Introduction to Quantum Optics From the Semi-classical Approach to Quantized Light

Covering a number of important subjects in quantum optics, this textbook is an excellent introduction for advanced undergraduate and beginning graduate students, familiarizing readers with the basic concepts and formalism as well as the most recent advances.

The first part of the textbook covers the semi-classical approach where matter is quantized, but light is not. It describes significant phenomena in quantum optics, including the principles of lasers. The second part is devoted to the full quantum description of light and its interaction with matter, covering topics such as spontaneous emission, and classical and non-classical states of light. An overview of photon entanglement and applications to quantum information is also given. In the third part, nonlinear optics and laser cooling of atoms are presented, where the use of both approaches allows for a comprehensive description. Each chapter describes basic concepts in detail, and more specific concepts and phenomena are presented in 'complements'.

Gilbert Grynberg was a CNRS Senior Scientist at the Laboratoire Kastler Brossel at the Université Pierre et Marie Curie Paris 6, and a Professor at the Ecole Polytechnique. He was a pioneer in many domains, including atomic spectroscopy, nonlinear optics and laser-cooled atoms in optical lattices.

Alain Aspect is a CNRS Senior Scientist and Professor at the Institut d'Optique and the Ecole Polytechnique. A pioneer of the field of quantum entanglement, his research covers quantum optics, laser cooling of atoms, atom optics, Bose–Einstein condensates, atom lasers and quantum atom optics. He was awarded the 2010 Wolf Prize in Physics.

Claude Fabre is a Professor in the Laboratoire Kastler Brossel at the Université Pierre et Marie Curie Paris 6, and a senior member of the Institut Universitaire de France. His fields of research are quantum optics, atomic and laser physics, both experimentally and theoretically.

Introduction to Quantum Optics

From the Semi-classical Approach to Quantized Light

GILBERT GRYNBERG

Ecole Normale Supérieure, Paris Ecole Polytechnique

ALAIN ASPECT

Institut d'Optique and Ecole Polytechnique, Palaisean

CLAUDE FABRE

Université Pierre et Marie Curie and Ecole Normale Supérieure, Paris

With a Foreword by Claude Cohen-Tannoudji

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo, Mexico City

> > Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521551120

© G. Gilbert, A. Aspect, C. Fabre 2010

Original edition: Introduction aux Lasers et á l'Optique, Ellipses 1997

Published with the assistance of the French Ministry of Culture-National Book Centre

Ouvrage publié avec le concours du Ministère français chargé de la culture – Centre National du Livre

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-55112-0 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Table of contents (short)	v
Table of contents (long)	viii
Foreword	xxiii
Preface	xxv
Acknowledgements	xxviii
Part I Semi-classical description of matter-light interaction	1
1 The evolution of interacting quantum systems	3
1.1 Review of some elementary results of quantum mechanics	4
1.2 Transition between discrete levels induced by a time-dependent perturbation	5
1.2.1 Presentation of the problem	5
1.2.2 Examples	5
1.2.3 Perturbation series expansion of the system wavefunction	7
1.2.4 First-order theory	8
1.2.5 Second-order calculations	14
1.2.6 Comparison with the exact solution for a two-level system	17
1.3 Case of a discrete level coupled to a continuum: Fermi's golden rule	19
1.3.1 Example: autoionization of helium	20
1.3.2 Discrete level coupled to a quasi-continuum: simplified model	22
1.3.3 Fermi's golden rule	28
1.3.4 Case of a sinusoidal perturbation	31
1.4 Conclusion	32
Complement 1A A continuum of variable width	34
1A.1 Description of the model	34
1A.2 Temporal evolution	34
Complement 1B Transition induced by a random broadband perturbation	38
1B.1 Description of a random perturbation	38
1B.1.1 Definitions	38
1B.1.2 Example	40
1B.2 Transition probability between discrete levels	41
1B.2.1 General expression	41
1B.2.2 Behaviour at intermediate times	42
1B.2.3 Behaviour at long times	42
1B.3 Transition probability between a discrete level and a continuum	43

ix	Contents	
	2 The semi-classical approach: atoms interacting with a classical	
	electromagnetic field	45
	2.1 Atom–light interaction processes	46
	2.1.1 Absorption	47
	2.1.2 Stimulated emission	48
	2.1.3 Spontaneous emission	49
	2.1.4 Elastic scattering	50
	2.1.5 Nonlinear processes	51
	2.2 The interaction Hamiltonian	53
	2.2.1 Classical electrodynamics: the Maxwell–Lorentz equations	54
	2.2.2 Hamiltonian of a particle in a classical electromagnetic field	55
	2.2.3 Interaction Hamiltonian in the Coulomb gauge	58
	2.2.4 Electric dipole Hamiltonian	60
	2.2.5 The magnetic dipole Hamiltonian	62
	2.3 Transitions between atomic levels driven by an oscillating electromagnetic	
	field	64
	2.3.1 The transition probability in first-order perturbation theory	64
	2.3.2 Rabi oscillations between two levels	69
	2.3.3 Multiphoton transitions	75
	2.3.4 Light-shifts	78
	2.4 Absorption between levels of finite lifetimes	80
	2.4.1 Presentation of the model	80
	2.4.2 Excited state population	82 85
	2.4.3 Dielectric susceptibility	88
	2.4.4 Propagation of an electromagnetic wave: absorption and dispersion2.4.5 Case of a closed two-level system	00 90
	2.5 Laser amplification	90 92
	2.5.1 Feeding the upper level: stimulated emission	92 92
	2.5.2 Amplified propagation: laser action	94
	2.5.3 Generalization: pumping of both levels and saturation	95
	2.5.4 Laser gain and population inversion	96
	2.6 Rate equations	96
	2.6.1 Conservation of energy in the propagation	96
	2.6.2 Rate equations for the atoms	98
	2.6.3 Atom-photon interactions. Cross-section, saturation intensity	100
	2.6.4 Rate equations for the photons. Laser gain	102
	2.7 Conclusion	104
	Complement 2A Classical model of the atom-field interaction:	
	the Lorentz model	105
	2A.1 Description of the model	105
	2A.2 Electric dipole radiation	107
	2A.3 Radiative damping of the elastically bound electron	112
	2A.4 Response to an external electromagnetic wave	114

х	Contents	
	2A.5 Relationship between the classical atomic model and the quantum	110
	mechanical two-level atom	118
	Complement 2B Selection rules for electric dipole transitions.	
	Applications to resonance fluorescence and optical pumping	120
	2B.1 Selection rules and the polarization of light	120
	2B.1.1 Forbidden electric dipole transitions	120
	2B.1.2 Linearly polarized light	121
	2B.1.3 Circularly polarized light	124
	2B.1.4 Spontaneous emission	127
	2B.2 Resonance fluorescence	129
	2B.2.1 Principle	129
	2B.2.2 Measurement of population transfers in the excited state	130
	2B.3 Optical pumping	133
	2B.3.1 $J = 1/2 \rightarrow J = 1/2$ transition excited by circularly polarized light	133
	2B.3.2 Rate equations for optical pumping	136
	Complement 2C The density matrix and the optical Bloch equations	140
	2C.1 Wavefunctions and density matrices	141
	2C.1.1 Isolated and coupled systems	141
	2C.1.2 The density matrix representation	141
	2C.1.3 Two-level systems	143
	2C.2 Perturbative treatment	147
	2C.2.1 Iterative solution for the evolution of the density matrix	147
	2C.2.2 Atom interacting with an oscillating field: regime of linear response	149
	2C.3 Optical Bloch equations for a two-level atom	152
	2C.3.1 Introduction	152
	2C.3.2 Closed systems	153
	2C.3.3 Open systems	155
	2C.4 The Bloch vector	155
	2C.4.1 Definition	157
	2C.4.2 Effect of a monochromatic field	
	2C.4.2 Effect of relaxation	159
		160
	2C.4.4 Rapid adiabatic passage	161
	2C.5 From the Bloch equations to the rate equations	162
	2C.5.1 Case of fast relaxation of coherences	162
	2C.5.2 Case of an optical field of finite coherence time	163
	2C.6 Conclusion	165
	Complement 2D Manipulation of atomic coherences	167
	2D.1 Direct manipulation of a two-level system	167
	2D.1.1 Generalities	167
	2D.1.2 Ramsey fringes	168
	2D.1.3 Photon echoes	170

xi	Contents	
	2D.2 Use of a third level	172
	2D.2.1 Coherent population trapping	172
	2D.2.2 Electromagnetically induced transparency	176
	Complement 2E The photoelectric effect	179
	2E.1 Description of the model	180
	2E.1.1 The bound atomic state	180
	2E.1.2 Unbound states: the density of states	181
	2E.1.3 The interaction Hamiltonian	183
	2E.2 The photoionization rate and cross-section	185
	2E.2.1 Ionization rate	185
	2E.2.2 The photoionization cross-section	187
	2E.2.3 Long-time behaviour	187
	2E.3 Application to the photoionization of hydrogen	188
	3 Principles of lasers	191
	3.1 Conditions for oscillation	193
	3.1.1 Lasing threshold	193
	3.1.2 The steady state: intensity and frequency of the laser output	195
	3.2 Description of the amplifying media of some lasers	199
	3.2.1 The need for population inversion	199
	3.2.2 Four-level systems	201
	3.2.3 Laser transition ending on the ground state: the three-level	
	scheme	210
	3.3 Spectral properties of lasers	215
	3.3.1 Longitudinal modes	215
	3.3.2 Single longitudinal mode operation	217
	3.3.3 Spectral width of the laser output	219
	3.4 Pulsed lasers	221
	3.4.1 Mode-locked lasers	221
	3.4.2 Q-switched lasers	226
	3.5 Conclusion: lasers versus classical sources	227
	3.5.1 Classical light sources: a few orders of magnitude	227
	3.5.2 Laser light	228
	Further reading	229
	Complement 3A The resonant Fabry–Perot cavity	230
	3A.1 The linear Fabry–Perot cavity	230
	3A.2 Cavity transmission and reflection coefficients and resonances	232
	3A.3 Ring Fabry–Perot cavity with a single coupling mirror	234
	3A.4 The cavity finesse	235
	3A.5 Cavity with a large finesse	236
	3A.6 Linear laser cavity	238

xii	Contents	
	Complement 3B The transverse modes of a laser: Gaussian beams	239
	3B.1 Fundamental Gaussian beam	239
	3B.2 The fundamental transverse mode of a stable cavity	241
	3B.3 Higher-order Gaussian beams	242
	3B.4 Longitudinal and transverse modes of a laser	245
	Complement 3C Laser light and incoherent light: energy density and	
	number of photons per mode	247
	3C.1 Conservation of radiance for an incoherent source	247
	3C.1.1 Étendue and radiance	247
	3C.1.2 Conservation of radiance	249
	3C.2 Maximal irradiance by an incoherent source	250
	3C.3 Maximal irradiance by laser light	251
	3C.4 Photon number per mode	252
	3C.4.1 Thermal radiation in a cavity	252
	3C.4.2 Laser cavity	253
	3C.5 Number of photons per mode for a free beam	253
	3C.5.1 Free propagative mode	253
	3C.5.2 Pencil of heat radiation	255
	3C.5.3 Beam emitted by a laser	255
	3C.6 Conclusion	256
	Complement 3D The spectral width of a laser: the Schawlow-Townes limit	257
	Complement 3E The laser as energy source	261
	3E.1 Laser irradiation of matter	261
	3E.1.1 The light–matter coupling	262
	3E.1.2 Energy transfer	263
	3E.1.3 Mechanical effects	264
	3E.1.4 Photo-chemical effects and photo-ablation	264
	3E.2 Machining and materials processing using lasers	265
	3E.2.1 Thermal effects	265
	3E.2.2 Transfer of material	266
	3E.3 Medical applications	266
	3E.4 Inertial fusion	268
	Complement 3F The laser as source of coherent light	271
	3F.1 The advantages of laser light sources	271
	3F.1.1 Geometrical properties	271
	3F.1.2 Spectral and temporal properties	272
	3F.1.3 The manipulation of laser beams	273
	3F.2 Laser measurement of distances	273
	3F.3 Remote sensing using lasers: the LIDAR	275
	3F.3.1 Atmospheric LIDAR	275

xiii	Contents	
	3F.3.2 Coherent LIDAR	276
	3F.3.3 Measurement of angular velocities	276
3F.4	Optical telecommunications	279
3F.5	Laser light and other information technologies	280
	plement 3G Nonlinear spectroscopy	283
3G.1	Homogeneous and inhomogeneous broadening	283
3G.2	2 Saturated absorption spectroscopy	284
	3G.2.1 Holes in a population distribution	285
	3G.2.2 Saturated absorption in a gas	286
3G.3	3 Doppler-free two-photon spectroscopy	290
	3G.3.1 Two-photon transitions	290
	3G.3.2 Elimination of Doppler broadening	291
	3G.3.3 Properties of Doppler-free two-photon spectroscopy	293
3G.4	The spectroscopy of the hydrogen atom	294
	3G.4.1 A short history of hydrogen atom spectroscopy	294
	3G.4.2 The hydrogen atom spectrum	295
	3G.4.3 Determination of the Rydberg constant	296
Р	art II Quantum description of light and its interaction with matter	299
4 0	Jantization of free radiation	301
	uantization of free radiation 1 Classical Hamiltonian formalism and canonical quantization	
	1 Classical Hamiltonian formalism and canonical quantization	301 302 302
	 Classical Hamiltonian formalism and canonical quantization 4.1.1 Quantizing a system of material particles 	302 302
	 Classical Hamiltonian formalism and canonical quantization 4.1.1 Quantizing a system of material particles 4.1.2 Classical Hamiltonian formulation: Hamilton's equations 	302 302 303
	 Classical Hamiltonian formalism and canonical quantization 4.1.1 Quantizing a system of material particles 4.1.2 Classical Hamiltonian formulation: Hamilton's equations 4.1.3 Canonical quantization 	302 302 303 304
4.	 Classical Hamiltonian formalism and canonical quantization 4.1.1 Quantizing a system of material particles 4.1.2 Classical Hamiltonian formulation: Hamilton's equations 4.1.3 Canonical quantization 4.1.4 Hamiltonian formalism for radiation: stating the problem 	302 302 303 304 304
4.	 Classical Hamiltonian formalism and canonical quantization 4.1.1 Quantizing a system of material particles 4.1.2 Classical Hamiltonian formulation: Hamilton's equations 4.1.3 Canonical quantization 4.1.4 Hamiltonian formalism for radiation: stating the problem 2 Free electromagnetic field and transversality 	302 302 303 304 304 305
4.	 Classical Hamiltonian formalism and canonical quantization Quantizing a system of material particles Quantizing a system of material particles Classical Hamiltonian formulation: Hamilton's equations Canonical quantization Hamiltonian formalism for radiation: stating the problem Free electromagnetic field and transversality Maxwell's equations in vacuum 	302 302 303 304 304 305 305
4.	 Classical Hamiltonian formalism and canonical quantization Quantizing a system of material particles Quantizing a system of material particles Classical Hamiltonian formulation: Hamilton's equations Canonical quantization Hamiltonian formalism for radiation: stating the problem Free electromagnetic field and transversality Maxwell's equations in vacuum Spatial Fourier expansion 	302 302 303 304 304 305 305
4.	 Classical Hamiltonian formalism and canonical quantization Quantizing a system of material particles Quantizing a system of material particles Classical Hamiltonian formulation: Hamilton's equations Canonical quantization Hamiltonian formalism for radiation: stating the problem Free electromagnetic field and transversality Maxwell's equations in vacuum 	302 302 303 304 304 305 305
4.	 Classical Hamiltonian formalism and canonical quantization Quantizing a system of material particles Quantizing a system of material particles Classical Hamiltonian formulation: Hamilton's equations Canonical quantization Hamiltonian formalism for radiation: stating the problem Free electromagnetic field and transversality Maxwell's equations in vacuum Spatial Fourier expansion Transversality of the free electromagnetic field and polarized 	302 302 303 304 304 305 305 305 305
4.	 Classical Hamiltonian formalism and canonical quantization Quantizing a system of material particles Quantizing a system of material particles Classical Hamiltonian formulation: Hamilton's equations Canonical quantization Hamiltonian formalism for radiation: stating the problem Free electromagnetic field and transversality Maxwell's equations in vacuum Spatial Fourier expansion Transversality of the free electromagnetic field and polarized Fourier components Vector potential in the Coulomb gauge	302 302 303 304 304 305 305 305 305 305
4.	 Classical Hamiltonian formalism and canonical quantization Quantizing a system of material particles Quantizing a system of material particles Classical Hamiltonian formulation: Hamilton's equations Canonical quantization Hamiltonian formalism for radiation: stating the problem Free electromagnetic field and transversality Maxwell's equations in vacuum Spatial Fourier expansion Transversality of the free electromagnetic field and polarized Fourier components Vector potential in the Coulomb gauge Expansion of the free electromagnetic field in normal modes	302 302 303 304 304 305 305 305 305 305 305 305 305
4.	 Classical Hamiltonian formalism and canonical quantization Quantizing a system of material particles Quantizing a system of material particles Classical Hamiltonian formulation: Hamilton's equations Canonical quantization Hamiltonian formalism for radiation: stating the problem Free electromagnetic field and transversality Maxwell's equations in vacuum Spatial Fourier expansion Transversality of the free electromagnetic field and polarized Fourier components Vector potential in the Coulomb gauge	302 302 304 304 305 305 305 305 305 307 309 310 310
4.	 Classical Hamiltonian formalism and canonical quantization Quantizing a system of material particles Quantizing a system of material particles Classical Hamiltonian formulation: Hamilton's equations Canonical quantization Annotical quantization Hamiltonian formalism for radiation: stating the problem Free electromagnetic field and transversality Maxwell's equations in vacuum Spatial Fourier expansion Transversality of the free electromagnetic field and polarized Fourier components Vector potential in the Coulomb gauge Expansion of the free electromagnetic field in normal modes Jynamical equations of the polarized Fourier components Normal variables 	302 303 304 304 305 305 305 305 307 309 310 310 311
4.	 Classical Hamiltonian formalism and canonical quantization Quantizing a system of material particles Quantizing a system of material particles Classical Hamiltonian formulation: Hamilton's equations Canonical quantization Hamiltonian formalism for radiation: stating the problem Free electromagnetic field and transversality Maxwell's equations in vacuum Spatial Fourier expansion Transversality of the free electromagnetic field and polarized Fourier components Vector potential in the Coulomb gauge Expansion of the free electromagnetic field in normal modes Tormal variables Tormal variables Sexpansion of the free field in normal modes 	302 302 303 304 304 305 305 305 305 307 309 310 310 311 312
4.	 Classical Hamiltonian formalism and canonical quantization Quantizing a system of material particles Quantizing a system of material particles Classical Hamiltonian formulation: Hamilton's equations Canonical quantization Hamiltonian formalism for radiation: stating the problem Free electromagnetic field and transversality Maxwell's equations in vacuum Spatial Fourier expansion Transversality of the free electromagnetic field and polarized Fourier components Vector potential in the Coulomb gauge Expansion of the free electromagnetic field in normal modes Toynamical equations of the polarized Fourier components Normal variables Analytic signal 	302 302 303 304 304 305 305 305 305 305 305 310 310 311 312 314
4. 4. 4.	 Classical Hamiltonian formalism and canonical quantization Quantizing a system of material particles Quantizing a system of material particles Classical Hamiltonian formulation: Hamilton's equations Canonical quantization Hamiltonian formalism for radiation: stating the problem Free electromagnetic field and transversality Maxwell's equations in vacuum Spatial Fourier expansion Transversality of the free electromagnetic field and polarized Fourier components Vector potential in the Coulomb gauge Expansion of the free electromagnetic field in normal modes Dynamical equations of the polarized Fourier components Normal variables Analytic signal Other normal modes 	302 302 303 304 304 305 305 305 305 305 307 309 310 310 311 312 314 314
4. 4. 4.	 Classical Hamiltonian formalism and canonical quantization Quantizing a system of material particles Quantizing a system of material particles Classical Hamiltonian formulation: Hamilton's equations Canonical quantization Hamiltonian formalism for radiation: stating the problem Free electromagnetic field and transversality Maxwell's equations in vacuum Spatial Fourier expansion Transversality of the free electromagnetic field and polarized Fourier components Vector potential in the Coulomb gauge Expansion of the free electromagnetic field in normal modes Mormal variables Kanalytic signal Sother normal modes Hamiltonian for free radiation 	302 302 303 304 304 305 305 305 305 305 307 309 310 311 312 314 314 315
4. 4. 4.	 Classical Hamiltonian formalism and canonical quantization Quantizing a system of material particles Quantizing a system of material particles Classical Hamiltonian formulation: Hamilton's equations Canonical quantization Hamiltonian formalism for radiation: stating the problem Free electromagnetic field and transversality Maxwell's equations in vacuum Spatial Fourier expansion Transversality of the free electromagnetic field and polarized Fourier components Vector potential in the Coulomb gauge Expansion of the free electromagnetic field in normal modes Mormal variables Xexpansion of the free field in normal modes Analytic signal Softer normal modes Hamiltonian for free radiation Readiation for free radiation Radiation energy 	302 302 303 304 304 305 305 305 305 305 310 310 310 311 312 314 314 315
4. 4. 4.	 Classical Hamiltonian formalism and canonical quantization Quantizing a system of material particles Quantizing a system of material particles Classical Hamiltonian formulation: Hamilton's equations Canonical quantization Hamiltonian formalism for radiation: stating the problem Free electromagnetic field and transversality Maxwell's equations in vacuum Spatial Fourier expansion Transversality of the free electromagnetic field and polarized Fourier components Vector potential in the Coulomb gauge Expansion of the free electromagnetic field in normal modes Mormal variables Kanalytic signal Sother normal modes Hamiltonian for free radiation 	302 302 303 304 304 305 305 305 305 305 305 310 310 310 311 312 314 314

xiv	Contents	
	4.5.2 Hamiltonian of the quantized radiation	318
	4.5.3 Field operators	319
	4.6 Quantized radiation states and photons	319
	4.6.1 Eigenstates and eigenvalues of the radiation Hamiltonian	320
	4.6.2 The notion of a photon	321
	4.6.3 General radiation state	323
	4.7 Conclusion	324
	Complement 4A Example of the classical Hamiltonian formalism: charged particle in an electromagnetic field	325
	Complement 4B Momentum and angular momentum of radiation	327
	4B.1 Momentum	327
	4B.1.1 Classical expression	327
	4B.1.2 Momentum operator	328
	4B.2 Angular momentum	328
	4B.2.1 Classical expression	328
	4B.2.2 Angular momentum operators	332
	Complement 4C Photons in modes other than travelling plane waves	334
	4C.1 Changing the normal mode basis	334
	4C.1.1 Unitary transformation of creation and annihilation operators	334
	4C.1.2 New normal modes	335
	4C.1.3 Invariance of the vacuum and photons in mode m	336
	4C.1.4 Invariance of the total photon number	336 337
	4C.1.5 Properties of photons in different bases 4C.1.6 Example: 1D standing wave modes	337
	4C.1.7 Choosing the best mode basis to suit a physical situation	338
	4C.2 Photons in a wave packet	339
	5 Free quantum radiation	341
	5.1 Photodetectors and semi-reflecting mirrors. Homodyne detection of the	
	quadrature components	342
	5.1.1 Photodetection	343
	5.1.2 Semi-reflecting mirror	345
	5.1.3 Homodyne detection	346
	5.2 The vacuum: ground state of quantum radiation	350
	5.2.1 Non-commutativity of the field operators and Heisenberg relations for radiation	350
	5.2.2 Vacuum fluctuations and their physical consequences	351
	5.3 Single-mode radiation	353
	5.3.1 Classical description: phase, amplitude and quadratures	354
	5.3.2 Single-mode quantum radiation: quadrature observables and phasor	
	representation	355

XV	Contents	
	5.3.3 Single-mode number state	35
	5.3.4 Quasi-classical states $ \alpha_{\ell}\rangle$	36
	5.3.5 Other quantum states of single-mode radiation: squeezed states and	50
	Schrödinger cats	36
	5.3.6 The limit of small quantum fluctuations and the photon number–phase	
	Heisenberg relation	36
	5.3.7 Light beam propagating in free space	36
5.	4 Multimode quantum radiation	37
	5.4.1 Non-factorizable states and entanglement	37
	5.4.2 Multimode quasi-classical state	37
	5.4.3 One-photon multimode state	37
5.	5 One-photon interference and wave–particle duality. An application	
	of the formalism	37
	5.5.1 Mach–Zehnder interferometer in quantum optics	37
	5.5.2 Quasi-classical incoming radiation	37
	5.5.3 Particle-like incoming state	38
	5.5.4 Wave–particle duality for a particle-like state	38
	5.5.5 Wheeler's delayed-choice experiment	38
5.	6 A wave function for the photon?	38
5.	7 Conclusion	38
Com	plement 5A Squeezed states of light: the reduction of quantum	
	uctuations	38
5A.1	Squeezed states: definition and properties	38
	5A.1.1 Definition	38
	5A.1.2 Expectation values of field observables for a squeezed state	38
	5A.1.3 The squeezing operator	39
	5A.1.4 Transmission of a squeezed state by a beamsplitter	39
	5A.1.5 Effect of losses	39
5A.2	2 Generation of squeezed light	39
	5A.2.1 Generation by parametric processes	39
	5A.2.2 Other methods	39
5A.3	3 Applications of squeezed states	39
	5A.3.1 Measurement of small absorption coefficients	39
	5A.3.2 Interferometric measurements	39
	plement 5B One-photon wave packet	39
5B.1	One-photon wave packet	39
	5B.1.1 Definition and single photodetection probability	39
	5B.1.2 One-dimensional wave packet	39
	5B.1.3 Spontaneous emission photon	40
5B.2	2 Absence of double detection and difference with a classical field	4(
	5B.2.1 Semi-reflecting mirror	40
	5B.2.2 Double detection with a classical wave packet	40

xvi	Contents	
	5B.3 Two one-photon wave packets on a semi-reflecting mirror	408
	5B.3.1 Single detections	408
	5B.3.2 Joint detections	409
	5B.4 Quasi-classical wave packet	411
	Complement 5C Polarization-entangled photons and violation	
	of Bell's inequalities	413
	5C.1 From the Bohr-Einstein debate to the Bell inequalities and quantum	
	information: a brief history of entanglement	413
	5C.2 Photons with correlated polarization: EPR pairs	415
	5C.2.1 Measuring the polarization of a single photon	415
	5C.2.2 Photon pairs and joint polarization measurements	417
	5C.2.3 EPR pairs with correlated polarizations	419
	5C.2.4 The search for a picture to interpret the correlations between widely concreted measurements	421
	widely separated measurements 5C.3 Bell's theorem	421
	5C.3.1 Bell inequalities	423
	5C.3.2 Conflict with quantum mechanics	423
	5C.3.3 Locality condition and relativistic causality. Experiment	720
	with variable polarizers	428
	5C.4 The experimental verdict and violation of the Bell inequalities	429
	5C.5 Conclusion: from quantum nonlocality to quantum information	432
	Complement 5D Entangled two-mode states	434
	5D.1 General description of a two-mode state	434
	5D.1.1 General considerations	434
	5D.1.2 Schmidt decomposition	435
	5D.1.3 Correlations between measurements carried out on the	
	two modes	436
	5D.2 Twin photon states	437
	5D.2.1 Definition and properties	437
	5D.2.2 Production	438
	5D.3 Relation between squeezing and entanglement	439
	5D.3.1 General considerations	439
	5D.3.2 Mixing two squeezed states on a semi-reflecting mirror	439
	5D.3.3 Non-destructive measurement of two complementary	
	variables: the 'EPR paradox'	441
	Complement 5E Quantum information	443
	5E.1 Quantum cryptography	443
	5E.1.1 From classical to quantum cryptography	443
	5E.1.2 Quantum cryptography with entangled photons	444
	5E.1.3 From theory to practice	446
	5E.1.4 The no-cloning theorem	447

xvii	Contents	
	5E.1.5 And if there were no entangled states? The BB84 protocol	448
	5E.1.6 Experimental results	449
	5E.2 Quantum computing	449
	5E.2.1 Quantum bits or 'qubits'	449
	5E.2.2 The Shor factorization algorithm	450
	5E.2.3 Working principle of a quantum computer	451
	5E.2.4 Practical matters	453
	5E.3 Quantum teleportation	454
	5E.4 Conclusion	456
	6 Interaction of an atom with the quantized electromagnetic field	457
	6.1 Classical electrodynamics and interacting fields and charges	458
	6.1.1 The Maxwell–Lorentz equations	458
	6.1.2 Decomposition of the electromagnetic field into transverse	
	and longitudinal components. Radiation	460
	6.1.3 Polarized Fourier components of the radiation and the vector	
	potential in the Coulomb gauge	462
	6.1.4 Normal variables for radiation and expansion in polarized, travelling	
	plane waves	462
	6.1.5 Generalized particle momentum. Radiation momentum	463
	6.1.6 Hamiltonian in the Coulomb gauge	464
	6.2 Interacting fields and charges and quantum description in the	
	Coulomb gauge	467
	6.2.1 Canonical quantization	467
	6.2.2 Hamiltonian and state space	468
	6.2.3 Interaction Hamiltonian	469
	6.3 Interaction processes	471
	6.3.1 The Hamiltonian \hat{H}_{I1}	471
	6.3.2 Absorption	471
	6.3.3 Emission	473
	6.3.4 Rabi oscillation	474
	6.3.5 The Hamiltonian \hat{H}_{I2} and elastic scattering	475
	6.4 Spontaneous emission	477
	6.4.1 Principle of the calculation	477
	6.4.2 Quasi-continuum of one-photon states and density of states	479
	6.4.3 Spontaneous emission rate in a given direction	481
	6.4.4 Lifetime of the excited state and natural width	482
	6.4.5 Spontaneous emission: a joint property of the atom and the vacuum	484
	6.5 Photon scattering by an atom	485
	6.5.1 Scattering matrix elements	485
	6.5.2 Scattering cross-section	487
	6.5.3 Qualitative description of some scattering processes	488
	6.5.4 Thomson scattering cross-section	493

xviii	Contents	
	6.6 Conclusion. From the semi-classical to the quantum treatment of atom–light interaction	495
	Complement 6A Hamiltonian formalism for interacting fields and charges	498
	6A.1 Hamiltonian formalism and canonical quantization	498
	6A.2 Hamilton's equations for particles and radiation	498
	6A.2.1 Classical Hamiltonian for the charge-field system	498
	6A.2.2 Hamilton's equations for the charges	499
	6A.2.3 Hamilton's equations for the radiation	499
	6A.2.4 Conclusion	501
	Complement 6B Cavity quantum electrodynamics	502
	6B.1 Presentation of the problem	502
	6B.2 Eigenmodes of the coupled atom-cavity system	504
	6B.2.1 Jaynes–Cummings model	504
	6B.2.2 Diagonalization of the Hamiltonian	505
	6B.2.3 Spontaneous emission of an excited atom placed in the empty	500
	cavity	508
	6B.3 Evolution in the presence of an intracavity field	510
	6B.3.1 Field initially in a number state	510
	6B.3.2 Field initially in an 'intense' quasi-classical state: semi-classical limit	511
	6B.3.3 Field initially in a quasi-classical state with a small number	511
	of photons	512
	6B.4 Effect of cavity losses: the Purcell effect	513
	6B.5 Conclusion	517
	Complement 6C Polarization-entangled photon pairs emitted in an	
	atomic radiative cascade	518
	6C.1 Introduction. Entangled photon pairs for real experiments	518
	6C.2 Photon pair emitted in an atomic radiative cascade $J = 0 \rightarrow J = 1 \rightarrow J = 0$.	
	Elementary process	519
	6C.2.1 Description of the system	519
	6C.2.2 Emission of photon v_1 and entangled atom-radiation state	520
	6C.2.3 Emission of photon v_2 and elementary EPR pair	521
	6C.3 Generalization and sum over frequencies	523
	6C.4 Two-photon excitations	524
	Part III Applying both approaches	527
	7 Nonlinear optics. From the semi-classical approach to quantum effects	529
	7.1 Introduction	529
	7.2 Electromagnetic field in a nonlinear medium. Semi-classical treatment	530
	7.2.1 Linear susceptibility	530

xix	Contents	
	7.2.2 Nonlinear susceptibility	531
	7.2.3 Propagation in a nonlinear medium	533
	7.3 Three-wave mixing. Semi-classical treatment	535
	7.3.1 Frequency addition	535
	7.3.2 Phase matching	537
	7.3.3 Coupled dynamics of three-wave mixing	540
	7.3.4 Parametric amplification	542
	7.3.5 Frequency doubling with pump depletion	544
	7.3.6 Parametric fluorescence	544
	7.4 Quantum treatment of parametric fluorescence	545
	7.4.1 Unavoidability and advantages of the quantum treatment	545
	7.4.2 Quantum treatment of three-wave mixing	546
	7.4.3 Perturbative treatment of parametric fluorescence	547
	7.4.4 Change of picture: the Heisenberg representation	548
	7.4.5 Simultaneous emission of parametric fluorescence photons	550
	7.4.6 Two-photon interference	553
	7.5 Conclusion	559
	Complement 7A Parametric amplification and oscillation. Semi-classical	
	and quantum properties	560
	7A.1 Classical description of parametric amplification	560
	7A.1.1 Non-degenerate case	560
	7A.1.2 Degenerate case	561
	7A.2 The optical parametric oscillator (OPO)	562
	7A.2.1 Description of the system	562
	7A.2.2 Singly resonant OPO	563
	7A.2.3 Doubly resonant OPO	564
	7A.3 Quantum features of parametric amplification	567
	7A.3.1 Quantum description of attenuation and amplification	207
	processes	567
	7A.3.2 Non-degenerate parametric amplification	569
	7A.3.3 Degenerate parametric amplification	570
	7A.4 Quantum fluctuations in the fields produced by a doubly	
	resonant OPO	571
	7A.4.1 The small quantum fluctuation limit	571
	7A.4.2 Frequency-degenerate OPO below threshold: producing squeezed	
	states of the field	573
	7A.4.3 Non-frequency-degenerate OPO above threshold: producing	
	twin beams	574
	Complement 7B Nonlinear optics in optical Kerr media	577
	7B.1 Examples of third-order nonlinearities	577
	7B.1.1 Nonlinear response of two-level atoms	577
	7B.1.2 Nonlinearity by optical pumping	579

xx Contents	
7B.2 Field propagation in Kerr media	581
7B.2.1 Single incident wave	581
7B.2.2 Two travelling waves propagating in opposite directions	582
7B.3 Optical bistability	583
7B.4 Phase conjugate mirror	586
7B.4.1 Degenerate four-wave mixing	586
7B.4.2 Phase conjugation	587
7B.4.3 Calculating the reflection coefficient	590
7B.5 Propagation of a spatially non-uniform wave in a Kerr medium	592
7B.5.1 Self-focusing	592
7B.5.2 Spatial soliton and self-focusing	593
7B.6 Propagation of a pulse in a Kerr medium	595
7B.6.1 Self-phase modulation	595
7B.6.2 Propagation in a dispersive linear medium	595
7B.6.3 Propagation in a dispersive Kerr medium. Temporal soliton	597
8 Laser manipulation of atoms. From incoherent atom optics to atom lase	rs 599
8.1 Energy and momentum exchanges in the atom-light interaction	600
8.1.1 Quantum description of the external degrees of freedom of the ato	m 601
8.1.2 Momentum conservation	601
8.1.3 Energy conservation: the Doppler and the recoil shifts	603
8.2 Radiative forces	604
8.2.1 Closed two-level atom in a quasi-resonant laser wave	604
8.2.2 Localized atomic wave packet and classical limit	605
8.2.3 Radiative forces: general expression	607
8.2.4 Steady-state radiative forces for a closed two-level atom	608
8.2.5 Resonance-radiation pressure	610
8.2.6 Dipole force	614
8.3 Laser cooling and trapping of atoms, optical molasses	618
8.3.1 Doppler cooling	618
8.3.2 Coefficient of friction and Doppler molasses	619
8.3.3 Magneto-optical trap	621
8.3.4 Fluctuations and heating	624
8.3.5 Fluctuations of the resonance-radiation pressure	625
8.3.6 Momentum fluctuations and heating for a Doppler molasses	627
8.3.7 Equilibrium temperature for a Doppler molasses	629
8.3.8 Going under the Doppler temperature and Sisyphus cooling	630
8.3.9 Cooling below the recoil temperature	632
8.4 Gaseous Bose-Einstein condensates and atom lasers	633
8.4.1 Bose–Einstein condensation	633
8.4.2 Obtaining dilute atomic Bose-Einstein condensates. Laser coolin	g
and evaporative cooling	635
8.4.3 Ideal Bose–Einstein condensate and atomic wavefunction	638
8.4.4 Observing the wavefunction of the Bose–Einstein condensate	639

xxi	Contents	
	8.4.5 Dilute Bose–Einstein condensate with interactions	640
	8.4.6 Coherence properties of a Bose–Einstein condensate and interference	
	between two Bose-Einstein condensates	641
	8.4.7 Atom lasers	644
	8.4.8 Conclusion. From photon optics to atom optics and beyond	647
	Complement 8A Cooling to sub-recoil temperatures by velocity-selective coherent population trapping	651
	8A.1 Coherent population trapping	651
	8A.2 Velocity-selective coherent population trapping and sub-recoil cooling	654
	8A.3 Quantum description of the atomic motion	656
	8A.4 Fluorescence rate of a state $ \psi_{\rm NC}(p)\rangle$	659
	8A.5 Practical limits. The fragility of coherence	659
	Index	661

Foreword

Atomic, molecular and optical physics is a field which, during the last few decades, has known spectacular developments in various directions, like nonlinear optics, laser cooling and trapping, quantum degenerate gases, quantum information. Atom–photon interactions play an essential role in these developments. This book presents an introduction to *quantum optics* which, I am sure, will provide an invaluable help to the students, researchers and engineers who are beginning to work in these fields and who want to become familiar with the basic concepts underlying electromagnetic interactions.

Most books dealing with these subjects follow either a semi-classical approach, where the field is treated as a classical field interacting with quantum particles, or a full quantum approach where both systems are quantized. The first approach is often oversimplified and fails to describe correctly new situations that can now be investigated with the development of sophisticated experimental techniques. The second approach is often too difficult for beginners and lacks simple physical pictures, very useful for an initial understanding of a physical phenomenon. The advantage of this book is that it gives both approaches, starting with the first, illustrated by several simple examples, and introducing progressively the second, clearly showing why it is essential for the understanding of certain phenomena. The authors also clearly demonstrate, in the case of non-linear optics and laser cooling, how advantageous it may be to combine both approaches in the analysis of an experimental situation and how one can get from each point of view useful, complementary physical insights. I believe that this challenge to present and to illustrate both approaches in a single book has been taken up successfully. Whatever their ultimate interests, the readers of this work will be exposed to an important example of a broad and vibrant field of research and they will better understand the intellectual enrichment and the technical developments which result from it.

To write a book on such a broad topic, the authors must obviously possess wide knowledge of the field, they must have thought long and hard about the basic concepts and about the different levels of complexity with which one can approach the topics. They must also have a deep and concrete knowledge about experimental and technical details and the many problems which daily confront a laboratory researcher. Having worked extensively with them, I know the authors of this work fulfil these requirements. I have the highest admiration for their enthusiasm, their scientific rigour, their ability to give simple and precise physical explanations, and their quest to illuminate clearly the difficult points of the subject without oversimplification. Each of them has made many original contributions to the development of this important field of physics, and they and their younger collaborators for this book work at the cutting edge of modern quantum optics. In reading the book, I am therefore not surprised to find their many fine qualities reflected in the text. The general

xxiv

Foreword

organisation of the main chapters and complementary sections allows reading on many different levels. When the authors discuss a new physical problem, they begin the analysis with the simplest possible model. A large variety of experiments and applications are presented with clear diagrams and explanations and with constant attention to highlighting the guiding principles, the orders of magnitude and the problems which remain open.

This work will allow a broad audience an easier access to a field of science which continues to see spectacular developments. I believe that science is not simply a matter of exploring new horizons. One must also make the new knowledge readily available and we have in this book, a beautiful example of such a pedagogical effort. I would like finally to evoke the memory of Gilbert Grynberg who participated with Alain Aspect and Claude Fabre in the writing of a preliminary, much less developed, French version of this book and who passed away in 2003. Gilbert was an outstanding physicist, a fine person, and had an exceptional talent for explaining in the clearest possible way the most difficult questions. I think that the present book is the best possible tribute to be paid to him.

> Claude Cohen-Tannoudji Paris, September 2009

Preface

Since its invention in 1960, the laser has revolutionized both the study of optics and our understanding of the nature of light, prompting the emergence of a new field, *quantum optics*. Actually, it took decades until the words quantum optics took their current precise meaning, referring to phenomena which can be understood only by quantizing the electromagnetic field describing light. Surprisingly enough, such quantum optics effects could be fully understood by describing light as a classical electromagnetic field; the laser was no exception. As a matter of fact, to understand how a laser works, it suffices to use the *semiclassical description of matter–light interaction*, where the laser amplifying medium, made of atoms, molecules, ions or semi-conductors, is given a quantum mechanical treatment, but light itself is described by classical electromagnetic waves.

The first part of our book is devoted to presentation of the semi-classical approach and its use in describing various optical phenomena. It includes an elementary exposition of the physics of lasers, and some applications of this ubiquitous device. After recalling in **Chapter 1** some basic results of the quantum mechanical description of interaction induced transitions between the atomic energy levels, we use these results in **Chapter 2** to show how the interaction of a quantized atom with a classical electromagnetic wave leads to absorption or stimulated emission, and to derive the process of laser amplification that happens when a wave propagates in an inverted medium. **Chapter 3** gives an elementary exposition of the physics of laser sources and of the properties of laser light.

Although the quantum theory of light existed since its development by Dirac in the early 1930s, quantum optics theory in its modern sense started when Roy Glauber showed, in the early 1960s, how to apply it to classical optics devices such as the Michelson stellar interferometer or the Hanbury Brown and Twiss intensity interferometer. At that time it could have appeared to be an academic exercise without consequence, since the only known phenomenon that demanded quantization of light was spontaneous emission, and it was not clear whether quantum theory was at all useful for describing light freely propagating far from the source. Actually, Glauber developed a clear quantum formalism to describe optics phenomena, and introduced the important notion of quasi-classical states of light, a theoretical tool that allowed physicists to understand why all available sources of light, including lasers, delivered light whose properties could be totally understood in the framework of the semi-classical approach. But in doing so, he paved the way for the discovery of new phenomena which can be understood only if light is considered as a quantum system. It became possible to build sources delivering single photon wave packets, pairs of entangled photons, squeezed beams of light...

xxvi

Preface

The second part of our book is devoted to the presentation of the quantum theory of light and its interaction with matter, and its use in describing many phenomena of modern quantum optics. We show in **Chapter 4** how it is possible to write the dynamical equations of a classical electromagnetic field, i.e. Maxwell equations, in a form allowing us to use the canonical quantization procedure to quantize the electromagnetic field, and obtain the notion of a photon. We then use our results, in **Chapter 5**, to describe some fully quantum effects observed in experiments with *single photons*, *squeezed light or pairs of entangled photons*. It is remarkable that many of these experiments, whose first goal was to demonstrate the highly counter-intuitive, non-classical properties of new types of light states, turned out to stimulate the emergence of a new field, *quantum information*, where one uses such properties to implement new ways of processing and transmitting data. In **Chapter 6**, we show how to use the quantum optics formalism to describe the interaction between light and atoms. We will then revisit in this new framework the phenomena of absorption and stimulated emission, already studied in Chapter 2. Moreover, we will now be able to give a *consistent treatment of spontaneous emission*.

Having introduced the full quantum optics formalism and reviewed some remarkable phenomena that could not have been discovered without such a formalism, we would not like to leave the reader with the impression that he/she can now forget the semi-classical approach. Both approaches are definitely useful. On the one hand, there is no reason to use the, usually more involved, fully quantum analysis, when the situation does not demand it. After all, nobody would use quantum mechanics to describe the motion of planets. Similarly, no experimentalist studying fusion plasmas with intense lasers would start using the quantum formalism of light. What is important then is to be able to recognize when the full quantum theory is necessary, and when one can content oneself with the semi-classical model. To help the reader to develop their intuition about this point, we present, in the third part of this book, two topics, non-linear optics in Chapter 7, laser cooling and trapping of atoms in **Chapter 8**, where it is convenient to 'juggle' between the two approaches, each being better adapted to one or the other particular phenomenon. As 'the cherry on the cake', we will give in Chapter 8 an elementary presentation of atomic Bose-Einstein condensates, and emphasize the analogy between such a system, where all atoms are described by the same matter wave, and a laser beam where all photons are described by the same mode of the electromagnetic field. When we started to write the first French version of this book, we had never dreamt of being able to finish it with a presentation on *atom lasers*.

This book is composed of **chapters**, in which we present the fundamental concepts and some applications to important quantum optics phenomena, and of **complements**, which present supplementary illustrations or applications of the theory presented in the main chapter. The choice of these examples is, of course, somewhat arbitrary. We present them as a snap-shot of the current state of a field which is rapidly evolving. Complements of another type are intended to give some supplementary details about a derivation or about concepts presented in the chapter.

The prerequisite for using this book is to have followed an elementary course on both electromagnetism (Maxwell's equations) and quantum mechanics (Schrödinger formulation in the Dirac formalism of bras and kets, with application to the harmonic oscillator). The book is then self-consistent, and can be used for an advanced undergraduate, or for

xxvii

Preface

a first graduate course on quantum optics. Although we do not make use of the most advanced tools studied at graduate school, we make all efforts to provide the reader with solid derivations of the main results obtained in the chapters. For example, to quantize electromagnetic waves, first in free space, and then in interaction with charges, we do not use the Lagrangian formalism, but we introduce enough elements of the Hamiltonian formalism to be able to apply the canonical quantization rules. We are thus able to provide the reader with a solid derivation of the basic quantum optics formalism rather than bringing it in abruptly. On the other hand, when we want to present in a Complement a particularly important and interesting phenomenon, we do not hesitate to ask the reader to admit a result which results from more advanced courses.

We have done our best to merge the French teaching tradition of logical and deductive exposition with the more pragmatic approach that we use as researchers, and as advisors to Ph.D. and Masters students. We have taught the content of this book for many years to advanced undergraduate or beginning graduate students, and this text represents the results of our various teaching experiences.

Acknowledgements

In this book, we refer to a number of textbooks in which general elementary results of quantum mechanics are established, in particular the book by Jean-Louis Basdevant and Jean Dalibard,¹ which we indicate by the short-hand notation 'BD', and the one by Claude Cohen-Tannoudji, Bernard Diu and Franck Laloë,² which we denote by 'CDL'. On the more advanced side, we sometimes refer to more rigorous demonstrations, or to more advanced developments, that can be found in the two books written by Claude Cohen-Tannoudji, Jacques Dupont-Roc and Gilbert Grynberg, to which we refer under the short-hand notations 'CDG I' and 'CDG II', respectively.^{3,4}

It is not possible to mention all those who have contributed to or influenced this work. We would first like to acknowledge, however, our principal inspiration, Claude Cohen-Tannoudji, whose lectures at the Collège de France we have had the good fortune to be able to follow for three decades. At the other end of the spectrum, we also owe a lot to our students at Ecole Polytechnique, Ecole Normale Supérieure, Institut d'Optique Graduate School, Université Pierre et Marie Curie, as well as the many graduate students we have advised towards Masters or Ph.D. work. By their sharp questioning, never content with a vague answer, they have forced us to improve our lectures year upon year. We cannot cite all of the colleagues with whom we have taught, and from whom we have borrowed many ideas and materials, but we cannot omit to mention the names of Manuel Joffre, Emmanuel Rosencher, Philippe Grangier, Michel Brune, Jean-François Roch, François Hache, David Guéry-Odelin, Jean-Louis Oudar, Hubert Flocard, Jean Dalibard, Jean-Louis Basdevant. In addition, Philippe Grangier was kind enough to write Complement 5E on quantum information.

Martine Maguer, Dominique Toustou, and all the team of Véronique Pellouin at the Centre Polymedia of Ecole Polytechnique have done an impressive and professional job in preparing the manuscript with its figures. We would like also to thank the Centre National du Livre, of the French Ministry of Culture, for its important financial support in the translation of our French text.

¹ J.-L. Basdevant and J. Dalibard, *Quantum Mechanics*, Springer (2002).

² C. Cohen-Tannoudji, B. Diu and F. Laloë, *Quantum Mechanics*, Wiley (1977).

³ C. Cohen-Tannoudji, J. Dupont-Roc and G. Grynberg, *Photons and Atoms – Introduction to quantum electrodynamics*, Wiley (1989).

⁴ C. Cohen-Tannoudji, J. Dupont-Roc and G. Grynberg, *Atom-photon Interactions: Basic processes and applications*, Wiley (1992).

xxix

Acknowledgements

Special acknowledgement

This book has three authors, who wrote the original French textbook on which it is based.⁵ Sadly, as we had just started to prepare the English version, **Gilbert Grynberg** passed away, and for several years we were discouraged and not able to carry on working on the English version. Eventually, we realized that the best demonstration of all that we owe to our former friend and colleague was to resume this project. But we realized then that almost a decade after writing the French version, quantum optics had evolved tremendously, and we had also personally evolved in the ways in which we understood and taught the subject. The original French book, therefore, had not only to be translated but also widely revised and updated. In this long-term enterprise, we have been fortunate to have fantastic help from our younger colleagues (and former students) Fabien Bretenaker and Antoine Browaeys. For the past three years they have devoted innumerable hours to helping us complete the revised version, and without their help this would not have been possible. There is not a single chapter that has not been strongly influenced by their thorough criticisms, their strong suggestions, and their contributions to the rewriting of the text, not to speak of the double checking of equations. Moreover, they bring to this book the point of view of a new generation of physicists who have been taught quantum optics in its modern sense, in contrast to we who have seen it developing while we were already engaged in research. For their priceless contribution, we can only express to Fabien Bretenaker and Antoine Browaeys our immense gratitude. Gilbert would have been happy to have such wonderful collaborators.

> Alain Aspect and Claude Fabre, Palaiseau, Paris, July 2009.

⁵ Gilbert Grynberg, Alain Aspect, Claude Fabre, *Introduction aux lasers et à l'Optique Quantique*, cours de l'Ecole Polytechnique, Ellipses, Paris (1997).