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Preface

The study of singular points of algebraic curves in the complex plane is a
meeting point for many different areas of mathematics. The beginnings
of the study go back to Newton. During the nineteenth and early twen-
tieth century algebraic geometers working on plane curves developed
methods which allowed them to deal with singular curves: see e.g. [168],
[84], and several articles in volume III of the mathematical encyclopae-
dia published 1906–1914. A notable achievement was the resolution of
singularities of such curves. In the late 1920s results in the then new
area of topology were applied to the knots and links in the 3-sphere
obtained by looking at the neighbourhood of such a singularity. There
was a resurgence of interest about 1970 due to the interaction with newly
developing ideas from singularity theory in higher dimensions, most im-
portantly, the fibration theorem which Milnor had just discovered, in
the context of functions of several complex variables. There has been
continuous development since then, a particular point of interest being
the application of Thurston’s (circa 1980) decomposition theorems for
3-manifolds and for homeomorphisms of 2-manifolds.

The interaction between ideas from these different sources makes the
study of curve singularities particularly fruitful and exciting. Equisin-
gularity is an equivalence relation which admits characterisations from
numerous differing points of view. The development of the ideas leading
up to this is the leitmotif of the first half of this book. I thus emphasise
the equivalence of different approaches, and feel that many results gain
in clarity from appearing in an integrated account.

This book is based on an M.Sc. course given a number of times at
the University of Liverpool. On the first such occasion (Autumn 1975)
the course was given jointly by myself and two colleagues: Hugh Morton

ix
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x Preface

and Peter Newstead. It is a pleasure to acknowledge the insights derived
from our collaboration on that occasion, and conversations subsequently.

The chapter on preliminaries is included to define a starting point: the
topics mentioned here are not covered in detail. The core of the book is
contained in Chapters 2–5, which lead to the equivalence of a range of
conditions defining equisingularity. Here the level of exposition has been
kept to that of the M.Sc. course (though I have added the decomposition
theorem for general polar curves). We begin in Chapter 2 with a proof
that a curve given by an equation may be represented by a particular
type of parametrisation. Some foundational material on complex analysis
is included to enable questions of convergence to be dealt with. It is then
easy to proceed in Chapter 3 to a proof of resolution, and this in turn
leads on naturally to a discussion of the invariants and configurations
arising in the resolution process. The key concept in Chapter 4 is that
of order of contact: this is developed to a flexible tool for giving the
relation with intersection numbers and for answering questions that arise
in the case of a curve with several branches. In Chapter 5 we begin the
discussion of topology with a detailed geometrical picture of the knot,
and proceed to calculate its Alexander polynomial, which suffices for
the application to equisingularity. This fits well for students attending a
parallel course on knot theory.

The later chapters are written at a more sophisticated level, and in-
clude introductions to a number of topics of recent research. The next
two chapters deal with topics only briefly mentioned in the M.Sc. course.
Chapter 6 contains proofs of Milnor’s fibration theorems, first remarks
about the Milnor fibre, and several calculations of Milnor numbers, em-
phasising the use of the Euler characteristic. Then we treat curves in the
complex projective plane, with proofs of the general form of Plücker’s
theorems, Viro’s proof of Klein’s equation (using Euler characteristics of
constructible functions), and an analysis of singularities of dual curves;
and conclude with a survey of known results about curves whose singu-
larities are maximal in some sense.

The next three chapters lead up to the calculation of the monodromy
of the Milnor fibration. Chapter 8 introduces calculations and nota-
tion for later results in the form of several numerical invariants and
their representation using exceptional cycles on a resolution tree. We
include an introduction to the topological zeta function. Chapter 9 anal-
yses the Thurston decomposition of the Milnor fibre and the JSJ de-
composition of the link complement (following Le–Michel–Weber and
Eisenbud–Neumann). Students attending a suitable parallel course,
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Preface xi

for example following [36], will find this an interesting application.
A plumbing description of the neighbourhood of the resolution graph is
given in sufficient detail for application to the study of the monodromy:
it follows that the monodromy can be chosen to have no fixed points, and
we obtain a direct relation of the Eggers tree and the resolution tree. We
discuss how to calculate the E–N invariants, and give several necessary
and sufficient conditions for the monodromy to have (pointwise) finite
order. Chapter 10 opens with the definition of the Seifert matrix, and
its interrelation with monodromy and intersection form, and proceeds
to a detailed calculation of the monodromy map in homology, using the
Thurston decomposition to define the weight filtration. It is shown how
to classify Seifert forms over a field, and some of the invariants required
for classification over Q are calculated.

In Chapter 11 we discuss ideals in relation to resolution, and a repre-
sentation by exceptional cycles. There is a relation between ideals and
clusters of infinitely near points, which takes the form of a Galois con-
nection, in which a cluster is closed if and only if it satisfies the proximity
inequalities and an ideal is closed if and only if it is valuatively closed.
Enriques’ unloading process is seen to be intimately related to the Zariski
decomposition of cycles. There is a neat formula for the codimension of a
closed ideal. The equivalence of valuative and integral closure is proved
as an application of Noether’s Af +Bg theorem. We conclude with brief
treatments of determinacy and of differential forms.

The later chapters can also be viewed as forming two parallel but inter-
dependent developments; the geometry of the link complement and the
Milnor fibration being studied in Chapters 6, 9 and 10; and the algebraic
and combinatorial information being developed in Chapters 4, 8 and 11.

Each chapter is concluded by sections on ‘Notes’ and ‘Exercises’. The
notes include historical remarks, references – which we do not in general
include in the main text – comments on related material (for example,
characteristic p and the real as opposed to the complex case), and some
references for further developments. The exercises include routine exer-
cises on applying the results in the text to specific examples, and prob-
lems related to an alternative approach to a topic treated in the text.
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