

Cambridge University Press
0521548039 - Earth's Glacial Record: International Geological Correlation Project 260 - Edited by M. Deynoux, J. M. G. Miller, E. W. Domack, N. Eyles, I. J. Fairchild and G. M. Young
Table of Contents
More information

Contents

	List of contributors	X1		Fremont Island, Little Mountain and Ogden area,	
	Preface	xiii		northern Utah (formation of Perry Canyon)	37
	Acknowledgements	xvii		Sheeprock Mountains and Deep Creek Range,	
				western Utah (Sheeprock Group and Horse	
1	Geodynamic controls on glaciation in Earth history	1		Canyon Formation)	37
	N. EYLES and G.M. YOUNG	-		Southeastern Idaho (Pocatello Formation)	38
	Abstract	1		Interpretation of facies associations	38
	Introduction	1		Massive diamictite facies association: ice-proximal	20
		2		non-reworked deposits	38
				Stratified diamictite and graded sandstone	20
	Mesoproterozoic non-glacial epoch				39
	Neoproterozoic glaciations	5		association: sediment gravity flow deposits	39
	Overview	5		Diamictite and laminated sandstone association: ice-	••
	Timing and tectonic setting	6		proximal deposits with abundant meltwater	39
	The importance of extensional rift basins	7		Carbonate, shale and sandstone association: non-	
	South Australia/northern Canadian Cordillera	7		glacial marine deposits	40
	North Atlantic sector	8		Cross-bedded sandstone association: fluvial deposits	40
	Discussion	9		Discussion: facies distribution, subsidence mechanisms,	
	Early and Late Paleozoic glaciations	10		uncomformities and preservation potential in rift	
	South America	11		settings	40
	South Africa	14		Subsidence mechanisms	40
	Australia	15		Relation of facies to tectonic position	41
	Antarctica	17		Generation of unconformities	41
	Southeast Asia	17		Geologic setting of the Rapitan glaciation	42
	Arabian Peninsula	17		Acknowledgements	42
		17		References	42
	India and Pakistan			References	42
	Discussion	18	3	The Neoproterozoic Konnarock Formation,	47
	Mesozoic glaciation	18		southwestern Virginia, USA: glaciolacustrine facies in a	
	Late Cenozoic glaciations	19		continental rift	
	The role of tectonic uplift	19		J.M.G. MILLER	
	The role of ocean currents	21		Abstract	47
	Conclusions	22		Introduction	47
	Acknowledgements	22		Stratigraphic and structural setting	48
	References	22		Paleotectonic setting	50
				Facies and facies associations	50
2	Glacial-marine facies in a continental rift environment:	29		Argillite	50
	Neoproterozoic rocks of the western United States			8	53
	Cordillera			Sandstone	
	P.K. LINK, J.M.G. MILLER and N. CHRISTIE-BLICK			Diamictite	54
	Abstract	29		Environmental synthesis	55
	Introduction	29		Conclusion	57
	Evidence for overall glacial origin	31		Acknowledgements	57
	Facies associations	31		References	57
		34	1	Glaciogenic deposits of the Permo-Carboniferous	60
	Review of stratigraphy	34	4		00
	Death Valley region of southeastern California	26		Dwyka Group in the eastern region of the Karoo Basin,	
	(Kingston Peak Formation)	36		South Africa	
	Central Wasatch Range and Antelope Island,	2.6		V. VON BRUNN	
	northern Utah (Mineral Fork Formation)	36		Abstract	60

vii

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521548039 - Earth's Glacial Record: International Geological Correlation Project 260 - Edited by M. Deynoux, J. M. G. Miller, E. W. Domack, N. Eyles, I. J. Fairchild and G. M. Young
Table of Contents
More information

viii Contents

	Introduction	60		Poorly stratified diamictite facies	103
	Pre-Dwyka highland surface (Northern Region)	60		Bedded diamictite facies	103
	Zone of irregular palaeorelief (Intermediate Region)	62		Dropstone-bearing laminated lithofacies	103
	Diamictite-mudrock facies association	63		Thin-bedded to banded-laminated siltstone-mudstone	
	Sandstone-arenaceous diamictite-conglomerate			facies	104
	facies association	63		The Wudaotang Section in Helan County	104
	Pre-Dwyka lowland plain (Southern Region)	65		The Tuerkeng Section	105
	Sequence of events	66		The Zhengmuguan Section	105
	Discussion	67		The Jingdiquan Section	105
	Acknowledgements	68		REE geochemical characteristics of the Zhengmuguan	
	References	68		Formation	106
5	Itararé Group: Gondwanan Carboniferous-Permian of	70		Sedimentary facies and environmental analysis	107
	the Paraná Basin, Brazil	, ,		Conclusions	107
	A.B. FRANÇA			References	107
	Abstract	70	9	Architectural styles of glacially influenced marine	109
	Introduction	70		deposits on tectonically active and passive margins	
	Tectonic setting	70		M.R. GIPP	
	Stratigraphy	71		Abstract	109
	Lagoa Azul Formation	72		Introduction	109
	Campo Mourão Formation	73		The Gulf of Alaska	109
	Taciba Formation	75		The Scotian margin	110
	Summary and conclusions	76		Models	111
	Acknowledgements	82		Passive margin	111
	References	82		Active margin	112
6	The interpretation of massive rain-out and debris-flow	83		Similarities	113
٠	diamictites from the glacial marine environment	0.5		Distinguishing features in the models	116
	J.N.J. VISSER			Other examples	117
	Abstract	83		Summary Acknowledgements	119 119
	Introduction	83		References	119
	Massive diamictites from the Dwyka Formation	84		References	119
	Floriskraal	84	10	Marine to non-marine sequence architecture of an	121
	Elandsvlei	86		intracratonic glacially related basin. Late Proterozoic of	
	Kransgat River	87		the West African platform in western Mali	
	Douglas	90		J.N. PROUST and M. DEYNOUX	
	Discussion	92		Abstract	121
	Acknowledgements	94		Introduction	121
	References	94		Baselevel concept Geological setting	122 122
7	Neoproterozoic tillite and tilloid in the Aksu area,	95		Definition of the depositional genetic unit from the	122
	Tarim Basin, Uygur Xinjiang Autonomous Region,			sediment architecture of a key exposure	124
	Northwest China			Facies distribution in architectural elements	127
	LU SONGNIAN and GAO ZHENJIA			Landward-stepping unit	127
	Abstract	95		Vertical stacking unit	130
	Introduction	95		Seaward-stepping unit	132
	The Precambrian stratigraphic sequences	95		Discussion	135
	Sedimentary features of diamictites in the Qiaoenbulak			Bimodal facies architecture and time/space	
	Group	97		distribution of sediments and bounding surfaces	
	Features of the diamictite of the Umainak Formation			within genetic units	135
	(Wushinanshan Group)	98		Stacking cycle	137
	Comparison between diamictites of the Qiaoenbulak			Comparison with genetic units described in the	
	Group and the Wushinanshan Group	98		literature	138
	Acknowledgements	99		Estimated baselevel cycles duration	139
	References	99		Inferred factors controlling sedimentation	139
8	Lithology, sedimentology and genesis of the	101		Conclusion	141
	Zhengmuguan Formation of Ningxia, China			Acknowledgements	141
	ZHENG ZHAOCHANG, LI YUZHEN, LU SONGNIAN			References	142
	and LI HUAIKUN		11	The enigmatic Late Proterozoic glacial climate: an	146
	Abstract	101		Australian perspective	
	Introduction	101		G.E. WILLIAMS	
	Tectonic and stratigraphic setting of the Zhengmuguan			Abstract	146
	Formation	101		Introduction	146
	The sedimentary facies and their associations in the	102		Late Proterozoic glacial and periglacial climate	146
	Zhengmuguan Formation Massive diamictite facies	103 103		Possible explanations of low-palaeolatitude glaciation	153
	TAMOSIYO GIGIIIIOTIC IACIOS	111.7		VIDOUI ICHIYCIAHOII	134

© Cambridge University Press www.cambridge.org

Cambridge University Press 0521548039 - Earth's Glacial Record: International Geological Correlation Project 260 - Edited by M. Deynoux, J. M. G. Miller, E. W. Domack, N. Eyles, I. J. Fairchild and G. M. Young

Table of Contents More information

Contents					ix
	Equatorial ice-ring system	154		Whitehill Formation	198
	Geomagnetic field non-axial	154		Palaeoclimatic reconstruction	198
	Obliquity of the ecliptic > 54°	155		Depositional model for the mudrocks	200
	Other evidence for Late Proterozoic obliquity	156		Conclusions	201
	Discussion	159		Acknowledgements	202
	Conclusions	161		References	202
	Acknowledgements	161			
	8	161	15	A palaeoenvironmental study of black mudrock in the	204
	References	101		glacigenic Dwyka Group from the Boshof-Hertzogville	
12	Isotopic signatures of carbonates associated with	165		region, northern part of the Karoo Basin, South Africa	
	Sturtian (Neoproterozoic) glacial facies, central Flinders			D.I. COLE and A.D.M. CHRISTIE	
	Ranges, South Australia			Abstract	204
	A.R. CROSSING and V.A. GOSTIN			Introduction	204
	Abstract	165		Geology	204
	Introduction	165		Depositional environment of the Dwyka Group	205
		165		Black mudrock	208
	Regional stratigraphy	167			208
	Methods			Description	
	Isotopic and geochemical analysis	167		Total organic carbon and organic composition	210
	Palaeoenvironmental and diagenetic interpretation	169		Palaeoenvironment	210
	Interpretation of ancient dolomites	170		Conclusions and regional analysis	212
	Comparison with other Neoproterozoic dolomites	170		Acknowledgements	213
	The overlying isotopic signal	173		References	213
	Geochemistry and the carbon signal	174	16	Late Paleozoic post-glacial inland sea filled by fine-	215
	Conclusions	174	10	grained turbidites: Mackellar Formation, Central	213
	Acknowledgements	174		Transantarctic Mountains	
	References	174			
				M.F. MILLER and J.W. COLLINSON	
13	Reactive carbonate in glacial systems: a preliminary	176		Abstract	215
	synthesis of its creation, dissolution and reincarnation			Introduction	215
	I.J. FAIRCHILD, L. BRADBY and B. SPIRO			Stratigraphic setting	215
	Abstract	176		Facies	217
	Introduction	176		Shale facies	217
	Creation of fine detrital carbonate	178		Interbedded sandstone and shale facies	217
	Chemical controls on dissolution and precipitation	179		Massive sandstone facies	220
	Weathering reactions	179		Burrowed sandstone facies	220
	Equilibrium thermodynamics	180		Diamictite facies	221
	Kinetics factors	181		Large-scale cross-stratified sandstone facies	222
	Mechanisms of precipitation	182		Large-scale channels	223
	Ripening	182		Facies associations and depositional environments	223
	Warming	183		Facies associations	223
		183		Depositional environments	224
	Freezing			, *	226
	Common ion effect	183		Paleocurrents	
	Changes in CO ₂ and alkalinity	184		Paleosalinity	226
	Evaporation and transpiration	184		Biogenic structures	226
	Skeletal biomineralization	184		Carbon:sulfur ratios	226
	Recent examples	184		Comparison with Upper Paleozoic post-glacial	
	Carbonate saturations of proglacial waters	184		marine sequences	226
	Processes in the ice-marginal meltout zone	186		Summary	227
	Crusts on clasts: regelation versus vadose zone			Water depth	227
	phenomena	188		Paleogeography	227
	Post-glacial transformations	189		Model for filling of the Mackellar post-glacial inland	
	Application to glacial sedimentary sections	190		sea	228
	Crusts on clasts	190		Basinal processes and environments	228
	Diamict matrix and muds	190		Shoreline processes and environments	230
	Sorted sands and gravels	190		Model	230
	· · · · · · · · · · · · · · · · · · ·	190		Conclusions	230
	Acknowledgements				231
	References	190		Appendix. Outcrop locations	231
14	A Permian argillaceous syn- to post-glacial foreland	193		Acknowledgements	
	sequence in the Karoo Basin, South Africa	=		References	231
	J.N.J. VISSER		17	Ice scouring structures in Late Paleozoic rhythmites,	234
	Abstract	193	.,	Paraná Basin, Brazil	
	Introduction	193		A.C. ROCHA-CAMPOS, P.R. DOS SANTOS and J.R.	
		1/3			
	Spatial and age relationships of the Prince Albert and	102		CANUTO Abstract	234
	Whitehill Formations	193		Abstract	234
	Lithology	196		Introduction	
	Prince Albert/Pietermaritzburg Formations	196		Stratigraphic setting	234

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521548039 - Earth's Glacial Record: International Geological Correlation Project 260 - Edited by M. Deynoux, J. M. G. Miller, E. W. Domack, N. Eyles, I. J. Fairchild and G. M. Young
Table of Contents
More information

X		Contents

	Ice scour structures	236		Icebergs and glacimarine sediments in East	
	Discussion	237		Greenland	249
	Acknowledgements	239		Origin of massive diamicton and ice keel turbate	249
	References	239		Criteria for distinguishing glacimarine diamictons	
		244		and related facies	252
18	Soft-sediment striated surfaces and massive diamicton	241		Discussion	253
	facies produced by floating ice			Summary and conclusions	256
	C.M.T. WOODWORTH-LYNAS and J.A. DOWDESWELL	0.41		Acknowledgements	256
	Abstract	241		References	256
	Introduction	241	10	The state of the s	260
	Origins of soft-sediment striated surfaces	242	19	Environmental evolution during the early phase of Late	200
	Subglacial flutes	242		Proterozoic glaciation, Hunan, China	
	Ice sheet grounding line striations	242		QI RUI ZHANG	260
	Surfaces formed by free-floating ice masses 242			Abstract	260
	Scour by free-floating ice masses: ice keel scour mark			Introduction	260
	morphology and identification criteria 24.	243		Geological setting	260
	Examples of ice keel scour marks and soft-sediment			Sedimentology of the Xieshuihe Formation	260
	striated surfaces in ancient glacial sediments	243		Features of the upper contact of the Xieshuihe	
	Background	243		Formation	264
	Examples	mples 244		Discussion	266
	Iceberg scouring and massive diamicton formation in			Acknowledgement	266
	the modern glacimarine environment of East			References	266
	Greenland	249			

© Cambridge University Press www.cambridge.org