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1
The evolution of interacting

quantum systems

In this work we shall study the interaction of matter and light. In so doing we shall rely
heavily on the description of such processes provided by quantum mechanics. This appears
on a number of levels: firstly, a quantum description of matter is indispensable if one wants
to understand on the microscopic scale the different kinds of interaction processes that can
occur. Secondly, a quantum description of light often turns out to be useful, sometimes
necessary, to better understand these processes. We shall study phenomena such as spon-
taneous emission, which can only be properly treated by a theory taking into account the
quantum nature of both light and matter.

In the following chapters we shall address, amongst others, the following question:
‘given an atom prepared at a given time in a particular state and subjected from this time
onwards to electromagnetic radiation, what is the state of the atom and radiation at any
later moment in time?’ In order to be able to answer this question it will be necessary for
us to know how to calculate the evolution of a quantum system in a small number of typical
situations. These methods we shall demonstrate in the first chapter.

The evolution of the coupled atom–light system depends on the temporal depen-
dence of the applied light field, which could, for example, be applied from a given
moment and thereafter remain unchanged in intensity, or, perhaps, be appreciable only
for a finite period of time (pulsed excitation). We shall see that the nature of the evo-
lution depends also on the structure of the energy spectrum of the system considered,
whether it is describable by a set of discrete levels well separated in energy, or by a
continuum.

This chapter starts with a brief reminder of some elementary results of quantum mechan-
ics (Section 1.1). In the following section we demonstrate the use of a perturbative
method to calculate the probability of the transition of a quantum state from a given
initial to a given final state under the influence of an interaction. Finally in Section 1.3
we shall study the case in which the initial state is coupled to a very large number of
closely spaced energy levels (we speak of a quasi-continuum of states). We derive an
important result for the transition probability, known as Fermi’s golden rule. Finally,
in the conclusion we discuss the different regimes of temporal evolution that can be
obtained.

This chapter is rounded off by two complements. Complement 1A outlines a simple
model which enables us to understand the transition between the two limiting situations
of Sections 1.2 (two discrete coupled levels) and 1.3 (a discrete level coupled to a contin-
uum). Complement 1B addresses the situation where a quantum system is interacting with
a random perturbation, whose frequency spectrum is broad (broadband excitation). In that
case, one finds a transition probability as in Section 1.3.
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4 The evolution of interacting quantum systems
�

1.1 Review of some elementary results
of quantum mechanics

We start by recalling some important results relating to a quantum system described by
a Hamiltonian Ĥ0 independent of time.1 We designate by |n〉 and En the eigenstates and
eigenenergies of Ĥ0. Suppose at time t = 0 the system is in the most general state:

|ψ(0)〉 =
∑

n

γn |n〉 . (1.1)

Using the Schrödinger equation,2 one can show that the system is found at a later time in
the state:

|ψ(t)〉 =
∑

n

γne−iEnt/h̄ |n〉 . (1.2)

The probability of finding the system in the state |ϕ〉 is then

Pϕ(t) = |〈ϕ| ψ(t)〉|2 (1.3)

and the probability that the system has made a transition from state |ψ(0)〉 to the state |ϕ〉
between times 0 and t is therefore

Pψ(0)→ϕ(t) = |〈ϕ| ψ(t)〉|2 . (1.4)

In particular, if the system is initially prepared in the eigenstate |n〉 of Ĥ0, it is given at any
later time t by the state vector

|ψ(t)〉 = e−iEnt/h̄ |n〉 . (1.5)

The probability of finding it later in a state |m〉 of Ĥ0 with m �= n is then zero:

Pn→m(t) = |〈m| ψ(t)〉|2 = 0. (1.6)

For example, the electron of an atom of hydrogen initially in the state |n, l, m〉 would remain
indefinitely in this state if the atom were not coupled to the exterior environment. In prac-
tice it undergoes transitions to different levels under the effect of exterior interactions of
various origins: collisions with ions, atoms or electrons, oscillating electromagnetic fields
etc. The coupling with the quantized electromagnetic field is also responsible for sponta-
neous transitions between an excited and lower energy levels accompanied by the emission
of a photon. This is the process of spontaneous emission that we shall treat in Chapter 6.

In these different examples the evolution of the system is driven by a time-dependent
Hamiltonian, this time dependence being sinusoidal in the case of an electromagnetic field,
impulsive in the case of a collision. In general, the state vector describing the system cannot
be calculated exactly for all time. We show in the next section, however, that one can obtain
an exact expression for transition probabilities in the form of a series expansion.

1 In this work we shall distinguish the operators of quantum theory by a hat, e.g. Ĥ.
2 See CDL, § III.D.2.
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5 1.2 Transition between discrete levels
�

A problem that is formally similar, that we shall also treat, is that in which the total
Hamiltonian Ĥ0 + Ŵ is independent of time, but in which the system is prepared in an
eigenstate of Ĥ0 and detected at a later instant, t′, in another eigenstate of Ĥ0. The cor-
responding transition probabilities will be calculated using a similar series method since,
as we shall demonstrate, this problem is mathematically identical to the case in which the
coupling Ŵ is applied transiently in the interval of time between t = 0 and t = t′.

1.2 Transition between discrete levels induced
by a time-dependent perturbation

1.2.1 Presentation of the problem

We consider a system described by a Hamiltonian

Ĥ = Ĥ0 + Ĥ1(t). (1.7)

Ĥ0 is independent of time, its eigenstates and eigenvalues being denoted by |n〉 and En:

Ĥ0 |n〉 = En |n〉 . (1.8)

Ĥ1(t) is an interaction term of which the matrix elements between the eigenstates of Ĥ0 are
assumed small compared to the energy differences between these eigenstates, 〈n|Ĥ0|m〉 �
|En − Em|. At this stage the time dependence of Ĥ1(t) is left arbitrary, it could for example
be constant for a finite interval of time and zero outside this interval.

The coupling Ĥ1(t) will be capable of inducing transitions between different eigenstates
of Ĥ0. Here we propose to calculate the corresponding transition probabilities Pn→m(t) sup-
posing, for simplicity, that the levels are non-degenerate in energy. More general treatments
can be found in standard texts on quantum mechanics.3

1.2.2 Examples

Before studying the mathematical development, we present two examples of physical sys-
tems well described by the model we propose to adopt. These will be of use to us later to
provide a physical illustration of the results obtained.

Interaction of an atom with a classical electromagnetic field

Consider an atom4 described by the atomic Hamiltonian Ĥ0 and which interacts with an
incident classical electromagnetic wave of which the electric field at the position of the
(stationary) atom is

3 See, for example, CDL, Chapter XIII.
4 More precisely, we consider for simplicity a one-electron atom such as hydrogen.
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6 The evolution of interacting quantum systems
�

E(t) = E cos(ωt + ϕ). (1.9)

We shall see in Chapter 2 that the interaction of the atom with the field can, to a good
approximation, be written in terms of an electric dipole coupling:

Ĥ1(t) = −D̂ · E(t), (1.10)

where D̂ is the electric dipole of the atom,

D̂ = qr̂. (1.11)

Here q is the electronic charge and r the radius vector between the atomic nucleus and its
valence electron.

Under the action of Ĥ1(t) the electron, initially in the eigenstate |n, l, m〉 of Ĥ0, will
be able to undergo transitions to other states |n′, l′, m′〉. If the energy of the latter state is
higher than that of the former the energy necessary to excite the atom is taken from the
electromagnetic field (this is absorption), if it is lower there is a transfer of energy from
the atom to the field (this is stimulated emission). We shall come back to these processes
and their consequences in Chapter 2.

Collision processes

We consider a stationary atom A, of which the internal energy levels are the eigenstates of
a Hamiltonian, Ĥ0 and suppose that another particle B passes in the neighbourhood of A
(Figure 1.1).

V̂ is the interaction potential between the collider B and the atom A; it depends on the
distance R between B and A. For atom A this interaction is represented by an operator
acting in the space of states of A. Its matrix elements between those states are a function
of R and tend to zero as R becomes very large. Since R varies in time, the interaction
Hamiltonian itself also depends on time. If before the collision, when the atoms are far
apart, atom A is in the state |n〉, there is the possibility that after the collision it will be
found in a different state |m〉. If the energies of the initial and final states are the same,
the collision is described as elastic, otherwise it is termed inelastic. This type of collision-
induced transition is responsible, for example, for the excitation of atoms in a discharge
lamp (a neon lamp, for example) or, as we shall see in Chapter 3, in certain kinds of laser.

B

b A

�Figure 1.1 Collisional interaction between a particle B and an atom A. The distance of closest approach,
b, is called the impact parameter. The interaction depends only on the R = AB distance,
hence V̂(t) = V̂(|R(t)|).
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7 1.2 Transition between discrete levels
�

1.2.3 Perturbation series expansion of the system wavefunction

The evolution of atom A is determined by solving the Schrödinger equation using the
Hamiltonian of Equation (1.7). To this end we are going, in the following, to employ a
method of approximate solution based on perturbation theory, which is valid provided the
matrix elements of Ĥ1(t) are small compared to those of Ĥ0.5 In order to be able to identify
the successive orders of the perturbation expansion more easily we rewrite Ĥ1(t) in the form

Ĥ1(t) = λĤ′
1(t), (1.12)

where Ĥ′
1(t) has matrix elements of the same order of magnitude as those of Ĥ0 and where λ

is a real, dimensionless parameter much smaller than unity, which characterizes the relative
strength of the interaction Ĥ1(t). In the first of our two examples, λ is proportional to
the amplitude of the incident electric field, in the second it is a function of the impact
parameter b. In each case it will be possible to find experimental conditions in which the
approximation λ � 1 is valid (weak electric field, large impact parameter).

The Schrödinger equation for the system is

ih̄
d

dt
|ψ(t)〉 =

(
Ĥ0 + λĤ′

1(t)
)

|ψ(t)〉 . (1.13)

Expanding |ψ(t)〉 in the basis of eigenstates of Ĥ0 we get

|ψ(t)〉 =
∑

n

γn(t) e−iEnt/h̄ |n〉 . (1.14)

Here we have written the coefficient of the ket |n〉 as a product of terms γn(t) and
exp(−iEnt/h̄). This separation permits us to take into account the free evolution of the
system under the influence of Ĥ0 alone, since if Ĥ1(t) is zero the γn(t) are constant by
virtue of Equation (1.2). This will facilitate later developments.

Next, we project Equation (1.13) on an eigenstate |k〉 of Ĥ0:

ih̄
d

dt
〈k| ψ(t)〉 = 〈k| Ĥ0 |ψ(t)〉 + λ 〈k| Ĥ′

1 |ψ(t)〉
= Ek 〈k| ψ(t)〉 + λ

∑
n

〈k| Ĥ′
1(t) |n〉 〈n| ψ(t)〉, (1.15)

where we have used the closure relation:
∑
n

|n〉〈n| = 1̂.

Using expression (1.14) for |ψ(t)〉, we rewrite (1.15) in the form:
[

Ekγk(t) + ih̄
d

dt
γk(t)

]
e−iEkt/h̄ = Ekγk(t) e−iEkt/h̄

+ λ
∑

n

〈k| Ĥ′
1(t) |n〉 γn(t) e−iEnt/h̄.

(1.16)

5 More precisely, in the basis {|n〉} of the eigenstates of Ĥ0, the off-diagonal matrix elements |〈n|Ĥ1|m〉| must be
small compared to the corresponding energy separations |En − Em|.

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-55112-0 - Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light
Gilbert Grynberg, Alain Aspect and Claude Fabre
Excerpt
More information

http://www.cambridge.org/9780521551120
http://www.cambridge.org
http://www.cambridge.org


8 The evolution of interacting quantum systems
�

The terms proportional to Ek in the right and left-hand sides simplify to give

ih̄
d

dt
γk(t) = λ

∑
n

〈k| Ĥ′
1(t) |n〉 ei(Ek−En)t/h̄ γn(t), (1.17)

which is a (possibly infinite) system of differential equations. This system is exact, no
approximations having been made thus far.

The coefficients γk(t) depend on λ. Perturbation theory consists of developing γk(t) as a
power series in λ (which, we recall is much smaller than unity):

γk(t) = γ
(0)
k (t) + λγ

(1)
k (t) + λ2γ

(2)
k (t) + ... (1.18)

In substituting this series in (1.17) we can collect together terms of the same order in λ. In
this way we obtain:

• to order 0

ih̄
d

dt
γ

(0)
k (t) = 0; (1.19)

• to order 1

ih̄
d

dt
γ

(1)
k (t) =

∑
n

〈k| Ĥ′
1(t) |n〉 ei(Ek−En)t/h̄ γ (0)

n (t); (1.20)

• to order r

ih̄
d

dt
γ

(r)
k (t) =

∑
n

〈k| Ĥ′
1(t) |n〉 ei(Ek−En)t/h̄ γ (r−1)

n (t). (1.21)

This system of equations can be solved iteratively. In fact the zeroth-order terms are already
known: they are constants determined by the initial state of the system. On substituting
these terms in (1.20) the terms of order one, γ

(1)
k (t), can be found. These then lead to an

expression for γ
(2)
k (t), and so on. Thus it is possible, in principle, to determine successively

all the terms in the expansion (1.18).

1.2.4 First-order theory

Transition probability

Suppose that at initial time t0, the system is prepared in an eigenstate |i〉 of Ĥ0. It follows
that all γk(t0) are zero except for γi(t0) which is equal to one. The solution of (1.19) is then:

γ
(0)
k (t) = δki. (1.22)

We now consider the possibility of transitions to level |k〉 different from the initial state
(k �= i). Substituting the result (1.22) into (1.20) and integrating over time we find, for γ

(1)
k

γ
(1)
k (t) = 1

ih̄

∫ t

t0
dt′ 〈k| Ĥ′

1(t′) |i〉 ei(Ek−Ei)t′/h̄. (1.23)
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9 1.2 Transition between discrete levels
�

The probability amplitude for finding the system in the state |k〉 at time t is, according to
(1.14) and (1.18), equal to (within a phase factor)

γ
(0)
k (t) + λγ

(1)
k (t) + ... (1.24)

For a state |k〉 different from |i〉 the zeroth-order term is zero. From this we deduce, also
using (1.23), that the amplitude for the transition |i〉 to |k〉 to first order and to within a
phase factor is

Ski = λγ
(1)
k (t) = 1

ih̄

∫ t

t0
dt′〈k|Ĥ1(t′)|i〉ei(Ek−Ei)t′/h̄, (1.25)

since, according to (1.12), λĤ′
1(t′) is equal to Ĥ1(t′). The probability of finding the system

in the state |k〉 is given by the square modulus of (1.25), that is

Pi→k = 1

h̄2

∣∣∣∣
∫ t

t0
dt′〈k|Ĥ1(t′)|i〉ei(Ek−Ei)t′/h̄

∣∣∣∣
2

. (1.26)

The formulae (1.25) and (1.26) are the important results of first-order, time-dependent per-
turbation theory. We shall use these in what follows. Notice, however, that this perturbative
approach is only valid if

Pi→k � 1, (1.27)

that is, effectively, that the interaction Hamiltonian Ĥ1 induces only small effects in first
order so that the full perturbation expansion of (1.18), which includes also the effects of
higher-order terms, will converge rapidly. Condition (1.27) is in fact a necessary condition,
but not sufficient that first-order perturbation theory can be accurately applied.

Example of a collisional process: qualitative study of the accessible
energy range

In the following, we shall show that the properties of the Fourier transform applied to
Equation (1.26) enable us to predict the range of energy over which atomic energy levels
can be excited during a collision.

Suppose, for simplicity, that the interaction term Ĥ1(t) is of the form:

Ĥ1(t) = Ŵ f (t), (1.28)

where Ŵ is an operator acting on atomic variables and f (t) is a real function of time which
tends to zero when t → ±∞ and attains its maximum value at t = 0 (see Figure 1.2). We
suppose that before the collision (t0 = −∞) the system is in a state |i〉. The amplitude for
finding it in a state |k〉 after the collision (t0 = +∞) is

Ski = Wki

ih̄

∫ +∞

−∞
dt f (t) ei(Ek−Ei)t/h̄, (1.29)

where Wki is the matrix element Wki = 〈k |Ŵ| i〉.
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10 The evolution of interacting quantum systems
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(a) f (t)

t0

(b) f̃ (t)

∆E

E0

∆t

�Figure 1.2 The Fourier transform of the function f(t), centred on the time origin and of width �t (a) is a
function of energy centred on E = 0 of width �E ≈ --h/�t (b).

Introducing the Fourier transform, f̃ (E) of the function f (t):

f̃ (E) = 1√
2πh̄

∫ +∞

−∞
dt f (t) eiEt/h̄, (1.30)

we obtain the following expression for the transition probability Pi→k,

Pi→k = 2π

h̄
|Wki|2

∣∣∣f̃ (Ek − Ei)
∣∣∣2

, (1.31)

which depends on the value of f̃ (E) taken at E = Ek − Ei.
We now make use of a well-known property of Fourier transforms (Figure 1.2): if the

width of the function f (t) is 
t then that of its Fourier transform is of the order of h̄/
t.
The expression (1.31) then shows that if the collisional interaction is of duration 
t, the
energy levels for which

|Ek − Ei| <
h̄


t
(1.32)

will have a significant probability of being populated.
Consider the case of a collision in which the interaction is a decreasing function of the

distance between the collision partners (see Figure 1.1). The collision duration is of the
order of b/v, where b is the impact parameter and v is the relative velocity of the particles.
The inequality (1.32) implies that only the states |k〉 such that

|Ek − Ei| ≤ h̄v

b
(1.33)

will be appreciably populated as a result of the collision.

�Comment Formula (1.33) shows that for an impact parameter of the order of 10 nm a collision with an atom
of speed 107 m.s−1 is necessary to excite a ground state hydrogen atom to its first excited state (an
energy transfer of about 10 eV). This is a very large velocity associated with a kinetic energy of
the order of 1 MeV, very large compared to the excitation energy of the atom. To excite a hydrogen
atom with lower energy particles one must consider impact parameters of the order of a Bohr radius.
For this type of ‘close’ collision the matrix elements of Ĥ1 are not small compared to the energy
differences En − Em, and the hypothesis of a perturbative interaction is no longer valid.
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11 1.2 Transition between discrete levels
�

Case of a constant perturbation suddenly ‘switched on’

It often arises that a system is suddenly at t = 0 made to interact with a perturbation Ŵ
which has a constant value at all later times.6 In this section we are going to determine
the transition probabilities in first-order perturbation theory for this important situation, a
result which will be of use in the remainder of this chapter.

If at time t = 0, the system is in the eigenstate |i〉 of Ĥ0, the amplitude for finding it in
the state |k〉 at a time T may be calculated from (1.25) thus:

Ski(T) = Wki

ih̄

ei(Ek−Ei)T/h̄ − 1

i(Ek − Ei)/h̄
. (1.34)

Hence we deduce the transition probability Pi→k(T):

Pi→k(T) = |Wki|2
h̄2

gT (Ek − Ei), (1.35)

where

gT (E) = sin 2(ET/2h̄)

(ET/2h̄)2
T2 (1.36)

is the function shown in Figure 1.3.
The important characteristics of this function are the following:

• it has its maximum value of T2 at E = 0;
• its width is of order 2πh̄/T;
• its area is proportional to T , or more precisely:7

∫ +∞

−∞
dE gT (E) = 2πh̄T . (1.37)

T 2
gT (E )

E
T

0 2πh

�Figure 1.3 Form of the function gT(E) = (T sin(ET/2--h)/(ET/2--h))2. Its value at E = 0 is T2 and the first
zeros are at E = ±2π--h/T.

6 As we pointed out in the introduction, this calculation applies equally to the case of a Hamiltonian Ĥ0 + Ŵ
independent of time, but when the system is prepared and subsequently detected in an eigenstate of Ĥ0.

7 Its value is half the product of its height and of the distance between the two first zeros, as though the function
gT were triangular.

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-55112-0 - Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light
Gilbert Grynberg, Alain Aspect and Claude Fabre
Excerpt
More information

http://www.cambridge.org/9780521551120
http://www.cambridge.org
http://www.cambridge.org

