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1.1. Introduction

The arid lands of southern Africa occupy the area west of
approximately 27 °E and north of 34 °S. North of approxi-
mately 27 °S, the arid zone becomes confined to coastal
belt and plateau of southern Namibia. North of 22 °S, this
zone is confined to the hyper-arid coastal belt of the Namib
Desert and stretches as far north as 12 °S in southern
Angola. The climate is dominated by, and indeed, the arid-
ity is largely caused by, the southern subtropical high-
pressure (anticyclone) belt. To the south, the region is
influenced by the circumpolar westerly airstream
(Schulze, 1965). Only the southern and south-western arid
regions are influenced by this belt of temperate cyclones.
Local modifications occur as a result of the Cape Fold
Mountains in the south, the mountains of the Great
Escarpment, the raised interior plateau and the cold,
north-flowing Benguela current that washes the west
coast of the subcontinent. Incursions of moisture into the
region are associated with the advection of air across the
warm Indian Ocean (maximum precipitation from this
source is largely confined to the eastern parts of the sub-
continent) and the circumpolar westerlies to the south.
Southern African arid lands are geographically marginal
to these rain-producing systems.

The first part of this chapter provides an overview of
the contemporary climate of the region. The second part
provides a description of the weather systems that
influence the karoo. This approach is taken to highlight
the great diversity of systems that are responsible for the
varied karoo climates, something which has not been
appreciated by earlier reviews. This functional under-
standing of the weather patterns in the karoo is essential
for understanding the landscape–vegetation patterns (i.e.
at the level of biome and veld type). In the final part of this

chapter, we present a new analysis of the climate of the
karoo, which comprises a multivariate model that illus-
trates vegetation–climate relationships quantitatively.
We do not, however, discuss long- and medium-term
changes in climate, nor predictions of future climate
change.

1.2. A general overview of the climate of the
karoo

The climate of the karoo is summarized in the form of
climate diagrams (Figs. 1.1(a) and 1.1(b)). The focus of this
section is a discussion of the three primary limiting
climatic factors which influence plant growth in arid
lands, namely precipitation, temperature and light
(Schulze and McGee, 1978). 

1.2.1. Precipitation

Rainfall
The overall feature apparent from the distribution of
mean annual rainfall in the karoo is that south of the
Tropic of Capricorn, precipitation decreases uniformly
westwards from the eastern escarpment across the
plateau. Only in the extreme south do the isohyets follow
an east-west trend. This is due to the topographic irregu-
larities of the Cape Fold Belt and associated orographic
rain linked to westerly frontal and post-frontal systems. In
the west, north of the tropic, the isohyets follow a similar
north–south trend, although steeper; thus, in the Namib
Desert of southern Angola, coastal stations receive 
<100 mm rainfall, whereas stations 200 km to the east on
top of the escarpment receive in excess of 800 mm

1 The climate of the karoo – a functional 
approach
P. G. Desmet and R. M. Cowling



annually (Figs. 1.1(a) and 1.1(b)). The desert biome, namely
the Namib Desert, occupies a narrow range of mean
annual rainfall (<100 mm) whereas the succulent and
Nama-karoo experience a broader range in rainfall,
between 50 and 500 mm and 50 and 600 mm respectively
(Fig. 1.2).

At a finer scale, the distribution of mean monthly rain-
fall across the subcontinent highlights two import trends
in the annual march of rainfall, namely, summer and win-
ter maxima regimes. Over most of the eastern parts of the
country, summer rainfall regimes dominate. Over the
western interior, to the east of the escarpment, and north
of the Cape Fold Belt, this summer maximum is less
marked and grades into a predominately winter-rainfall
regime, or Mediterranean climate, in the south and south-
west mountains and coastal belt. 

At an even finer scale, considered much more meaning-
ful in terms of the distribution and characteristics of plant
cover than the general patterns already discussed, are the
duration, time of occurrence, and the degree of intensity
of the rainy season and dry season; particularly when
viewed from the perspective of plant available soil mois-
ture being able to meet evaporative demand. The annual
march of mean monthly rainfall across the karoo shows a
number of distinct patterns (Figs. 1.1(a) and 1.1(b)). These
patterns can be summarized in terms of three distinct
parameters, namely amplitude, phase and shape: 

• a change in amplitude, thus higher or lower peaks in
monthly rainfall, or more pronounced seasonality;

• a shift in phase (winter- or summer-rainfall maxima
or minima), which is essentially a change in
seasonality;

• and, alternatively, a change of curve shape from the
general parabolic curve to sinusoidal or aseasonal.

Thus, within the karoo, for the same given mean annual
rainfall there are a number of different possible combina-
tions of rainfall distribution (Figs. 1.1(a) and 1.1(b)).
Coupled to this variation are differences in reliability and
intensity of rainfall events. This diversity in the occur-
rence of rainfall regimes arises as a result of the location of
the southern African arid zone between two weather sys-
tems. The regional weather patterns that are responsible
for this variation are discussed in more detail in the fol-
lowing sections of the chapter. The biogeographical impli-
cations of this diversity in rainfall regimes is discussed in
section 1.7.

Fog
Fog is an important alternative source of moisture for
plants. Although there is generally no direct precipitation
of water on the soil surface, interception by vegetation
may lead to significant amounts of water entering the soil
below the plant. Fog ‘precipitation’, although recognized
as significant (Schulze and McGee, 1978; Walter, 1986;
Werger, 1986; Lancaster et al., 1984; Pietruszka and Seely,
1985; Olivier, 1995), is not measured by standard rain
gauges, and thus its importance in ecological studies has
been very difficult to estimate. The measurement of mois-
ture derived from fog is dependent on the type of obstacle
used to catch fog moisture (Walter, 1986). Finely branched
structures that transmit wind, such as a fine mesh or the
canopy of a shrub, are much more efficient at combing out
fog moisture than a smooth, solid structure.

Advective sea fog is characteristic of the entire west
coast of the subcontinent, essentially the coastal Namib
Desert (including both winter-rainfall strandveld, lowland
succulent karoo (Low and Rebelo, 1996) and summer-rain-
fall portions of the desert) (Schulze and McGee, 1978;
Olivier, 1995). Locally, fog is referred to by a number of
different names: Cacimbo in Angola (Jackson, 1951),
Nieselregen in Namibia (Walter, 1986) and Mal-mokkie in
Namaqualand (A. Kotze, personal communication). We do
not know of any studies on the occurrence or significance
of fog (radiation fog) elsewhere in the karoo.

Clouds form when air is supersaturated with respect to
water or ice (Preston-Whyte and Tyson, 1988). One manner
in which this can occur is by the mixing of air. Advection
fog occurs when warm air with high relative humidity is
advected over a cool surface. The temperature differential

4 P. G. Desmet and R. M. Cowling

Figure 1.1(a) Map of southern Africa showing the localities of
numbered weather stations from which climate data were obtained
to generate the climate diagrams shown in Fig. 1.1(b) on p. 6. The
boundary of the karoo sensu lato is shown as a dotted line. L =
Lesotho, S = Swaziland



between air and surface must be sufficiently large to
enable the air to reach saturation after a small amount of
cooling. Medium velocity winds are also necessary in the
advection process, since strong winds would cause too
much turbulence and vertical mixing to maintain the fog,
whereas low wind speeds would provide too little advec-
tion and mixing. When air over the Atlantic Ocean moves
across the leading edge of the cold Benguela current, tem-
perature is depressed to dew point and fog forms. The
coastline constitutes another leading edge with air mov-
ing over a hot, arid desert. Inland movement of fog is
therefore limited by the arid nature of the new surface
conditions, and the fog thins and evaporates downwind.
By day, this process is hastened by surface heating.

The predominance of colder coastal ocean surface tem-
peratures during summer, as a result of the seasonal
intensification of the mid-Atlantic Ocean high, creates
conditions more favourable for fog formation. The domi-
nant flow of air during this period is westerly, thus warm
moist air from the mid-Atlantic is cooled near the coast
and fog forms. As midsummer wind velocities are too high
to maintain the integrity of the fog bank, the coast experi-
ences fog predominantly during spring and autumn,
when the wind velocities are lower, but the flow of air is
still predominately onshore.

The frequency of fog occurrence along and perpendicu-
lar to the coast varies considerably (Olivier, 1995). Using
Meteosat images, Olivier (1995) estimated the highest
occurrence to be between Sandwich Bay and Cape Cross in
the central Namib with an excess of 100 days per year.
South of the Orange River, the value is less than 75 days
and in southern Angola less than 50 days. Fog also pene-
trates as far inland as the foothills of the escarpment and
beyond where less than 10 fog days may be expected. Major
river courses, such as that of the Orange River allow fog to
penetrate deeper into the valleys and foothills of the
escarpment mountain ranges than elsewhere. There is,
however, little quantitative understanding of how fog is
distributed in the landscape south of the Orange River.

Fog also plays an important amelioratory role in the
local climate. From South African Weather Bureau data,
the average total number of days per annum during which
fog is recorded at Port Nolloth is 148, or 41% of the total
days. As a result, the sunshine duration averages less than
70% of the possible total and this has a significant amelio-
rating effect (Burns, 1994).

The potential amount of water that can be derived
from a fog event, relative to the mean annual rainfall, is
substantial. For Swakopmund, with 121 fog days per
annum, the amount of water intercepted in 1958 was
equivalent to 130 mm of rainfall. More than seven times
the mean annual rainfall (Schulze and McGee, 1978), but
this amounts to an average of <1.0 mm (average of 0.2 mm)

per fog event (Walter, 1986). Minimum and maximum
annual fog-water totals along a latitudinal transect from
Walvis Bay to Gobabeb were 49–158 mm (Rooibank, 20 km
inland); 88–271 mm (Swartbank 40 km inland); and 8–48
mm (Gobabeb 60 km inland). The annual coefficient of
variation for fog at the three same stations was 29%, 29%,
and 36%, respectively, whereas that for rainfall was 123%
at Gobabeb and 106% at Walvis Bay (Pietruszka and Seely,
1985). These coefficients for rainfall and fog are similar to
those for the southern Namib (Desmet, 1996). Fog is a
potentially significant source of water in the desert envi-
ronment, and also a far more predictable source of mois-
ture than rainfall (Pietruszka and Seely, 1985).

If and how desert plants derive any benefit from fog
moisture is unclear. There is, however, no evidence for
direct uptake of fog condensation on leaves by plants
(Danin, 1991). A notable exception is Trianthema hereroensis
from the sand erg of the central Namib Desert (Louw and
Seely, 1982). Von Willert et al. (1990, 1992) argue that any
leaf structure capable of absorbing water on the leaves is
also a potential route via which water can evaporate. Thus,
there would be little benefit for plants in a hyper-arid envi-
ronment to absorb fog moisture directly from the leaves. A
more likely route whereby plants could benefit from fog
moisture would be by absorbing condensation on the sand
surface (Danin, 1991) and as a result of stem flow. This
route would facilitate the uptake of both fog and dew con-
densation on the soil surface. Louw and Seely (1982)
sprayed tritiated water on the top 1 cm of soil near Salsola
subulicola growing in the Namib, and found efficient water
absorption by the plant. Certain plants growing in the fog
zone of the Namib have well-developed superficial root
networks (Danin, 1991) or efficient mycorrhizal relation-
ships to be able to benefit from alternative moisture
sources such as fog and dew (see below).

Dew
In the absence of coastal advection fog, the potential still
exists for plants to obtain moisture from heavy dews.
Within the karoo, the occurrence of dew is a more wide-
spread phenomenon than fog (Werger, 1986). Although it
is a parameter that is difficult to quantify, moisture
derived from dew condensation on plants and the ground
is probably significant and worthy of some investigation.

Dew-point temperature is that to which air at a con-
stant pressure and water vapour content must be cooled in
order to become saturated and for dew to precipitate
(Preston-Whyte and Tyson, 1988). At night, radiative cool-
ing of the air to below dew-point temperature causes dew
to form on the ground. The extraction of water vapour
from the overlying air causes an inversion to form in the
water vapour profile. The depth and strength of this inver-
sion is determined by the downward flux of water vapour
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Figure 1.1(b) Climate diagrams for selected weather stations in the karoo and Namib Desert, and surrounding non-arid zone vegetation types.
The title for each diagram contains the town name, co-ordinates, altitude (m), mean annual rainfall (mm) and mean annual temperature (°C).
Points on each graph represent mean monthly maximum and minimum temperature, and the curve mean monthly rainfall. In all cases, the
rainfall scale (mm), in increments of 10 units, equals 2 x that of temperature (°C). Months on the horizontal axis are from January to December



in a suitable turbulent environment. Thus, the level of tur-
bulence is critical. If it is too low (i.e. calm conditions), dew
ceases to form since the ground cannot be replenished by
water vapour from above. If the turbulence is too high,
mixing inhibits surface radiative cooling to below dew-
point temperature.

The probability of occurrence of heavy dews would be
highest when the difference between mean minimum
monthly temperature and dew-point temperature is
smallest combined with the highest mean monthly rela-
tive humidity values and lowest mean monthly night-time
wind speeds. These conditions are most frequent during
the autumn (April–May) in summer-rainfall areas, and
during mid winter (July–August) in winter-rainfall areas.
Overall, dew as a phenomenon, and especially as a poten-
tial source of water not only for higher plants, but more so
for the lower plant components of soil crusts (e.g. algae),
has received little investigation.

The amount of moisture delivered by dew and its uti-
lization is uncertain, but dew differs measurably from rain
in terms of its predictability. Long-lived perennial plants

would only be able to survive in a desert receiving less than
50 mm yr–1 if there was some form of predictability in the
moisture regime. Low rainfall is highly variable. Dew is a
common occurrence, but how much water this makes
available to plants is unknown. Fog is potentially a substan-
tial water source and its predictability is far greater than
that of rainfall. Plants inhabiting the fog zone of the south-
ern Namib Desert should possess a unique suite of ecologi-
cal characteristics of morphological/physiological features
which enable them to utilize these alternative sources of
moisture. This is a ripe area for further research.

1.2.2. Reliability of sources of moisture
The reliability of different sources of moisture across the
karoo has important ecological implications. In 1.2.1.
(Fog), it was shown that, for the west coast, fog as a source
of moisture for plant growth is far more reliable in terms
of frequency or predictability of occurrence than rainfall.
It is not known if the same holds true for dew.

Rainfall across the karoo decreases from east to west
and from south to north. Similarily, rainfall variability,
expressed as co-efficient of variation (CV), follows a similar
trend. This is to be expected, since CV is log-linearly related
to mean annual rainfall (Fisher, 1994). What is more inter-
esting to compare is CV for different stations with the 
same mean annual rainfall. In Fig. 1.3, the CV of mean
annual rainfall is compared between stations in the 
Nama- (summer rain) and succulent (winter rain) karoo.
On average, the rainfall in the winter rainfall karoo is 
1.15 times more reliable than corresponding rainfall 
in the summer-rainfall karoo. This difference has 
important implications for the type of plant life-history
strategies and plant community structure and dynamics
prevalent in the different regions of the karoo (e.g.
Hoffman and Cowling, 1987; Cowling and Hilton-Taylor,
this volume).

1.2.3. El Niño in southern Africa
El Niño is a phenomenon that usually begins with the
relaxation of the normally intense easterly trade winds
that drive the westward equatorial surface currents and
expose cold waters to the eastern Pacific surface
(Philander, 1992; Preston-Whyte and Tyson, 1988). When
these winds relax, they allow the warm surface waters,
that have piled up in the western Pacific, to surge east-
wards taking with them the region of heavy rainfall. Thus,
the central Pacific, usually an arid zone, receives abnor-
mally high torrential rains. In contrast, eastern Australia
and the western Pacific islands, the usual recipients of
these rains, experience drought. However, this effect is not
restricted to the Pacific, but is linked to similar phenom-
ena in both the Indian and Atlantic Oceans by what has
been termed the Southern Oscillation (Philander, 1992),
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Figure 1.2 The relative frequency distribution of mean annual rainfall
for rainfall stations in the arid zone of southern Africa in relation to
surrounding biomes. The data used in this figure were obtained from
the Computing Centre for Water Research (University of Natal)
database for South Africa weather stations. Additional data for
Angola and Namibia were obtained from Lebedev (1970) and the
South African Weather Bureau, respectively. Stations were
classified according to biome and Veld Type



an irregular, interannual fluctuation in ocean air
pressure.

The implications for southern Africa are profound.
With the relaxation of the easterly Trades, the inflow of
moist tropical air over the subcontinent subsides. Thus,
regions of the karoo that rely on this tropical source of
moisture, essentially the summer-rainfall karoo, experi-
ence abnormally low rainfalls. By contrast, the belt of
westerly cyclones that brings winter rain to the region
remains unaffected by the Southern Oscillation. This, in
part, could explain the differences in reliability of annual
rainfall in the Nama- and succulent karoo discussed in the
previous section.

1.3. Temperature

There are five major characteristics in the distributions of
mean annual temperature across the subcontinent
(Schulze and McGee 1978):

• an expected overall temperature increase towards
the equator;

• isotherms parallel to the coast over most of the area,
which exhibit decreasing values with distance
inland, reflecting the effects of continentality;

• the effects of the cold Benguela and warm Agulhas
currents moving northwards and southwards on the
west and east coast, respectively;

• the temperature irregularities induced by topo-
graphic variation on the subcontinent, for instance
the lower temperatures along the escarpments on
the perimeter of the subcontinent (<14 °C) or the
higher temperatures along the Orange River valley
(>22 °C);

• highest mean annual temperatures which occur in
areas with highest continentality, namely the
Orange River trough. These areas also experience the
greatest range in mean annual temperature
(Werger, 1986);

The annual range of temperature shows a matching char-
acteristic with the smallest ranges (<6 °C) along the west
coast; and the greatest values (>16 °C) over the southern
Kalahari and northern karoo, where the ameliorating
effect of cloud is generally absent. High temperatures, low
relative humidity and little to no cloud cover is character-
istic of the karoo, especially the central areas. This results
in large annual and daily ranges in temperature. This is a
characteristic of arid climates generally (McGinnis, 1979).
The exception is the west coast where there is an abun-
dance of moisture in the air due to the predominately
onshore sea breeze, relative humidity is high, and temper-
ature is regulated by the cold Benguela current

The annual march of temperature in the region reflects
both the coastal and continental patterns characteristic of
the subcontinent. Coastal stations along the west coast
generally show a lag of one month in maximum and mini-
mum temperatures; thus, February and August are the
two extremes. This is due to the lag in the heating and cool-
ing of the ocean current, which exerts a strong regulating
effect on these coastal climates. These coastal stations also
show the temperature anomaly of recording their highest
maximum temperatures in midwinter due to the sudden
heating effect of warm berg winds blowing off the plateau
this time of year (Schulze, 1965).

Mean daily minimum temperatures in the region are
highest along the west coast and increase equatorwards
with again the escarpment and high-lying areas of the
plateau showing the coldest minimum temperatures
(Schulze and McGee, 1978). In the karoo, the lowest mean
minimum temperatures are found towards the centre of
the subcontinent, and show the effect of both continental-
ity and altitude (Werger, 1986). With the exception of the
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Figure 1.3 Co-efficient of variation (CV) of mean annual rainfall for
the succulent karoo vs. Nama-karoo. Equations for the curves are y
= 0.0008148x + 1.71868 and y = 0.0006154x + 1.778731, respec-
tively. The slopes are not significantly different (p = 0.1004) but the
intercepts are significantly different (p = <0.0001)



coastal and northern subtropical Namib Desert, the entire
karoo area falls within the line of 50% probability of receiv-
ing frosts during winter (Schulze, 1965). High-lying areas
of the escarpment and central plateau are especially frost-
prone.

1.4. Cloud and light

At the regional scale, light is not considered limiting 
to plant growth in the karoo. Skies are normally clear 
and sunshine is abundant. Cloudiness is normally at a
maximum during the morning hours in the winter
rainfall areas, including parts of the central Namib
(Schulze, 1965), but an afternoon maximum is normal for
most of the summer rainfall area. During winter, cloud-
less conditions in the central karoo may persist for weeks
on end.

The average annual duration of bright sunshine is
more than 80% of the daylight hours in most of the region.
Along the coast of Namibia, the average duration may
drop below 50% in some places owing to fog and low cloud
(see 1.2.1. Fog). Despite the abundance of light, energy for
growth is limiting for many organisms growing during
the cool winter months of the succulent karoo. Plant traits
such as the northward curvature of the stem in
Pachypodium namaquanum (Rundel et al., 1995), psam-
mophily across a range of genera (Jürgens, 1996) and spi-
ral-surfaced leaves in bulbous monocots, have been sug-
gested as being adaptations to maximizing energy
absorption by these winter growing plants (Midgley and
Van Der Heyden, this volume).

1.5. Wind

The prevailing wind direction along the west coast is paral-
lel to the coast, predominately from the southern quarter.
Ecologically, these southerly sea breezes and the frequent
warm, dry offshore berg winds play an important driving
role in this arid coastal system (Desmet, 1996; Louw and
Seely, 1982; Lancaster, 1989). In the western interior,
winds in summer are mainly from the south-west and in
winter from the north; in the eastern interior they are
south-easterly and north-westerly, respectively. Mostly,
these winds are dry. Dust devils and small whirlwinds are
frequent in the interior in summer, but dust-storms are
uncommon except in the coastal belt in winter due to berg
winds. In the interior, winds are, for the most part, local in
nature, such as valley winds due to local topographic relief
(Schulze and McGee, 1978; Werger, 1986).

1.5.1. Berg winds
Berg winds are important features of coastal climates and
are associated with large-scale pre-frontal divergence and
dynamic warming of subsiding air moving offshore from
the plateau (Preston-Whyte and Tyson, 1988). Berg winds
may blow for several days or only a few hours, and are most
common in late winter and early spring. They result in the
anomaly of highest maximum temperatures being
recorded in winter at many coastal stations. The strong off-
shore effect of berg winds on the west coast may produce
significant dust plumes blowing over the coastal plain,
and across the ocean on the west coast. The impact of berg
winds on plants is discussed in Von Willert et al. (1992)

1.6. The weather systems of the karoo

Reference has already been made to the average atmos-
pheric circulation patterns that determine the climate of
southern Africa. In this section we explore some of the
major deviations from these average conditions – events
that influence the weather of the karoo. This account
draws mainly on Preston-Whyte and Tyson (1988), while
other sources include Heydorn and Tinley (1980), Schulze
(1965) and Tyson (1987).

Throughout the year, the average circulation of the
atmosphere over southern Africa is anticyclonic. This sub-
tropical control is effected through the South Indian anti-
cyclone, the continental high and the South Atlantic anti-
cyclone. During winter, this continuous band of high
pressure intensifies and moves northwards, while the
upper level westerlies expand and displace the tropical
easterlies equatorward. During summer, the continental
high is displaced by low pressure conditions that arise in
response to surface heating, and the oceanic anticyclones
move southwards (about 6°), displacing the westerly
airstream. Following Preston-Whyte and Tyson (1988), we
recognize three categories of circulation patterns that
influence the weather of the karoo: (1) fine-weather condi-
tions, (2) tropical disturbances, and (3) temperate distur-
bances.

1.6.1. Fine-weather conditions

Subtropical anticyclones
These conditions, associated with a strongly subsiding air
mass, fine and clear conditions, and no rainfall, prevail
over most of the interior plateau (including the bulk of the
karoo) during the winter months. Anticyclonic conditions
during summer are less common; however, when they pre-
vail for extended periods they result in severe heat waves
and desiccation. In the already arid karoo, ecosystems are
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subject to severe stress when summer heat waves persist
for more than a week.

Coastal lows
Coastal lows, which have their highest frequency during
the winter months, are associated with the generation of
localized cyclonic vorticity as a result of the westward
movement of air off the high plateau. They are initiated on
the west coast, move southward to Cape Town, and thence
eastward and north-eastward along the coast. Like cold
fronts, they produce a substantial drop in temperature.
However, they seldom result in precipitation other than
orographic mist and fine drizzle, usually confined to the
coastal margin. Thus, their influence on the climate of the
karoo is largely restricted to the arid and semi-arid west
and south coast regions (Namib Desert, Namaqualand and
Little Karoo). 

1.6.2. Tropical disturbances

Easterly waves and lows
Easterly waves and lows result from disturbances in the
tropical easterly flow, at the junction of the inter-tropical
convergence zone and the subtropical high-pressure belt.
Moist air, sucked in from the north, is carried upwards by
the diverging air mass, resulting in widespread and pro-
longed rains behind (to the east) the trough. These rains,
whose regularity distinguishes abnormally wet years in the
summer-rainfall region, have their highest frequency in
mid-summer. Ahead of, and to the west of the trough (the
region which includes much of the karoo) subsiding air
masses ensure no rainfall, clear skies and hot conditions.

Subtropical lows
During summer, when the upper westerly waves are remote,
low-pressure cells may develop in the upper troposphere.
These conditions are usually associated with heavy rainfall
in the central and eastern parts of the subcontinent.

1.6.3. Temperate disturbances

Westerly waves
Westerly waves are associated with disturbances in the
westerly airstream. To the rear of the surface trough, cloud
and precipitation occur in unstable air; ahead of the
trough, stable air ensures clear, fine weather. These distur-
bances, which are rarely observed during winter, have
their highest frequency in the spring and autumn months.
Rainfall seldom extends inland of the Great Escarpment.

Cut-off lows
Cut-off lows, which have a profound influence on the cli-
mate of southern karroid regions, are a more intense form

of the westerly trough. The depression starts as a trough in
the upper westerlies and deepens, extending downwards
to the surface. In doing so, the low is displaced northwards
and ‘cut-off’ from the westerly current. These deep lows
are a source of major divergence and account for many
flood-producing rains in the southern karroid regions (e.g.
the Laingsburg floods of 1981). Cut-off lows have their
highest frequency during spring and autumn, but their
overall occurrence is highly unpredictable.

Southerly meridional flow
When a deeply penetrating cold front (see Cold fronts) is
followed by a well-developed high-pressure cell, a strong
zonal pressure gradient develops between the two
systems. These condition produce a trough in the upper
atmosphere which overlies the convergence zone west of
the surface trough or cold front. The resulting vertical
motion produces rain, usually confined to the coastal
seaboard west of Cape Agulhas. Thus, only parts of the
Little Karoo are affected by these conditions, which have
their highest frequency in the spring months. The
southerly meridional flow is also associated with a sharp
drop in temperatures over most of the subcontinent, as
cold Antarctic air is advected inland.

Ridging anticyclones
When the South Atlantic High ridges around the subconti-
nent after the passage of a westerly wave in the upper
atmosphere, widespread rains often fall in the eastern
parts of the subcontinent. This rain results form the steep
pressure gradients which advect moist, unstable air over
the land. Orographic rain may be particularly intense. In
the south-west, subsiding air associated with anticyclonic
conditions brings clear, fine and hot weather, often
accompanied by strong south-easters. This circulation
type brings rainfall to the eastern part of the country
throughout the summer months but with a slight ten-
dency for maximum frequencies of occurrence in October
and February.

West-coast troughs
Widespread rains over western South Africa occur with
the coincident appearance of a surface trough on the west
coast and an upper tropospheric westerly wave to the west
of the continent. These conditions most frequently (albeit
rarely) occur in early summer and autumn.

Cold fronts
Cold fronts are major disturbances in the westerly air
stream that produce characteristic cold snaps. They occur
together with westerly waves, depressions or cut-off lows,
and should not be considered in isolation from these sys-
tems. However, they occur most frequently in winter,
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when the westerly belt penetrates furthest northwards.
Ahead of the front, northerly winds associated with diver-
gence and subsidence produce cloud-free conditions. At
the rear of the front, conditions favourable for convection
result in widespread rain, especially along the west and
south-western coasts. Depending on the strength of the
front, rain may be very widespread. Snow may fall on high-
lying ground. Deep fronts penetrate well beyond the Cape
Fold Belt and even the Great Escarpment. Post-frontal con-
ditions are invariably cold and sometimes wet (in the east),
especially if the front is followed by a well-developed high
pressure cell (see Ridging anticyclones).

1.6.4. Other rain-producing systems

Thunderstorms
Much of the rainfall in the eastern, summer rainfall
region is of convective origin. Thunder-storm activity is a
complex phenomenon, being dependent on the diurnal
heating cycle, synoptic conditions and regional and local
effects. However, karroid regions, especially along the
west coast, experience very few thunderstorms: fewer
than 20 thunder days per year are experienced in the west-
ern Upper karoo (as opposed to 80 days on the eastern
highveld).

Development of the continuous high-pressure
cell

At the end of the summer rainfall season, towards the end
of March, a single high-pressure cell (linking the South
Atlantic and Indian anticyclones) develops over the sub-
continent. This results in a northerly flow of moist air
from the tropics over the western parts of southern Africa,
including much of the karoo. The influx of moist air is
largely responsible for the autumn rainfall maximum for
these arid, western regions.

1.7. An ecological interpretation of the
weather patterns of the karoo: the role
of climate in understanding vegetation
patterns

Previous analyses of the climate of southern Africa have
failed to provide a convincing classification of the climate,
i.e. one that provides an adequate and meaningful biogeo-
graphical subdivision of the subcontinent. In this section,
we do not attempt a comprehensive reclassification of the
subcontinents’ climate, but instead present a new analysis
of the climate of the karoo to stress the driving role that
climate plays in determining landscape-scale vegetation
patterns.

The availability of water is generally considered as the
greatest limitation of plant growth and distribution
(Woodward, 1987). There have been a number of
classifications of southern Africa’s climate, the most well
known are probably those of Köppen, Holdridge and
Thornthwaite. No attempt is made here to discuss these
classifications further, as these have been adequately
reviewed elsewhere (Schulze, 1947; Preston-Whyte, 1974;
Schulze and McGee, 1978).

Other biogeographic climatic classifications of south-
ern Africa include those of Jackson (1951), Preston-Whyte
(1974) and Rutherford and Westfall (1986). In all cases,
rainfall emerges as the primary driving variable. More
importantly, though, the distinction between summer
and winter rainfall maxima has emerged as the primary
explanatory variable (Preston-Whyte, 1974; Rutherford
and Westfall, 1986). The bulk of this chapter has been
aimed at providing ecologist with a functional under-
standing of rainfall patterns in the karoo.

Consequently, the models produced attempt to sum-
marize the range and variation in rainfall in a few mean-
ingful indices. Such indices include the usual descriptive
statistics of climate (e.g. mean annual rainfall, percentage
winter rainfall, mean monthly temperature, etc.);
climatic indices such as the summer aridity index (SAI)
(Rutherford and Westfall, 1986) or Thornthwaite’s
climatic indices (Schulze, 1947; Schulze and McGee, 1978);
and CV (Jackson 1951). These indices fail to integrate a
number of important features of the regions’ climate.
These features are firstly, the lower, more variable rainfall
expected in an arid zone (e.g. summer aridity index).
Secondly, the three dimensions of the annual march of
rainfall discussed earlier that arise as a result of the
different weather systems influencing the regions’ cli-
mate. Thirdly, the variability in occurrence and intensity
of individual rainfall events. Consequently, the analyses
fail to produce a climatic map of southern Africa that ade-
quately explain plant biogeographic patterns. In the
following sections, we have attempted to address these
problems.

In addition to moisture, temperature needs to be
considered. Temperature alone is not a significant factor
in determining major regional vegetation patterns,
although its indirect influence on water availability
through its effects on, for instance, evapotranspiration
rates is of primary importance (Schulze and McGee, 1978).
On a meso- or micro-scale it does play a major part in deter-
mining plant patterns; this scale of variation will not be
adressed here. Critical temperature indices therefore, like
summer and winter maxima and minima (and associated
frosts) or ranges are of more significance to plant distribu-
tion. The important distinction between temperature and
rainfall patterns is that the annual march of temperature
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follows a relatively simple curve, readily tractable with
these summary statistics.

1.7.1. The model
In our analyses, we have not attempted to provide a
detailed classification of karoo climates, but have rather
emphasized the intimate link between landscape vegeta-
tion patterns and climate. This classification differs
significantly from previous efforts principally in the man-
ner in which rainfall is incorporated into the analysis.
Instead of using solely descriptive statistics (means or CV)
or climatic indices (SAI), we use a novel approach of fitting
the monthly rainfall data to a mathematical model to
approximate the actual shape of the annual march of rain-
fall. Thus, it is possible to explicitly incorporate, in a rela-
tively few values (model parameters), all three dimensions
of the annual march of rainfall. What we fail to incorpo-
rate, however, is the variability between individual rain-
fall events, as this would require a considerably greater
amount of time for collation of the raw data.

Y = k + (c1.cosqi + s1.sinqi) + (c2.cos2qi + s2.sin2qi) + (c3.cos3qi

+ s3.sin3qi)

Monthly rainfall and temperature data for all karoo
weather stations (with both rainfall and temperature
data) were extracted from the Computational Center for
Water Research (CCWR). Additional data for Namibia and
Angola were obtained from the South African Weather
Bureau and Lebedev (1970). The monthly rainfall data for
each station was fitted to Equation 1, where, y represents
mean monthly rainfall; and, qi the month expressed in
degrees, such that January equals 15°, February 45°,
March 75°, etc. Thus, for the ordination, rainfall was repre-
sented by the above seven parameters (k, c1, s1, c2, s2, c3,
s3); plus, the amount of summer (September to March,
summer) and winter (March to September, winter) rain-
fall; percentage winter rainfall (% winter); and, total
annual rainfall (avg rain).

Temperature, on the other hand, is comparatively
simple to model. Temperature does not show the same
degree of plasticity as rainfall. Generally, it is easily repre-
sented by a simple sinusoidal curve. Thus, descriptive
variables such as mean annual maximum (avg max) and
minimum (avg min); and highest maximum (max) and
lowest minimum (min) temperature, adequately describe
the annual march of temperature. All these variables,
except average annual temperature were used in the
analysis.

The final data set with 100 weather stations and 15
climatic variables were subjected to correspondence
analysis (CA). The eigenvalues and percentage variance
explained for the first four axes of the ordination are pre-
sented in Table 1.1. The ordination of the first and second

axis and first and third are presented in Figs. 1.4(a) and
1.4(b), respectively.

The first axis of the ordination is representative of sea-
sonality of rainfall and explains most of the variance in
the data. Percentage winter rainfall clearly separates the
Succulent from the Nama-karoo. This axis also correlates
well with the type of rainfall curve, where c1, s1 and s2 are
indicative of summer maxima regimes; and, c3 and s3 with
winter maxima. c2 represents bimodal rainfall curves and
lies near the origin of the axis. Stations lying far from the
first axis have less distinct rainfall curves tending towards
aseasonal rainfall types. The second and third axes sepa-
rate stations based on temperature. The results are dis-
cussed with regard to the vegetation types in the following
section.

1.7.2. Discussion: vegetation–climate relationships
This analysis has shown a clear and effective separation of
karoo climate stations that is consistent with a biome-
level, and, to a lesser degree, vegetation type-level
classification. In this section we discuss the relationships
between vegetation and climate, with special emphasis on
the weather systems presented in section 12.

Succulent karoo
At the biome scale, succulent karoo sites separate from the
rest on the basis of low annual rainfall (Fig. 1.2), high per-
centage winter rain, high absolute and average minimum
temperatures, and parameters from the non-linear regres-
sion model associated with strong winter peaks (c3 and s3)
in the annual march of rainfall (Figs. 1.4(a) and 1.4(b)).
Some of these associations have been described by many
authors in the past (Werger, 1986; Rutherford and
Westfall, 1986; see also Cowling and Hilton Taylor, this
volume). However, little attempt has been made to explain
these patterns in terms of the frequency and reliability of
occurrence of the prevailing weather systems. This we do
below.

The entire succulent karoo receives its rainfall from
weather systems associated with disturbances in the west-
erly stream. The three western vegetation types of the
Namaqualand–Namib Domain (Cowling and Hilton
Taylor, this volume), namely strandveld, lowland and
upland succulent karoo, receive the bulk of their rain
from cold fronts during the winter months. Peak occur-
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Table 1.1. Eigenvalues and cumulative percentage variance explained
for the first four axes of the correspondence analysis of the climate
data for the karoo

Axes 1 2 3 4 Total inertia

Eigenvalues 0.094 0.038 0.013 0.009 0.177
Cumulative percentage
variance of climate data 53.4 75.2 82.7 88.0



rence of fronts, and hence rainfall, is during the mid-
winter months (Fig. 1.1(b)). In southern Africa, the equator-
wards penetration of the westerly airstream is greatest
among all continents (Preston-Whyte and Tyson, 1988);
hence the high frequency and reliability of winter rainfall
events in both a regional (Fig. 1.3) and global context (Esler
et al., this volume). 

The two strandveld succulent karoo stations were sepa-
rated on the basis of highest percentage winter rain and
highest minimum temperatures. These coastal sites receive
almost no summer rain and are under the ameliorating
influence of the Atlantic Ocean. The remaining sites show a
clear trajectory in the multivariate graph, associated with
increasing annual, summer, and winter rainfall. In geo-
graphical space this gradient moves in an easterly (lowland
to upland succulent karoo) and south-easterly (Little
Succulent Karoo) direction. The former areas receive more,
albeit unpredictable warm season (mainly February-April)
rainfall associated with west-coast troughs, thunderstorms

and the autumnal northerly flow of moist, tropical air (see
1.6.4. Development of the continuous high-pressure cell). Higher
altitudes result in a more pronounced continentality.

The Little Succulent Karoo covers a large tract of multi-
variate space. This is consistent with its location as transi-
tional between winter and summer rainfall conditions.
Some sites cluster near upland succulent karoo, others
near central and eastern Nama-karoo in the south and
south-eastern karoo regions, respectively (Figs. 1.4(a) and
1.4(b)). While the Little Karoo does receive a substantial
proportion of its rain from winter, westerly fronts (Fig.
1.1(b)), most frontal rains fail to penetrate the barriers
afforded by the Cape Fold Belt. The largest rainfall events
in the Little Karoo are invariably associated with the less
predictable cut-off lows, westerly waves, southern merid-
ional flows, and ridging anticyclones. These systems gen-
erally have their highest frequency of occurrence in spring
and autumn, thus explaining the bimodal peaks in the
annual march of rainfall (Fig. 1.1(b)). This is also consistent

14 P. G. Desmet and R. M. Cowling

Figure 1.4(a) Ordination axes I
and II of weather stations in
the karoo. See text for
explanation of climatic
parameters



with the non-linear regression parameter which describes
bimodal rainfall curves, c2, located in the centre of the
ordination diagrams (Figs. 1.4(a) and 1.4(b). The relatively
strong association between Little Karoo sites and the
amount of winter rainfall stems from our delineation of
winter to include March and September, prime months
for equinoctial rains associated with the weather systems
mentioned above. Indeed, the proximity of total winter
and summer rainfall in the ordination space (Fig. 1.4(a)) is
a result of the inclusion of these months in delineating
both seasons, and the fact that many karoo sites receive
substantial equinoctial rain (Fig. 1.1(b)).

Nama-karoo
Nama-karoo sites are associated with higher maximum
temperatures, bimodal (c2) or strongly seasonal (c1, s1)
rains, and, for some areas at least, relatively high rainfall,
especially during summer (see also Rutherford and
Westfall, 1986). 

The eastern mixed Nama-karoo, which grades into the
grassland biome of the east-central plateau of South
Africa, is largely distinguished on the basis of higher rain-
fall, especially during summer (Figs. 1.4(a) and 1.4(b)). This
vegetation receives a great deal of its rainfall from tropical
disturbances during the summer months. However,
equinoctial rains associated with cut-off lows, etc. are also
important, as are winter rains (and snowfalls) derived
from occasional, deep cold fronts. Being centrally located,
this vegetation type receives the fringe of all major
weather systems in southern Africa.

The remaining Nama-karoo vegetation types are sepa-
rated from eastern mixed Nama-karoo by stronger
bimodality (central Nama-karoo), stronger seasonality
(upper Nama-karoo), higher maximum temperatures
(Orange River Nama-karoo), and higher maximum and
higher minimum temperatures (Bushmanland Nama-
karoo). With the exception of the central Nama-karoo 
sites which receive their rainfall from the same weather
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Figure 1.4(b) Ordination axes I
and III of weather stations in
the karoo. See text for
explanation of climatic
parameters. Symbols for
stations correspond to those
used in Fig. 1.4(a)



systems as the eastern mixed karoo, these more western
Nama-karoo areas receive their largely autumnal rains
(Figs. 1.4(a) and 1.4(b)) from west-coast troughs, thunder-
storms and late-season influx of tropical air. The occur-
rence of these rainfall events is highly unpredictable. The
combination of low and unpredictable rainfall, and
extremely high summer temperatures, makes these some
of the harshest environments in the karoo.

Desert
Rather than a biogeographically and climatically delin-
eated region, the Namib Desert is a loosely defined geo-
graphical area (Jürgens, 1991; Cowling and Hilton Taylor,
this volume). This is evident from the large range of multi-
variate space occupied by the four desert sites used in 
this analysis (Figs. 1.4(a) and 1.4(b)). Low-rainfall coastal
sites in the central Namib (Luderitz and Walvis Bay) 
are closely clustered with strandveld succulent karoo,
regarded by many (e.g. Jürgens 1991; Desmet, 1996) as a
southern extension of the Namib Desert. Closely related to
these two sites is Namibe in southern Angola. The fourth
site, Lobito, at the most northern extremity of the Namib
cannot be separated from Orange River Nama-karoo and
can be regarded as having a similar climate (Fig. 1.1(b)).

In the context of the arid zone of southern Africa, the
Namib is a special case, as the hyper-arid conditions that
prevail are regarded as a palaeo feature (Ward et al., 1983).
This is due to a permanent temperature inversion over
cold Benguela current and adjacent landmass. As a result,
warm air-currents from the east are blocked and the daily

south-westerly sea breeze dominates, bringing cool,
humid air (Walter, 1986). Thus, the core area of this
climatic zone has remained stable in the face of the palaeo
climatic fluctuations that affected other parts of the
karoo. The consequences for the evolution of life forms
unique to this system are discussed elsewhere (Cowling
and Hilton-Taylor, this volume; Vernon, this volume).

1.8. Conclusions

Two-thirds of southern Africa have an arid to semi-arid cli-
mate, but the causes of this aridity are varied. Generally,
aridity of the subcontinent is due to the presence of sub-
tropical descending air (high-pressure cells), although the
Namib Desert is a special exception. Higher rainfall
regions in the karoo are due to the penetration of tropical
systems (north-east) and regular penetration of westerly
fronts and associated weather systems (south-west). The
remainder of the region is located in a position that is mar-
ginal to these systems. Aridity is most pronounced along
the west coast, but the succulent karoo has most reliable
rainfall. Aridity is least pronounced to the north-east
where the karoo grades into grasslands, and central areas
have the least reliable rainfall and most extreme energy
conditions. The great diversity of climatic determinants
and associated patterns must play a pivotal role in the
extremely varied patterns and processes associated with
the biota of the karoo.
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