the particles
in a plasma interact through long-range electromagnetic interactions.
This difference in the nature of interactions introduces some subtle
differences in the microscopic theories.

Although we shall be considering astrophysical applications as ex-
amples throughout the text, we want to emphasize that what we
present in this book is nothing but standard fluid mechanics and
standard plasma physics. Astrophysical problems often necessitate the
application of the basic theory to situations very different from any
terrestrial situation, but the basic physics does not change. Although
the material is presented in this book in a way which would be most
suitable for somebody embarking on a career of astrophysics research,
a careful reader of this book should be in a position to appreciate
laboratory problems in fluid mechanics and plasma physics equally
well.

1.2 Characteristics of dynamical theories

We would like to develop dynamical theories of fluids and plasmas.
By dynamical theory we mean a physical theory with which the time
evolution of a system can be studied. Classical mechanics, classical
electrodynamics and quantum mechanics are some of the familiar
examples of dynamical theories in physics. The structures of all these
dynamical theories have certain common characteristics, which we
would expect the dynamical theories of fluids and plasmas also to
have. Let us begin by noting down these common characteristics.
First of all, we must have a way of describing the state of our
system at one instant of time. For a mechanical system, this is done
by specifying all the generalized position and momentum coordinates.
The state of an electromagnetic field is given by E(x) and B(x) at all
points at an instant of time. For a quantum system, the state is pre-
scribed by the wave function p(x). In other words, the state is always
prescribed by giving the numerical values of a set of variables. The
second requirement for a dynamical theory is that we should have a
set of equations which tells us how these variables change with time.
Once such a set of equations is given, if we know the values of all the
variables prescribing the state of the system at one instant of time,
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6 1 Introduction

we shall be able to calculate the values of all these variables at some
future time. In other words, it is possible to calculate some future
final state of the system from the initial state. In classical mechanics,
Hamilton’s equations give the time derivatives of position and mo-
mentum coordinates. Maxwell’s equations contain the terms JE/dt,
0B/0t and hence provide the dynamical theory for the electromagnetic
field. For a quantum system, time-dependent Schrodinger’s equation
tells us how y(x) changes with time.

The mathematical theories for fluids and plasmas also should have
similar structures with these two characteristics:

1 There should be a way to prescribe the state of the system with a
set of variables.

2 There should be a set of equations giving the time derivatives of
these variables.

We may begin by asking the question how the state of a fluid or a
plasma can be prescribed at an instant of time. As we have already
seen, there are different levels of looking at fluids and plasmas. At
a certain level, they can be regarded as collections of particles. On
another level, they can be treated as continua. We expect different
dynamical theories at different levels having the two general charac-
teristics listed above. The dynamical theories at different levels should
also have some correspondence amongst them. In the next section,
§1.3, we give a brief outline of the different levels at which we wish to
look at fluids and plasmas, and the different dynamical theories that
we wish to develop at these different levels. Section 1.3 should serve
as a kind of guide map for this book.

Let us end this section by commenting that these two requirements
for dynamical theories can be given geometrical representations by
introducing a phase space. A phase space is an imaginary space hav-
ing many dimensions such that each of the variables necessary to
prescribe the state of the system corresponds to one dimension. Since
continuous functions like y(x) have to be specified at all the spatial
points within a certain volume (i.e. at an infinite number of points),
the corresponding phase space must have infinite dimensions, each
dimension corresponding to the value of y at one point. It is easy to
see that a state of the system corresponds to one point in the phase
space. Since the dynamical equations tell us how the state changes
with time, they make this point in phase space move with time and
trace out a trajectory.
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1.3 Different levels of theory 7

Table 1.1 Different levels of theory for neutral fluids and plasmas

Neutral fluids

Level Description of state ~ Dynamical equations
0: N quantum particles W(X1,.--,XN) Schrédinger’s eqn.
1: N classical particles (Xiyeees XN, Ug,e..,0N) Newton’s laws

2: Distribution function fx,ut) Boltzmann eqgn.

3: Continuum model p(x), T(x), v(x) Hydrodynamic eqns.

Plasmas (Levels 0 and 1 same as above)

Level Description of state ~ Dynamical equations
2: Distribution function f(x,n,t) Vlasov eqn.

2} : Two-fluid model See Chapter 11

3: One-fluid model p(x), T(x), ¥v(x), B(x) MHD eqns.

1.3 Different levels of theory

Since fluids and plasmas are collections of particles, let us consider a
collection of N particles and look at the different levels at which one
may wish to develop dynamical theories for this system. These different
levels are summarized in Table 1.1. At a very fundamental level, all
microscopic particles obey quantum mechanics. Let us call it Level 0.
The state of the system at this level is given by the N-particle wave
function, which evolves in time according to Schrddinger’s equation.
In this book, however, we shall not discuss this level at all. At the
next higher Level 1, the system can be modelled as a collection of N
classical particles. Can we always pass on from Level 0 to Level 1?
No, one often encounters collections of particles which are inherently
quantum and a classical description is not adequate. The electron gas
within a metal is an example of such a system from everyday life and
the material inside a white dwarf star is an astrophysical example.
Since we are not going to discuss Level 0 in this book, the dynamics
of quantum gases remains outside the scope of this book.

Under what circumstances is a description at Level 1 possible for
our system of N particles? Basically the wave packets for the different
particles have to be widely separated so that quantum interference is
not important. If p is the typical momentum of the particles, then the
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8 1 Introduction

de Broglie wavelength is

h  h

Ny

where m is the mass of the particle, kg the Boltzmann constant and
T the temperature (see, for example, Schiff 1968, p. 3; Mathews and
Venkatesan 1976, §1.13). Since this is also a measure of the sizes of
wave packets of individual particles, we have to compare this with the
typical inter-particle distance, which is n~1/3 if n is the particle number
density per unit volume. Hence the condition for the non-overlapping
of wave packets is

A:

hn1/3

JmkgT

When this condition is satisfied, an individual wave packet evolves
according to Schrodinger’s equation in an isolated fashion and can
be shown to move like a classical particle. This result is known as
Ehrenfest’s theorem and is derived from Schrédinger’s equation in
any textbook on quantum mechanics (see, for example, Schiff 1968,
pp. 28-30; Mathews and Venkatesan 1976, §2.7). Hence (1.1) gives the
condition that Level 1 can be derived from Level 0. We then have at
Level 1 a system of N classical particles of which the state is prescribed
by the position and velocity coordinates (Xi,...,Xn,HUy,...,uy). The
time evolution of this system can be studied by Newton’s laws of
motion or by Hamilton’s equations.

If N is large, then it is not realistic to solve the equations of motion
for all the position and velocity coordinates. Hence, in the next higher
Level 2, one introduces the distribution function f(x,u,t) giving the
particle number density in the six-dimensional (x,u) space at time ¢ (x
is the position coordinate of a particle and u is its velocity coordinate).
A dynamical theory at this level requires an equation which tells us
how f(x,u,t) changes in time. The time derivative of f(x,u,t) for a
neutral fluid is given by the Boltzmann equation. The corresponding
equation for plasmas is called the Vlasov equation. We shall see that
this equation superficially resembles the Boltzmann equation, but has
some subtle differences.

At the final Level 3, we model the systems as continua. Let us first
consider how the state of a neutral fluid in the continuum model can be
prescribed. We know that a single-component gas in thermodynamic
equilibrium can be described by two thermodynamic variables. A
moving fluid is not in thermodynamic equilibrium as a whole. But if
we consider a small element of fluid and go to the frame in which
it is at rest, then we can regard that element to be in approximate

<L (1.1)

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521555434
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521555434 - The Physics of Fluids and Plasmas: An Introduction for Astrophysicists
Arnab Rai Choudhuri

Excerpt

More information

1.3 Different levels of theory 9

thermodynamic equilibrium in that frame. This idea and the exact
meaning of the adjective approximate will be made clearer in Chapter 3,
where we derive Level 3 from Level 2. Hence the state of that element
of fluid can be prescribed by two thermodynamic variables and the
velocity of that element with respect to some frame, say the laboratory
frame of reference. Since we have to specify the state of each and every
element of the fluid in this fashion, the state of the whole fluid is given
by prescribing the two thermodynamic variables and the velocity at
all points of the fluid. Taking density and temperature as examples of
two thermodynamic variables, the specification of p(x), T(x) and v(x)
at all points of the fluid at an instant of time gives the state of the
fluid at that time. The usual macroscopic hydrodynamic equations tell
us how all these variables vary in time and hence constitute a complete
dynamical theory for neutral fluids at Level 3.

Since plasmas can have magnetic fields embedded in them, we
have to take B(x) as an additional variable when considering the
Level 3 for plasmas. We know that one takes the electric field E = 0
inside conductors when solving electrostatics problems. Since plasmas
are good conductors of electricity, electric fields in the local rest
frames inside plasmas are also quickly shorted by currents and it is
not necessary to take the electric field as an extra variable in the
continuum model at Level 3. A state of the plasma at this level can
be given by prescribing p(x), T(x), v(x) and B(x) at all points. We
shall later derive a set of equations called the magnetohydrodynamic
or MHD equations giving the time evolutions of these variables. They
are more complicated than the ordinary fluid dynamics equations. But
is it always justified to ignore the electric field? It turns out that one
can have electric fields in plasmas over short distances existing for
short times. To handle such situations, we introduce an intermediate
Level 2% for plasmas. At this intermediate level, we regard plasmas as
mixtures of two fluids having opposite electrical charges. The details
of this two-fluid model will be discussed in Chapter 11. When we
consider slow motions of plasmas under mechanical and magnetic
stresses, MHD equations are adequate. Again the exact meaning of
slow will be made clear later. Many astrophysical problems can be
handled with MHD equations. Propagation of electromagnetic waves
in plasmas, however, is a problem for which it is necessary to deal
with the more complex two-fluid model at Level 2%.

We have seen that the condition (1.1) has to be satisfied in order to
pass from Level 0 to Level 1. Similarly some other conditions have to
be met to derive Level 2 from Level 1 or Level 3 from Level 2. These
conditions will be discussed in the appropriate places of the book. If
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10 1 Introduction

a system of N particles satisfies these conditions, then it is possible to
introduce the distribution function f(x,u,?) or to model the system as
a continuum.

Much of this book is devoted to studying the dynamics of neutral
fluids and plasmas at Levels 2 and 3 (with the additional Level 2%
for plasmas). To begin with, however, we need to understand how we
can develop Level 2 from Level 1. For a proper appreciation of this
subject, it is important to know some general results pertaining to
phase spaces of dynamical systems. In view of the generality of these
results, we have decided to discuss them in the next two sections of
this introductory chapter and end the chapter with them.

We now end this section with a comment on predictability. It would
seem that a dynamical theory satisfying the structural requirements
described in §1.2 would be completely predictable. In other words,
knowing the present state of the system, one would always be able
to predict the future completely. Fluids and plasmas, however, can
often have turbulence—a state of random and chaotic motions which
appear unpredictable. Developing a proper theory of turbulence has
remained one of the unsolved grand problems of physics for over a
century. We shall discuss in Chapter 8 the question of how turbulence
can arise in systems apparently governed by predictable equations.
Even if a dynamical theory is predictable in principle, we shall see that
there can be a loss of predictability in practice.

1.4 Ensembles in phase space. Liouville’s theorem

Let us consider a dynamical system of which a state can be prescribed
by the generalized position and momentum coordinates (g, ps;s =
1,...,n) and which evolves according to Hamilton’s equations:

) oH

Ds = —a_qs, (1.2)
. 0H

gs = a—ps, (1.3)

where the Hamiltonian H(qs, ps,t) can be a function of all the co-
ordinates and time (see, for example, Goldstein 1980, Chapter 8;
Raychaudhuri 1983, Chapters 8-9). If you do not have a deep under-
standing of Hamiltonian theory, you need not panic. We shall make use
of Hamiltonian theory only rarely in this book and an acquaintance
with the above two equations will suffice.

Considering Hamiltonian systems may seem somewhat restrictive,
because not all dynamical theories can be put in the Hamiltonian form.
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1.4 Ensembles in phase space. Liouville’s theorem 11

Readers familiar with the subject would know that it is not possible
to make a Hamiltonian formulation of a dissipative system. However,
dissipation in macroscopic systems usually means that the energy of
some ordered macroscopic motion is being transferred into random
molecular motions. When we look at a system at the microscopic level
(say our Level 1) and include the molecular motions within the fold of
the dynamical theory, usually a Hamiltonian formulation is possible.
Our system at Level 1, a collection of N classical particles, certainly
allows a Hamiltonian treatment.

For the statistical treatment of a system, it is often useful to intro-
duce the concept of an ensemble. An ensemble means a set of many
replicas of the same system, which are identical in all other respects
apart from being in different states at an instant of time. Hence each
member of the ensemble can be represented by a point in the phase
space at an instant of time and their evolutions correspond to different
trajectories in the phase space. If the ensemble points are distributed
sufficiently densely and smoothly in the phase space, then it is mean-
ingful to talk about the density of ensemble points at a location in the
phase space. Let us denote this density by pens(¢s, ps, £).

We now wish to prove Liouville’s theorem, which is one of the
fundamental theorems of statistical mechanics. Let us first state the
theorem. Then we shall proceed to prove it. Let us consider one
member of the ensemble and its trajectory (gs(t), ps(t)) in the phase
space. We keep measuring the density pens(qs(2), ps(¢), t) as a function of
time varying as a parameter along this trajectory. Liouville’s theorem
states that the time derivative of this density as we move along the
trajectory is zero, i.e.

Dpens
Dt

=0, (1.4)

where D/Dt denotes the time derivative along the trajectory. If (g, ps)
and (gs + 945, ps + Ops) denote the states of the system at times ¢ and
t + dt on this trajectory, then

Dpens = im Pens(ds + 0Gs, Ps + OPs, t + 1) — Pens(gs, Ps, t)

Dt 510 ot (1.5)

Expansion in a Taylor series to linear terms in small quantities gives

Pens(ds + 0G5, ps + Ops, t + 6t) = pens(qs, Ps, t)
+ Z 54 Opens + Z ops OPens + 5tapens.
5 04gs B ops

ot
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