In their previous book, *Exchange in Oceania*, anthropologist Per Hage and mathematician Frank Harary demonstrated that models from graph theory, a branch of pure mathematics, provide the essential basis for analyzing the great variety of exchange systems in Micronesian, Melanesian, and Polynesian societies.

In this new book the authors extend these models and apply them to the analysis of communication, kinship, and classification structures in the island societies of Oceania, presenting the relevant topics from graph theory in a form accessible to the nonmathematical reader. The research problems include the formation of island empires, the social basis of dialect groups, the emergence of trade and political centers, the evolution and devolution of social stratification, the transformations of marriage and descent systems, the historical development of kinship terminologies, and the reconstruction of protosocieties.

Island Networks is at once a unique and important contribution to Oceania studies, anthropology, and social network analysis in general.
Structural analysis in the social sciences

Island networks
Structural analysis in the social sciences

Mark Granovetter, editor

Other books in the series:
Ronald L. Breiger, ed., Social Mobility and Social Structure
John L. Campbell, J. Rogers Hollingsworth, and Leon N. Lindberg, eds., Governance of the American Economy
David Knoke, Political Networks: The Structural Perspective
Kyriakos Kontopoulos, The Logics of Social Structure
Mark S. Mizruchi and Michael Schwartz, eds., Intercorporate Relations: The Structural Analysis of Business
Philippa Pattison, Algebraic Models for Social Networks
Barry Wellman and S. D. Berkowitz, eds., Social Structures: A Network Approach
Stanley Wasserman and Katherine Faust, Social Network Analysis: Methods and Applications
Philippe Bourgois, In Search of Respect: Selling Crack in El Barrio
Gary Herrigel, Industrial Constructions: The Sources of German Industrial Power

The series Structural Analysis in the Social Sciences presents approaches that explain social behavior and institutions by reference to relations among such concrete entities as persons and organizations. This contrasts with at least four other popular strategies: (a) reductionist attempts to explain by a focus on individuals alone; (b) explanations stressing the causal primacy of such abstract concepts as ideas, values, mental harmonies, and cognitive maps (thus, “structuralism” on the Continent should be distinguished from structural analysis in the present sense); (c) technological and material determinism; (d) explanations using “variables” as the main analytic concepts (as in the “structural equation” models that dominated much of the sociology of the 1970s), where structure is that which connects variables rather than actual social entities.

The social network approach is an important example of the strategy of structural analysis; the series also draws on social science theory and research that is not framed explicitly in network terms but stresses the importance of relations rather than the atomization of reductionism or the determinism of ideas, technology, or material conditions. Though the structural perspective has become extremely popular and influential in all the social sciences, it does not have a coherent identity, and no series yet pulls together such work under a single rubric. By bringing the achievements of structurally oriented scholars to a wider public, the Structural Analysis series hopes to encourage the use of this very fruitful approach.
Island networks

Communication, kinship, and classification structures in Oceania

Per Hage
University of Utah

Frank Harary
New Mexico State University and the University of Michigan
Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP
40 West 20th Street, New York, NY 10011-4211, USA
10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1996
First published 1996
Printed in the United States of America

Library of Congress Cataloging-in-Publication Data
Hage, Per, 1935–
Island networks: communication, kinship, and classification
structures in Oceania / Per Hage, Frank Harary.
 p. cm. – (Structural analysis in the social sciences)
Includes bibliographical references.
1. Ethnology – Oceania – Mathematical models. 2. Structural
anthropology – Oceania. 3. Graph theory. 4. Kinship – Oceania –
Mathematical models. 5. Social networks – Oceania – Mathematical
models. 6. Oceania – Social life and customs – Mathematical models.
I. Harary, Frank. II. Title. III. Series.
GN663.H37 1996 306'.099–dc20
306'.099–dc20 95–31639
CIP

A catalog record for this book is available from the British Library.

ISBN 0–521–55232–X hardback
To Claude Lévi-Strauss
Islands have always gripped man’s imagination.

Ernest Sabatier, *Astride the Equator*

The legitimacy of the comparative method does not rest on massive and superficial resemblances. Analysis has to take place on a level deep enough to allow us to discern, at the base of all social life, the simple features that combine into rudimentary systems, which may eventually become the stuff of more complex and more completely integrated systems with entirely new characteristics.

Claude Lévi-Strauss, *The View from Afar*
Contents

List of figures, tables, and maps page ix
Preface xv
Acknowledgments xix

1 Island networks and graphs 1
 Graph theoretic models 3
 Geographical, linguistic, and anthropological terms 17

2 Trees 22
 Basic definitions 22
 A Micronesian prestige-good system 30
 “Recursive dualism” in Austronesian classification systems 35
 Cognatic kinship networks 43
 Cycle rank and network connectedness 45

3 The minimum spanning tree problem 51
 Dialect groups and marriage isolates in the Tuamotus 52
 The evolution of the Lakemban matanitu 66
 The Renfrew–Sterud method of close-proximity analysis 75
 On deconstructing a network 89

4 Search trees: I 90
 Independent discoveries of the conical clan 92
 Social stratification in Polynesia 101
 A structural model of the conical clan 107
 Prestige-good systems 116

5 Search trees: II 125
 The Marshallese conical clan 126
 The devolution of social organization in Nuclear Micronesia 142
Contents

Search trees and the organization of genealogical knowledge 162

6 Centrality 165
Southern Lau, Fiji: “A natural trade area” 166
Power centers in the Greater Lauan trade network 174
Political and mythological centers in Ralik and Ratak 178
Expeditions in Torres Strait 180
On the position of Delos in the Archaic Aegean network 194
Self-centered networks 201

7 Dominating sets 204
Local domination in the Caroline Islands 205
Alliance structures in the western Tuamotus 207
Pottery monopolies in Melanesian trade networks 212

8 Digraphs 218
Basic definitions 219
Murdock’s maze: The bilateral hypothesis of Proto-Malayo-Polynesian social organization 222
Sibling classification and culture history in Island Oceania 231

9 Conclusion 262

References 269
Index 289
Figures, tables, and maps

Figures

1.1 Alternative representations of a graph
1.2 Equivalent representations of a rooted tree as (a) a graph and (b) nested sets
1.3 Two binary trees
1.4 A native model of social organization in Polynesia (from E. and P. Beaglehole 1938)
1.5 An electrical network N, its underlying graph G, and a spanning tree T
1.6 Boruvka's illustration of a minimum spanning tree algorithm (from Graham and Hell 1985)
1.7 Depth-first and breadth-first search trees
1.8 A breadth-first search of a graph
1.9 A graph to illustrate centrality concepts
1.10 One solution to the Five Queens Problem
1.11 Digraphs that are (a) weakly and (b) strongly connected
1.12 A semilattice
1.13 The Austronesian family tree (from Blust 1990)
2.1 The 11 graphs with four nodes
2.2 A graph to illustrate adjacency
2.3 A graph, a subgraph, and a spanning subgraph
2.4 Two labeled graphs
2.5 A graph to illustrate walks, trails, paths, and cycles
2.6 Four of the 11 graphs with four nodes
2.7 A graph to illustrate cutnodes and bridges
2.8 Two isomorphic graphs
2.9 A graph G and its complement \overline{G}
2.10 Three bigraphs
2.11 A rooted graph and a doubly rooted graph
2.12 The product of two graphs
2.13 Planar, plane, and nonplanar graphs
x Figures, tables, and maps

2.14 The digraphs with three nodes and three arcs 29
2.15 The 11 trees with seven nodes 29
2.16 The rooted trees with four nodes 30
2.17 Yapese communication structures (tha'): (a) the outer-island tribute system; (b) Gacpar political networks 32
2.18 Hocart's (1929) model of “perpetual dichotomy” in Fijian social organization 36
2.19 Social organization in the Lau Islands (from Hocart 1929) 36
2.20 Eyde's (1983) model of “recursive dualism” in the Admiralty Islands 38
2.21 J. J. Fox’s (1989) model of “recursive complementarity” in eastern Indonesian exchange 39
2.22 Three rooted plane trees 40
2.23 Three full binary trees 41
2.24 The binary trees with four nodes 42
2.25 The twin binary trees with seven nodes 42
2.26 An out-tree and its dual in-tree 43
2.27 An in-tree model of ‘āti affiliations in the Tuamotus (from Ottino 1972) 45
2.28 A Southeast Solomons–Vanuatu–New Caledonia Lapita network (from Hunt 1988) 46
2.29 A graph and all its spanning trees 47
2.30 A graph G, a spanning tree T, and the set of independent cycles obtained from T 48
2.31 Illustrations of the alpha index of planar graphs (from Haggett 1967) 49
3.1 A minimum spanning tree (MST) of a network N 56
3.2 Generating an MST using Kruskal’s algorithm 57
3.3 The MST of the Tuamotus network, clustered to show dialect groups 59
3.4 Generating an MST using Boruvka’s algorithm 73
3.5 Modeling the evolution of the Lakemba matanitu with Boruvka’s MST algorithm 74
3.6 Illustration of the Renfrew–Sterud method of double-link close-proximity analysis applied to a series of Aurignacian burins 76
3.7 Construction of the close-proximity graph in Fig. 3.6 using Kruskal’s algorithm 77
3.8 Generating an MST using Prim’s algorithm 79
3.9 Illustration of a matrix method for using Prim’s MST algorithm (from Wilson and Watkins 1990) 80
3.10 A network with two MSTs 81
3.11 Renfrew and Sterud’s (1969) close-proximity structure 82
Figures, tables, and maps

for the Early Cycladic cemeteries, using presence–absence similarity coefficients xi
3.12 Two different MSTs generated by the Cycladic cemetery matrix 85
3.13 The universal subtree of the MST of the Cycladic cemetery matrix 86
3.14 The graph in Fig. 3.13 relabeled with island names 86
3.15 An MST of linked Lapita pottery motifs, based on data in Green (1978, 1991) 88
4.1 Sahlins's (1958) model of the conical clan (ramage) in Polynesia 102
4.2 White's (1959) model of the conical clan 109
4.3 The graph K_{10} drawn as a rooted labeled plane graph 111
4.4 The labeled trees with four nodes 112
4.5 A breadth-first search of T_2 112
4.6 Goody's (1966) implicit BFST model of the “inclusive system of agnatic hereditary succession” 113
4.7 A depth-first search of T_2 113
4.8 The details of a depth-first search 114
4.9 A left-to-right DFST model of the conical clan in Polynesia, where rank is defined by primogeniture 114
4.10 A right-to-left DFST model of the conical clan in Kachin gumsa society, where rank is defined by ultimogeniture 115
4.11 A graph of the protohistoric long-distance exchange network of the Tongan maritime empire (from Kirch 1988a) 118
4.12 A prestige-goods cycle linking Tonga, Fiji, and Samoa 123
5.1 Mason's (1954) coding of rank in the Bikini clan 128
5.2 A product graph of intra- and interclass marriage and status of the children in Marshallese society 133
5.3 A graph of the Ralik–Ratak voyaging network 138
5.4 Wife-giving and tribute relations between noble and royal Marshallese lineages 141
5.5 A schematic map showing languages in Micronesia (from Bender 1971) 144
5.6 The “ideal scheme for reciting genealogies” among the Tory Islanders (from R. Fox 1978) 164
6.1 Illustrations of degree, closeness, and betweenness centrality in a graph 169
6.2 The graph of the southern Lau trade network 172
6.3 A graph of the Greater Lauan trade network 176
6.4 A graph and the eccentricities of nodes 179
6.5 A graph in which the center and the median are disjoint 179
<table>
<thead>
<tr>
<th>Figures, tables, and maps</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A rooted graph of the western Torres Strait–Papua New Guinea canoe-purchasing trade routes implicit in Harris (1979)</td>
<td>186</td>
</tr>
<tr>
<td>A rooted graph of the western and central Torres Strait–Papua New Guinea canoe-purchasing trade routes, based on Haddon (1904, 1935)</td>
<td>187</td>
</tr>
<tr>
<td>A doubly rooted graph of the western, central, and eastern Torres Strait–Papua New Guinea canoe-purchasing trade routes, based on Haddon (1904, 1935)</td>
<td>190</td>
</tr>
<tr>
<td>A graph of the Torres Strait–Papuan coast–Cape York trade network</td>
<td>192</td>
</tr>
<tr>
<td>A graph and its adjacency, reachability, and distance matrices</td>
<td>195</td>
</tr>
<tr>
<td>A network N and its cost matrix C</td>
<td>196</td>
</tr>
<tr>
<td>The Archaic Ionian city-state network, based on J. L. Davis (1982)</td>
<td>199</td>
</tr>
<tr>
<td>The four automorphisms of the graph $K_4 - e$</td>
<td>202</td>
</tr>
<tr>
<td>Three node-symmetric graphs</td>
<td>202</td>
</tr>
<tr>
<td>A self-centered graph that is not node-symmetric</td>
<td>203</td>
</tr>
<tr>
<td>A nonregular self-median graph (from Sabidussi 1966)</td>
<td>203</td>
</tr>
<tr>
<td>A graph to illustrate dominating sets</td>
<td>205</td>
</tr>
<tr>
<td>A graph of the western Carolines voyaging network (from Hage and Harary 1991)</td>
<td>206</td>
</tr>
<tr>
<td>A graph of the overnight-voyaging network in the Vahitu, Tapuohoe–Tauro, and Parata districts of the western Tuamotus</td>
<td>211</td>
</tr>
<tr>
<td>The kula ring (after Irwin 1983)</td>
<td>214</td>
</tr>
<tr>
<td>The square G^2 of a graph G</td>
<td>215</td>
</tr>
<tr>
<td>The graph of the Mailu network (from Irwin 1974)</td>
<td>216</td>
</tr>
<tr>
<td>A digraph to illustrate the classification of nodes</td>
<td>219</td>
</tr>
<tr>
<td>A digraph to illustrate walks</td>
<td>220</td>
</tr>
<tr>
<td>Digraphs to illustrate connectedness categories</td>
<td>221</td>
</tr>
<tr>
<td>Illustrations of converse digraphs</td>
<td>222</td>
</tr>
<tr>
<td>A BFST of Murdock’s (1949) maze with Normal Hawaiian as the root</td>
<td>229</td>
</tr>
<tr>
<td>A BFST of Murdock’s (1949) maze with Normal Iroquois as the root</td>
<td>230</td>
</tr>
<tr>
<td>Nerlove and Romney’s (1967) ideal types of sibling terminologies</td>
<td>235</td>
</tr>
<tr>
<td>Polynesian sibling terminologies identified by Firth (1970)</td>
<td>237</td>
</tr>
<tr>
<td>A graph of Epling, Kirk, and Boyd’s (1973) “upper-semilattice of [Polynesian] sibling terminologies showing the two reconstructed evolutionary chains”</td>
<td>239</td>
</tr>
</tbody>
</table>
Figures, tables, and maps

8.10 A digraph of Clark’s (1975) model of the evolution of Polynesian sibling terminology 242
8.13 Marshall’s (1984) graph of “relationships among structural patterns of sibling classification in Island Oceania” 245
8.16 Two depictions of the same rooted tree 251
8.17 A directed path 252
8.18 (a) Lattice, (b) semilattice, (c) oriented graph 253
8.19 A semilattice of the evolution of Proto-Oceanic (POC) sibling terminologies, based on Milke (1938) 254
8.20 Marshall’s (1984) model of the evolution of Nuclear Micronesian (NM) sibling terminologies 257
8.21 A lattice model of the evolution of Nuclear Micronesian (NM) sibling terminologies 258
8.22 Lexical relationships in the evolution of Trukese sibling terminology 259

Tables

3.1 Population of the Tuamotus in 1951 63
3.2 Presence–absence similarity coefficient matrix of Early Cycladic cemeteries, based on Renfrew and Sterud (1969) and Renfrew (1972) 84
6.1 Relative centrality of islands in the southern Lau trade network 173
6.2 Relative centrality of islands in the Greater Lauan network 177
6.3 Estimated pre-European (ca. 1840) populations and population densities of the western Torres Strait islands 184
6.4 The position of the western Torres Strait islands in the canoe trade with Papua New Guinea 188
Figures, tables, and maps

6.5 Relative centrality of locations in the Greater Torres Strait–Papuan coast–Cape York trade network 193
6.6 Relative centrality of city-states in the Archaic Ionian network 200
8.1 A digraph (list of arcs) of Murdock’s (1949) evolutionary model of social organization 227
8.2 Murdock’s (1949) classification of Malayo-Polynesian societies 228

Maps

1.1 The distribution of the Austronesian and Oceanic languages (from Bellwood 1978) 18
3.1 The Tuamotu Archipelago (from Emory 1934) 54
3.2 The Fiji Islands (from Thompson 1940) 67
6.1 Torres Strait (adapted from Beckett 1987) 182
Preface

This book is the third work in a comprehensive program of research on applications of graph theory to anthropology. Graph theory is an explosively developing branch of pure mathematics with increasingly important applications to many fields, including architecture, biology, chemistry, computer science, cognitive science, economics, geography, and operations research. It is our belief that anthropology belongs with this company of subjects. Our aims are (1) to solve certain theoretical and methodological problems in anthropology by using the concepts, theorems, and techniques of graph theory; (2) to provide a common framework for structural analysis by demonstrating the applicability of graph theory to a wide spectrum of social and cultural phenomena; (3) to promote connections between various areas of anthropology and between anthropology and other disciplines in which graph theoretic modeling has proven useful; (4) to preserve continuity with the historical tradition of structural analysis in anthropology; and (5) to make graph theoretic models accessible to all structurally minded anthropologists and other social scientists.

In our first book, *Structural Models in Anthropology* (Hage and Harary 1983), we presented graph theory as a family of models for the analysis of social, symbolic, and cognitive relations. We used graphs, digraphs, and networks, together with their associated matrices, to study such diverse topics as mediation and power in exchange systems, reachability in social networks, efficiency in cognitive schemata, and productivity in subsistence modes. We exploited duality laws for graphs and the interaction between graphs and groups to analyze transformations and permutations in myths and symbolic systems. Much of the inspiration for that book, as for all of our research, came from Claude Lévi-Strauss’s (1949, 1962) theories, which focus on the logical, combinatorial, and isomorphic properties of kinship and classification systems, prefiguring the application of finite mathematics to anthropology.

In our second book, *Exchange in Oceania* (Hage and Harary 1991), we extended the graph theoretic analysis in *Structural Models in An-
Preface

Anthropology to provide an essential basis for the description, quantification, simulation, enumeration, and notation of the great variety of exchange systems found in Polynesian, Micronesian, and Melanesian societies. We used bipartite graphs and hamiltonian digraphs and networks to elucidate the cyclic structure of marriage and ceremonial exchange systems, and markov chains to simulate network flows. We introduced the concept of sex duality in graphs to study systematic variation in kinship structures and used binary operations on graphs, and group theory, to reveal the underlying structure of anatomical and physiological beliefs associated with different types of exchange structures. The theory of relations, which is coextensive with graph theory, provided a means for analyzing the higher-order logical structures implicit in an array of exchange and communication networks.

The present volume introduces a set of graph theoretic models for the study of communication, kinship, and classification networks in Island Oceania. The research problems concern the formation of overseas empires, the social basis of dialect divisions, the emergence of trade and political centers, the evolution and devolution of social stratification, the transformation of marriage and descent systems, the replication of ideological systems, the historical development of kinship terminologies, and the reconstruction of protosocieties. The graph theoretic models essential for the study of these problems are six in number: (1) Trees, including rooted trees and binary trees and the spanning tree of a graph, describe the basic anatomy of kinship and communication networks and taxonomic structures. (2) Minimum spanning tree algorithms provide methods for analyzing clustering and classification in numerical networks and provide models for simulating processes of network growth. (3) Search trees serve as models of stratified descent groups and are the basis of the shortest-path algorithm used in the exploration of evolutionary mazes. (4) Centrality concepts define the different senses of advantageous location in voyaging and trade networks. (5) Dominating sets describe distributional aspects of economic and political power. (6) Digraphs, including semilattices, articulate the underlying structure of evolutionary theories of social organization based on genetic reconstructions as well as formal typologies.

Our study broadens the scope of Oceanic anthropology in several important respects: (1) We increase the range of theoretical problems that can be formulated and solved as network problems. The definition of central location in a trade network is obviously a network problem, but so is the derivation of a kinship terminology from a prototype. (2) We provide a common framework for network analysis in anthropology, and in certain types of research in linguistics and archaeology, by showing that all three fields can advance in parallel through the application
Preface

of common graph theoretic models. For example, minimum spanning tree algorithms are equally useful for modeling the evolution of political networks, describing the breakup of archipelagoes into language groups and marriage isolates, and constructing pottery-design networks. 3) In contrast to most research on kinship in Oceania after the time of W. H. R. Rivers (1914a), we give as much weight to marriage alliance as we do to descent groups. Thus in our comparative analysis of social organization in Micronesia we discuss changes from elementary to complex and semicomplex marriage systems as well as shifts from matrilineal to double and patrilineal descent. 4) We exploit and promote connections between Oceanic and Indonesian anthropology, two fields that will inevitably become part of the larger field of Austronesian anthropology. An Austronesian perspective is implicit in our treatment of Nuclear Micronesia as a “field of ethnological study” and in our support for the idea that much of the Austronesian world represents an eastward extension of Lévi-Strauss’s (1949) Sino-Tibetan axis of generalized exchange. 5) Finally, we restore part of the intellectual tradition of Oceanic anthropology by integrating into our account the important but often overlooked contributions of earlier scholars such as Paul Kirchhoff, Edward Winslow Gifford, Wilhelm Milke, and Leonard Mason. Kirchhoff’s (1955) discovery of the conical clan, Gifford’s (1929) analysis of descent and marriage alliance in Tonga, Milke’s (1938) reconstruction of Proto-Oceanic sibling terms, and Mason’s (1947, 1954) analysis of stratification in the Marshall Islands in Micronesia provide an essential basis for comparative studies of social organization and social networks in Oceania.

In a classic paper, Barnes (1972:5) distinguished between analytical as opposed to metaphorical uses of the network concept. He observed that “a few simple notions taken from graph theory have proved useful in the analysis of social networks, but at present the supply of mathematical tools available far outstrips the supply of social data to which the tools might be applied.” Although this statement is still true, we will show that the applicability of graph theory to real-world networks is far greater than commonly imagined. The applications in this book are highly varied, and the interested reader will no doubt discover analogues to every research problem we present. The entire work is therefore intended as a general contribution to network analysis in anthropology.

With each book we have expanded the range of empirical structures amenable to graph theoretic analysis, as well as the repertoire of graph theoretic and network models for studying them. Thus in Structural Models in Anthropology we described abstract trees in a section of the chapter on undirected graphs and used them to analyze mnemonic
structures. In *Exchange in Oceania* we briefly introduced minimum spanning trees in the chapter on matrices, noting their potential application to simulating the evolution of exchange networks. In this book we devote four chapters to trees, minimum spanning trees, and search trees, giving applications to classification systems, kinship networks, the evolution and devolution of social and linguistic networks, and the structure of stratified descent groups. Clearly, it is possible to write an entire volume just on interesting and useful applications of trees to anthropology. There is a parallel here with the second author’s book, *Graph Theory*, published in 1969, which became in 1978-9 the fifth most cited reference in the research literature of mathematics. Virtually every section of every chapter of that book has become a special field of research and is now the subject of a separate book.

Phonetic note: The spelling of proper names and indigenous terms sometimes varies according to author and publisher (e.g., Tui Tonga vs. Tu‘i Tonga, Lakeba vs. Lakemba, ‘āti vs. *ati* etc.).
Acknowledgments

We wish to express our warm thanks to a number of individuals for their contributions and assistance. John Barnes, Ward H. Goodenough, and William Alkire in anthropology, Robert Blust in linguistics, and Fred Buckley in mathematics made particularly helpful and encouraging comments on various chapters. We also thank N. J. Allen, Jeremy Beckett, Peter Bellwood, Terry Hunt, Dell Hymes, David Jenkins, David Klein, David Lawrence, Mona Letourneau, Leonard Mason, and A. Kimball Romney. Bojka Miličić provided invaluable research assistance and contributed to discussions of many topics in the book. Brent James gave generously of his time and did the computer work. We are especially grateful to Ursula Hanly, who again transformed a handwritten manuscript into an impeccable typescript and drew the graceful and beautiful graph diagrams. The first author thanks Andrea Morguloff Hage for generous and enthusiastic support.

For permission to reproduce the following figures, maps, and table, we thank: The Bishop Museum Press, Honolulu, for Fig. 1.4, from E. and P. Beaglehole, *Ethnology of Pukapuka* (1938); Figs. 2.18–19, from A. M. Hocart, *Lau Islands, Fiji* (1929); Map 3.1, from K. P. Emory, *Tuamotuan Stone Structures* (1934), and Map 3.2, from L. Thompson, *Southern Lau, Fiji: An ethnography* (1940); the Institute of Electrical and Electronics Engineers, Inc., for Fig. 1.6, from R. L. Graham and P. Hell, “On the History of the Minimum Spanning Tree Problem,” *Annals of the History of Computing* (1985); the School of Oriental and African Studies, University of London, for Fig. 1.13, from R. Blust, “Three Recurrent Changes in Oceanic Languages,” in J. H. C. S. Davidson (ed.), *Pacific Island Languages* (1990); P. Bellwood for Map 1.1, from *Man’s Conquest of the Pacific* (Oxford University Press, 1979); the Musée de l’Homme for Fig. 2.20, from D. B. Eyde, “Recursive Dualism in the Admiralty Islands,” *Journal de la Société des Océanistes, 39* (1983); the University of Michigan Press for Fig. 2.21, from J. J. Fox, “Category and Complement: Binary ideologies and the organization of dualism in eastern Indonesia,” in D. Maybury-Lewis and U. Almagor
xx Acknowledgments

(ed.s.), The Attraction of Opposites (1989); Cujas for Fig. 2.27, from P. Ottino, Rangiroa: Parenté étendue, résidence et terres dans un atoll Polynesiens (1972); the Burke Museum for Fig. 2.28, from T. L. Hunt, “Graph Theoretic Models for Lapita Exchange,” in P. V. Kirch and T. L. Hunt (eds.), Archaeology of the Lapita Cultural Complex: A critical re-
view (1988), and Fig. 4.11, from P. V. Kirch, Niutatutapu: The prehis-
tory of a Polynesian chiefdom (1988); Methuen and Co. for Fig. 2.31, from P. Haggart, “Network Models in Geography,” in R. J. Chorley and P. Haggett (eds.), Models in Geography (1967); the Society for American Archaeology for Figs. 3.6–7 and 3.12, from C. Renfrew and G. Sterud, “Close-Proximity Analysis: A rapid method for the ordering of archaeological materials,” American Antiquity, 34 (1969); John Wiley and Sons for Fig. 3.10, from R. J. Wilson and J. J. Watkins, Graphs: An intro-
ductive approach (1990); the University of Washington Press for Fig. 4.1, from M. D. Sahlins, Social Stratification in Polynesia (1958); McGraw Hill for Fig. 4.2, from L. A. White, The Evolution of Culture (1959); Cambridge University Press for Fig. 4.6, from J. Goody, Success-
sion to High Office (1966), Fig. 5.6, from R. Fox, The Tory Islanders (1978); and Map 6.1, from J. Beckett, Torres Strait Islanders (1987); L. Mason for Fig. 5.1, from “Relocation of the Bikini Marshallese: A study in group migration,” Ph.D. dissertation, Yale University (1954); Mouton de Gruyter for Fig. 5.5, from B. W. Bender, “Micronesian Lan-
guages,” in T. A. Sebeok (ed.), Current Trends in Linguistics (1971); Academic Press for Table 6.3, from D. R. Harris, “Foragers and Farm-
ers in the Western Torres Strait Islands: An historical analysis of eco-