Fungal Morphogenesis

Fungal Morphogenesis brings together in one book, for the first time, the full scope of fungal developmental biology. The book provides a coherent account of the subject and puts forward ideas that can provide the basis of future research. The treatment also releases morphogenesis from the confines of mycology, showing how and why this eukaryotic kingdom deserves to be in the mainstream of developmental research.

Throughout, the author blends together physiological, biochemical, structural and molecular descriptions within an evolutionary framework, combining the older literature with the most recent. Sufficient information is provided about fungal biology to give the reader a rounded view of the mycological context within which fungal morphogenesis is played out, without obscuring the broader biological significance. Jargon is avoided, technical terms demystified and readers with a knowledge of basic biology should not need to bring any other knowledge with them, nor need to refer elsewhere, in order to appreciate fungal morphogenesis.

Written by one of the few people with the necessary breadth of research expertise to deal authoritatively with the wide range of topics, this book will appeal to developmental and cell biologists, microbiologists, and geneticists.

David Moore is a Reader in Genetics in the School of Biological Sciences at the University of Manchester. He is currently Executive Editor of the journal Mycological Research, and a past President of the British Mycological Society. He is a Fellow of the Linnean Society of London and is Vice-President of the European Society for Gravitational Biology and Space Medicine. He has authored over 120 papers in professional journals and has coedited five books, the most recent being Patterns in Fungal Development.
Developmental and Cell Biology Series
SERIES EDITORS
Jonathan B. L. Bard, Department of Anatomy, Edinburgh University
Peter W. Barlow, Long Ashton Research Station, University of Bristol
Paul B. Green, Department of Biology, Stanford University
David L. Kirk, Department of Biology, Washington University
The aim of the series is to present relatively short critical accounts of areas of developmental and cell biology where sufficient information has accumulated to allow a considered distillation of the subject. The fine structure of cells, embryology, morphology, physiology, genetics, biochemistry and biophysics are subjects within the scope of the series. The books are intended to interest and instruct advanced undergraduates and graduate students and to make an important contribution to teaching cell and developmental biology. At the same time, they should be of value to biologists who, while not working directly in the area of a particular volume’s subject matter, wish to keep abreast of developments relevant to their particular interests.
RECENT BOOKS IN THE SERIES
18. C. J. Epstein The consequences of chromosome imbalance: principles, mechanisms and models 0521 25464 7
19. L. Saxén Organogenesis of the kidney 0521 30152 1
20. V. Raghavan Developmental biology of the fern gametophytes 0521 33022 X
21. R. Maksymowych Analysis of growth and development in Xanthium 0521 33527 0
22. R. John Moosis 0521 35053 0
23. J. Bard Morphogenesis: the cellular and molecular processes of developmental anatomy 0521 43612 5
24. R. Wall This side up: spatial determination in the early development of animals 0521 36115 X
25. T. Sachs Pattern formation in plant tissues 0521 24865 5
26. J. M. W. Slack From egg to embryo: regional specification in early development 0521 40943 8
27. A. I. Farbman Cell biology of olfaction 0521 36438 8
28. L. G. Harrison Kinetic theory of living pattern 0521 30691 4
29. N. Satoh Developmental biology of Ascidians 0521 35521 5
30. R. Holliday Understanding ageing 0521 47882 2
31. P. Tzinis Limb regeneration 0521 44149 8
32. R. Rappaport Cytokinesis in animal cells 0521 40173 9
33. D. L. Kirk Follicle: molecular genetic origins of multicellularity and cellular differentiation 0521 45207 4
34. R. Lyndon The shoot apical meristem: its growth and development 0521 40457 6
35. D. Moore Fungal morphogenesis 0521 55295 8
FUNGAL MORPHOGENESIS

DAVID MOORE
Living is easy with eyes closed,
Misunderstanding all you see.

Strawberry Fields
John Lennon (1966)
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
</tbody>
</table>

1 **Fungi: a Place in Time and Space**
 1.1 Fungal lifestyle | 4
 1.2 The essential nature of fungi | 8
 1.3 Evolutionary origins | 9
 1.4 Evidence from fossils | 16
 1.5 Origin of development | 18
 1.6 Evolution within kingdom Fungi | 19
 1.7 Horizontal transfer of genetic information | 22
 1.8 Comparing and combining | 23

2 **Hyphal Growth**
 2.1 Fungal cells | 27
 2.2 Hyphal tip extension | 30
 2.2.1 Structure of the hyphal wall | 31
 2.2.2 Growth at the tip: the problem | 35
 2.2.3 Growth at the tip: towards a solution | 36
CONTENTS

2.2.4 Strategies for synthesis 39
 2.2.4.1 The hyphoid model 39
 2.2.4.2 The steady state or ‘soft spot’ model 41
 2.2.4.3 Hybrid models and modifications 41

2.2.5 Growth at the tip: a consensus model of tip growth 43

2.3 Septation 48

2.4 Branching 53

2.5 Growth kinetics 60

2.6 Dynamic boundaries 63

3 Metabolism and Biochemistry of Hyphal Systems 71

3.1 Nutrients in nature 72

3.2 Extracellular polymer-degrading enzymes 74
 3.2.1 Polysaccharide degradation 74
 3.2.2 Lignin degradation 80
 3.2.3 Protein degradation 82
 3.2.4 Lipases and esterases 84
 3.2.5 Phosphatases and sulfatases 84

3.3 Production, location, regulation and use of degradative enzymes 85
 3.3.1 Production 85
 3.3.2 Location 86
 3.3.3 Regulation 87

3.4 The menu of basic nutrients 87

3.5 The wall and membrane as barriers 88
 3.5.1 Barriers to the extracellular environment 88
 3.5.2 Transfer across the plasma membrane 89
 3.5.3 Barriers within the cell: compartments 89

3.6 The flow of solutes 90
 3.6.1 Solute behaviour in solutions 90
 3.6.2 Transport systems 91

3.7 Transport strategy 93

3.8 Water relationships 95

3.9 Intermediary metabolism 98

3.10 Carbon metabolism 98
 3.10.1 Glycolysis: conversion of glucose to pyruvate 99
 3.10.2 The tricarboxylic acid (TCA) cycle: oxidation of pyruvate 102
 3.10.3 Oxidative phosphorylation 103
 3.10.4 Gluconeogenesis and the synthesis of carbohydrates 105
CONTENTS

3.11 Fat catabolism 107
3.12 Nitrogen metabolism 108
 3.12.1 Formation of amino groups 108
 3.12.2 Disposal of excess nitrogen 111
3.13 Secondary metabolism 112
 3.13.1 Definition 113
 3.13.2 Main fungal pathways and products 113
 3.13.2.1 The mevalonic acid pathway: terpenes, carotenoids and sterols 114
 3.13.2.2 The malonate pathway: polyketides 120
 3.13.2.3 Other secondary metabolic pathways 123
 3.13.3 Regulation 128
 3.13.4 Role 130

4 Physiological Factors Favouring Morphogenesis 134
 4.1 Nutrition 138
 4.1.1 Carbohydrates in the substratum 138
 4.1.2 Nitrogen sources in the substratum 140
 4.2 Adaptations of metabolism 141
 4.2.1 Turnover of cellular polymers 141
 4.2.2 Intermediary carbon metabolism 154
 4.2.3 Intermediary nitrogen metabolism 156
 4.2.4 Adenosine 3′:5′-cyclic monophosphate (cAMP) 168
 4.2.5 Mannitol accumulation 173
 4.3 Environmental variables 176
 4.3.1 Nature of the substratum 176
 4.3.2 Constraints edges and injuries 178
 4.3.3 Light 181
 4.3.4 Temperature 186
 4.3.5 Aeration 187
 4.3.6 Physiological generalisations 189

5 The Genetic Component of Hyphal Differentiation 191
 5.1 Nuclear divisions 193
 5.1.1 Mitosis 193
 5.1.2 Meiosis 194
 5.1.3 Post-meiotic events 196
 5.2 Sexuality in fungi 200
 5.2.1 The mycelium as an individual 201
 5.2.2 Mating control systems 206
CONTENTS

5.2.2.1 Mating type factors of *S. cerevisiae* 207
5.2.2.2 Mating type factors in *Neurospora crassa* 209
5.2.2.3 Mating type factors in some basidiomycetes 210
5.2.2.4 Overview 215

5.3 Shape and form in yeasts and hyphae 216
5.3.1 Yeast-mycelial dimorphism 218
5.3.2 Conidiation 222
5.3.2.1 Genetics of conidiation in *Aspergillus nidulans* 223
5.3.2.2 Molecular aspects of the control of conidiation in *Aspergillus nidulans* 224
5.3.2.3 Conidiation in *Neurospora crassa* 228

5.4 Sexual reproductive structures 229
5.4.1 Reproductive structures in ascomycetes 230
5.4.2 Monokaryotic fruiting in basidiomycetes 234
5.4.3 Dikaryotic fruiting in basidiomycetes 236
5.4.4 Expression of fruiting genes 239

5.5 Overview 243

6 Development of Form 246
6.1 Initiation of structures 248
6.1.1 Linear organs 249
6.1.2 Globose structures 254
6.1.3 Morphogenetic patterns 258
6.1.4 Chemoattractants in aquatic fungi 261
6.1.5 Chemoattractants in the Mucorales 265
6.1.6 Chemoattractants in yeasts 266
6.1.7 Signalling in filamentous fungi and their fruit bodies 268
6.1.8 Tropisms as morphogenetic changes 279
6.1.9 Pattern formation 281

6.2 Cell differentiation 288
6.2.1 Hyphal analysis 289
6.2.2 Quantitative hyphal analysis 297
6.2.2.1 Narrow and inflated hyphae in the fruit body stem of *Coprinus cinereus* 298
6.2.2.2 Spatial distribution of inflated and narrow hyphae 306
6.2.2.3 Developmental changes in the distribution of hyphal sizes within the stem 309
CONTENTS xi

6.2.2.4 Coordination of cell inflation throughout the maturing fruit body 312
6.2.2.5 Specific wall synthesis drives tropic bending 314

6.3 Tissue domains 317
6.3.1 Defining tissues 318
6.3.2 Inherent properties of cell mosaics 327
6.3.3 Tissue expansion as a morphogenetic factor 328
6.3.4 Embryonic gills are convoluted 337
6.3.5 Mushrooms make gills 341
6.3.5.1 Volvariella gills 343
6.3.5.2 Coprinus gills 346
6.3.5.3 Making gills 349
6.3.6 Toadstools make pores 353

6.4 Strategies of basidiomycete fruiting 358
 6.4.1 Shape as a taxonomic criterion 358
 6.4.2 Variation in shape and form 364

6.5 Commitment, regeneration and senescence 368
 6.5.1 Commitment 369
 6.5.2 Renewed fruiting as a regeneration phenomenon 373
 6.5.3 Breaking commitments 375
 6.5.4 Fuzzy logic 380

6.6 Degeneration, senescence and death 383
 6.6.1 Organismal death: hyphal and fruit body senescence 384
 6.6.2 Autolysis and programmed cell death 387

7 The Keys to Form and Structure 392
 7.1 The nature of morphogenetic control 392
 7.2 Fungal morphogenesis 396

References 405

Index 463
Preface

This book is aimed at all biologists. Certainly, I started out with the intention to write a biological text rather than a mycological one because I believe the fungi are too important to remain in an intellectual ghetto in some faintly plant-like place which most people visit rarely, and then with unease.

Throughout, I have attempted to blend together physiological, biochemical, structural and molecular descriptions within an evolutionary framework, combining the older literature with the most recent. Without attempting a comprehensive description of fungi, I hope that I have provided sufficient information about fungal biology to give the general reader a rounded view of the mycological context within which fungal morphogenesis is played out without obscuring the broader biological significance. If I have got the balance right, the reader with knowledge of basic biology should not need to bring any other knowledge with him or her, nor need to refer elsewhere, in order to appreciate fungal morphogenesis.

The first chapter aims to give an overview of the evolutionary origins of fungi and the central role they played (and still play) in the evolution of life on Earth. The second chapter introduces hyphal growth, the essence of the fungal lifestyle, and identifies features which are crucial aspects of morphogenesis. Chapter 3 summarises fungal primary and secondary metabolism, necessary here because adaptation of primary metabolism and exploitation of secondary metabolism are both critical to fungal morphogenesis. In Chapter 4 the impact of physiology on morphogenesis is discussed, the genetic components of differentiation and morphogenetic change being dealt with in Chapter 5. The development of form and structure is the main theme of a lengthy Chapter 6, and the ideas developed here are brought together and summarised in the final Chapter 7.
xiv PREFACE

I would like to thank Peter Barlow for suggesting the book in the first place and for helpful comments on the manuscript and the proof. Most of the planning, and then the writing, of this volume were done during two extended visits I was able to make to the Chinese University of Hong Kong. My sincere thanks are due to the Leverhulme Trust for the award of a Research Grant which enabled the first of these, in 1995, and also to the Royal Society for award of a Kan Tong Po Visiting Professorship which enabled my second (writing) visit to the Department of Biology at CUHK in 1996. I wish also to extend my thanks to the School of Biological Sciences and The University of Manchester for leave of absence on these occasions and to the staff in Manchester for managing to get along without me. I greatly appreciate the hospitality of the Department of Biology at CUHK, the CUHK Guesthouse system and Shaw College and particularly thank Professors Samuel Sun and Norman Woo for all they did to facilitate my visits. Special thanks are reserved for Professor Siu Wai Chiu for her constant encouragement and help. She also commented on early drafts of the manuscript and produced many of the photographic illustrations. Thanks for everything, Suzie! I also thank Ms Carmen Sánchez and Dr Halit Umar for providing me with previously unpublished photographs, Rebecca Jane Moore for advice on organic chemistry and for drawing most of the structural formulae and Sophie Anne Moore for help with index preparation. I offer my deepest appreciation to my wife and daughters for tolerating my eccentric behaviour whilst writing this book.