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Glacial deposits provide a long-term record of climate and sea level
changes on Earth. Detailed study of sedimentary rocks deposited
during and immediately after glacial episodes is paramount to
accurate paleoclimatic reconstructions and for our understanding
of global climatic and eustatic changes. This book presents new
information and interpretations of the ancient glacial record,
looking in particular at the Late Proterozoic and Late Paleozoic
eras. The influence of global tectonics on the origins and distri-
bution of ice masses and the character of glacial deposits through
geologic time is emphasised. Sequence stratigraphic techniques
are applied to glaciogenic successions, and explanations are put
forward for possible low-latitude glaciation during the Late Pro-
terozoic era and the association of carbonate deposits with glacio-
genic rocks. Early interglacial conditions, represented by dark-grey
mudrocks and ice keel scour features, are discussed. These studies,
from key workers in International Geological Correlation Program
Project 260, will aid the understanding of Earth’s climatic history.
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Preface

An IGCP contribution

This volume represents the final contribution of the
International Geological Correlation Program Project 260 ‘Earth’s
Glacial Record’. The project was active from 1987 until 1991. It
succeeded IGCP Project 24 ‘Quaternary Glaciations in the North-
ern Hemisphere’, and Project 38 ‘Pre-Pleistocene Tillites’. Thus, its
goal was to promote further research on glaciations, whatever their
age and location, and to encourage geologists working in Modern
or Quaternary sequences and those working on Pre-Pleistocene
rocks to share their experience and different approaches. In this way
we hoped to emphasize and illuminate global aspects of glacial
phenomena in addition to facies description and regional problems.
Participants in the project were encouraged to consider the tectonic
versus climatic control on sedimentation in glacially influenced
basins, the nature of the feedback between plate positioning,
tectonics, and climate, and the paleoenvironmental significance and
distribution of specific rock types (e.g. black shales, carbonates,
iron formations, etc.) during and immediately after glacial periods.

These ambitious objectives were addressed by three subgroups
that were in charge of, respectively, geodynamic setting, paleomag-
netic reconstructions, and significance of specific rock types. Yearly
meetings and field trips were held in various countries (10 field trips
in Canada, Brazil, USA, UK, Mali), covering a vast variety of
structural terranes (active and passive margins, intracratonic
basins) from Proterozoic up to Modern in age. This clearly demon-
strated the interest in and necessity for such a comprehensive
approach among geologists. We do not pretend that all objectives
were perfectly met, but aspects have been clarified and progressively
more communications on global climatic or tectonic implications
were presented during the successive meetings. This awareness of
the importance of a global approach is certainly one of the most
significant results of the project.

A second outcome of the project is a definite improvement in
communication among workers on ancient and modern deposits
leading to more sophisticated facies interpretation. Such interac-
tion, as well as the idea of submitting a common IGCP project,
began at the Till Mauretania 83 Symposium (Deynoux, 1985a),
when Quaternary and ‘paleo’ geologists examined West African

Late Proterozoic glacial deposits. The final decision to submit the
project, which was encouraged and supported in particular by J.C.
Crowell and N.M. Chumakov, was made after an informal meeting
during the 1986 International Sedimentological Congress in
Canberra.

Content of the volume

The present volume complements the largely descriptive
compilation made by Hambrey and Harland (1981) for IGCP 38. 1t
is less encyclopedic and more interpretive. It reflects results of
research on the IGCP 260 project themes outlined above.

One of the most puzzling climatic phenomena in the Earth’s
history is the possibility of glaciations at low latitudes, inferred
from low paleomagnetic inclinations in many Late Proterozoic
(Neoproterozoic) strata containing glacial deposits. In response to
this paradox, a glacial origin for most alleged Late Proterozoic
‘tillites” was denied by Schermerhorn (1974) in an excellent and
somewhat provocative paper. Among his arguments was the occur-
rence of diamictites in active tectonic settings, implying that many
diamictites may be explained better as deposited by debris-flow
processes or in association with mountain glaciations, and the
association of these diamictites with rocks generally indicative of
warm climate, such as carbonate or iron deposits. Such an extreme
position has in many cases been undermined by field evidence
(Hambrey and Harland, 1981). However, Schermerhorn’s paper
forced reappraisal of arguments in terms of plate tectonic activity
and reinforcement of those arguments which concern the glacioge-
nic origin of diamictite-bearing facies associations. IGCP Project
260 extended these themes by investigating the effect of tectonic
setting upon the distribution and type of sedimentary facies in
proven glaciogenic successions. The first nine papers of this volume
address these themes.

N. Eylesand G.M. Young (p. 1) give an overview of glaciations in
Earth’s history and focus on the role of plate tectonic processes in
the production and preservation of glaciogenic deposits. They
demonstrate that strong uplift in active collisional margins or on
the flanks of basins undergoing regional extension, and the result-
ant enhanced weathering that causes drawdown of atmospheric

xiii
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Xiv Preface

CO,, provide first-order controls on glaciations. Many points that
they discuss are fleshed out in papers later in the volume. The paper
by P.K. Link, J.M.G. Miller, and N. Christie-Blick (p. 29) may
serve as an illustration of the Eyles and Young hypothesis on the
origin of glaciations. They present well-documented examples of
Late Proterozoic glacial-marine sedimentation along the margin of
differentially subsiding basins that developed during an episode of
rifting in western North America. They provide careful descriptions
of diamictite-bearing facies associations and emphasize the
common occurrence of relatively deep-water facies in most of the
Late Proterozoic sequences of inferred glacial origin. In contrast,
JM.G. Miller (p. 47) illustrates the merits of Schermerhorn’s
arguments in an excellent example of Late Proterozoic diamictite-
bearing facies associations in a continental rift system in eastern
North America. She proposes that diamictites were deposited in a
lacustrine environment under the influence of a local alpine
glaciation.

The next two papers show the influence of local tectonics upon
glacial sedimentation patterns during the Late Paleozoic. V. Von
Brunn (p. 60) proposes a Permo-Carboniferous model in which
glacial-marine deposits, including a large amount of diamictite,
were formed within and on the flanks of a subsiding trough which
developed over a failed rift. Depositional architecture appears
largely controlled by pre-existing topography and glacially related
sea-level changes. A.B. Franga (p. 70) presents an overview of the
stratigraphy and hydrocarbon potential of the Carboniferous-
Permian Itararé Group in the whole Brazilian Parand Basin. The
Itarare Group forms a continuous and thick record of a temperate
glacial-marine environment in which the distribution and thickness
of sedimentary units were affected by structural lineaments. This
contribution is original because it concerns an economic aspect of
the glacial sequences. According to structural setting and proximity
of source rocks, the Itarare Group constitutes an excellent model
for petroleum exploration.

Difficulty determining the origin of massive diamictites was
frequently discussed at IGCP 260 meetings, J.N.J. Visser (p. 83)
addresses this problem using four examples from the Permo-
Carboniferous Dwyka Formation in South Africa. He proposes
well-defined criteria, based on clast fabric and facies context, for the
absolute identification of mechanisms of deposition of these dia-
mictites in a glacial marine environment. Harking back to Scher-
merhorn (1974), Lu Songnian and Gao Zhenjia (p. 95) questioned
the origin of two superposed Late Proterozoic diamictite-bearing
formations in West China. Both formations were previously inter-
preted as glacial. Using stratigraphic and sedimentologic argu-
ments, the authors demonstrate that the ‘lower diamictite’ corres-
ponds to non-glacial debris-flows, the ‘upper diamictite’ to
continental glacial deposits. Zheng Zhaochang and Li Yuzhen (p.
101) report Late Proterozoic glaciogenic successions in north-
western China, which consist of massive to bedded diamictite layers
deposited subglacially or as subaqueous debris flows, overlain by
transgressive post-glacial, thinly bedded siltstones and shales. They
emphasize the importance of regional and local facies context in
inferring the glaciogenic origin of the diamictite.

Lastly, the paper by M.R. Gipp (p. 109) provides sedimentologi-
cal models for the large-scale architecture of glaciated shelf and
slope systems in Late Cenozoic active (Gulf of Alaska) and passive
(Nova Scotia) margins. Processes of deposition appear identical on
both active and passive margins, but the gross depositional archi-
tecture of glacial marine deposits differs depending on the preserva-
tion potential of sediments, which is controlled by tectonics and
relative sea-level changes.

Recent years have seen the introduction of the exciting new
concepts of sequence stratigraphy. Such ideas are particularly
relevant to glaciogenic successions because of the associated rapid
and large-scale sea-level changes. However, sequence stratigraphy
remains scarcely used in glacial rock successions owing probably to
local effects related to the common occurrence of glacigenic
deposits in tectonically active areas. J.N. Proust and M. Deynoux
(p. 121) propose a sequence stratigraphic model based on the
definition of a depositional genetic unit and its evolution through
space and time in the marine to continental transitional zone of an
intracratonic glacially influenced basin. Their model is developed
from detailed field analysis of Late Proterozoic glacially related
deposits on the West African platform. These genetic units and their
different development in a stacking pattern lead to the definition of
different orders of stacked sequences that are interpreted in terms of
short-term climatically (glacially) controlled and long-term tectoni-
cally driven baseleve! fluctuation cycles.

As shown by the papers quoted above, geologists have strong
arguments which confirm the glacial origin of several Late Protero-
zoic successions. However, this does not solve the problem of low
latitude glaciations (Chumakov and Elston, 1989). Hypotheses
such as fast-moving plates (Crowell, 1983) or global glacial climate
(Harland, 1964) have been proposed but are difficult to support on
paleomagnetic and geologic grounds. Astronomical causes have
also been proposed (Williams, 1975, Sheldon, 1984), and in this
volume G.E. Williams (p. 146) again addresses this problem which
‘challenges conventional views on the nature of the geomagnetic
field, climatic zonation, and the earth’s planetary dynamics in Late
Proterozoic time’. Williams gives new evidence (paleomagnetic and
time-series analysis of tidalites, and paleoclimatic interpretation of
periglacial structures) supporting his previous hypothesis of a large
obliquity of the ecliptic (>54°) leading to a reverse climatic
zonation and marked seasonality.

Although still used as an argument against glaciation, the co-
occurrence of carbonate rocks and glacial deposits is common.
However, there are many facets of the association. Skeletal carbon-
ates are common in high latitude seas today but they do not have
exact equivalents in Proterozoic rocks. As reviewed by Fairchild
(1992) the extensive ice sheets of Late Proterozoic times appear to
have encroached onto previously warm carbonate-forming
environments which returned following glaciation. Glacial deposits
are carbonate-rich primarily because of the incorporation of detri-
tal carbonate. Subglacial redistribution of detrital carbonate by
dissolution and reprecipitation by stress-related melting—freezing
processes was proposed for some Late Proterozoic terrestrial tillites
(Deynoux, 1985b). The discovery of marine recrystallization of
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Late Proterozoic glacially transported rock flour in Svalbard
(Fairchild er al., 1989) gave new insight to the problem. Following
this discovery, Crossing and Gostin (p. 165) investigated examples
of diamictites in the Adelaide geosyncline of south Australia and
found geochemical evidence from the composition of the matrix for
deposition in a sea diluted by meltwater. Additionally, correlation
between high Fe and reduced §'3 C values in the matrix suggests
that bacterial activity accompanied the diagenesis of the rock flour.
In order to gain a better understanding of the chemical processes
involved when carbonate rock flours interact with fluids in glacial
systems, investigations of carbonate-rich Quaternary glacial
systems have been started, and L[.J. Fairchild, L. Bradby, and B.
Spiro (p. 176) report their preliminary conclusions. Although they
stress the importance of postglacial processes in controlling lithifi-
cation of the sediments, evidence is also found for the precipitation
of calcite in the matrix of a refrozen meltout till. Since this article
was prepared they have found similar material in unfrozen meltout
till and basal ice.

The succession of glacial deposits in Late Paleozoic sequences
across much of Gondwana is punctuated by a sharp contract
between diamictites and overlying late- or post-glacial dark- to
black-colored mudstones (Domack et al., 1992). Such a sharp
contact has also been described in intracratonic Late Proterozoic
and Late Ordovician glacial sequences on the West African plat-
form (see Deynoux and Trompette in Hambrey and Harland,
1981). The diamictite-black mudstone transition is important in
that it is widely believed to represent the end of glacial climates
within the regional extent of the basins in which it is found. Hence
these rocks preserve a record of global warming associated with an
apparently rapid ‘glacial’ to ‘interglacial’ transition. A similar
hypothesis was also proposed for certain Proterozoic carbonate
horizons capping glacial deposits (e.g. Williams, 1979). Depositio-
nal mechanisms for the dark to black mudstones are varied. J.N.J.
Visser (p. 193) describes the conditions that prevailed in a shallow to
moderately deep Late Carboniferous foreland basin (Dwyka gla-
ciations of the Karoo Basin) after self-destructive collapse of a
marine ice sheet resulting from a relative sea-level rise. The syn- to
post-glacial dark to black mudrocks, which overlie the glaciogenic
deposits, were deposited by suspension settling of mud and mud
turbidites. Basin tectonics, oceanic circulation, and climate
controlled the organic-rich black mud deposition. D.I. Cole and
A.D.M. Christie (p. 204) also describe Early Permian black mud-
rocks overlying diamictites (debris and turbidity flows) deposited
by a retreating tidewater glacier during the final phase of the Dwyka
glaciation. The black mudrocks are the product of pelagic mud
settling proximal to the ice front where freshwater plumes mixed
with basinal saline water. They account for a sudden increase in
organic productivity, indicating that the rapid termination of the
Dwyka glaciation was accompanied by a sharp rise in temperature.
M.F. Miller and J.W. Collinson (p. 215) describe the processes and
environments that characterize the filling of a large Lower Permian
post-glacial inland sea in Antarctica. Deposition in relatively
shallow water was dominated by turbidity currents carrying fine-
grained sediments in channel-overbank systems. The glacial

environment allows the definition of a model in which a fine-
grained turbidite system is paradoxically fed by a coarse-grained
braided stream of the outwash plain.

Recent years have seen increasing interest in the sedimentary
record of ice scours on continental shelves and lakes. Such struc-
tures and associated diamict deposits are widespread on Pleistocene
shelves but are rarely known from the rock record. The paper by
A.C. Rocha-Campos, P.R. dos Santos, and J.R. Canuto (p. 234)
describes Early Permian iceberg scours. These scours are encoun-
tered on bedding planes of rhythmites inferred to be varves in a
relatively deep freshwater body. C.M.T. Woodworth-Lynas and
J.A. Dowdeswell (p. 241) argue that many striated surfaces, and
associated diamictites found in ancient successions may have been
produced by marine (or lacustrine) ice keel scour and report a
modern analogue from the Greenland shelf. The need for a more
critical examination of ancient glacial striated surfaces and asso-
ciated facies is clearly indicated. Qui Rui Zhang (p. 260) describes
periglacial indicators such as iceberg scours and dropstones, ice
wedge casts, and glaciotectonic structures. These structures indi-
cate that, instead of an abrupt erosional unconformity, the glacio-
genic deposits of the Nanhua Ice Age (Late Proterozoic) of South
China are locally conformably underlain by rocks that mark a
progressive climatic transition from warm to cold.

Significance

The results of IGCP Project 260 are very relevant to
current concerns about global change. As more details of the
present climate and the climate of the Pleistocene are revealed, the
interplay of ocean, atmosphere, biosphere and lithosphere with the
internal heat engine of the Earth is being revealed as something of
great complexity. We are still far from a complete understanding of
the Earth’s climatic system but glaciogenic deposits provide critical
palaeoclimatic data. In spite of recent suggestions that some tillites/
diamictites may be the ejecta of large planetesimal impacts (Ram-
pino, 1992; Oberbeck er al., 1993), extensive research and field
studies demonstrate that the vast majority of documented ancient
glaciogenic deposits correctly record periods of cold climate during
Earth history. The discovery of mechanisms governing the appear-
ance and disappearance of glaciers on Earth is paramount to the
understanding of long-term climatic change, and the only long-
term record of climatic change is the geologic record. The rock
record of glaciation has been catalogued (Hambrey and Harland,
1981) but still has not been perfectly described. Since the 1983
Mauritanian meeting (Deynoux, 1985a), good facies descriptions of
ancient glacial deposits have been proposed, and lately sequence
stratigraphic concepts have developed. Now glacial sedimentology
has joined the mainstream of sedimentology. In the near future,
because most ancient glacial evidence is preserved in marine
sequences, we must achieve a better understanding of the workings
of glacially related marine basins.
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