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Preliminaries

1.1 What is a plane curve?

There are many ways to give a precise interpretation of the informal
notion of a plane curve as something drawn on a sheet of paper. Here
we will explain just what will be meant in this book, and indicate why
this is a fruitful choice.

We begin with thinking of the plane as consisting of points, which
may be described by two coordinates (x, y). Then one basic idea is that a
curve is a set of points whose coordinates satisfy some equation f(x, y) =
0. What kinds of function f are to be allowed? The simplest kind,
where f is just a polynomial function – expressible, say, as f(x, y) =∑

0≤i,j;i+j≤d ai,jx
iyj for some numerical coefficients ai,j – already leads

to an extensive theory of curves, mostly developed in the nineteenth
century. We take this as our starting point.

The next thing to decide is what sort of numbers are to be allowed for
the coefficients ai,j and indeed for the values of x and y. For the kind of
curve one may draw and picture most easily, it is natural to choose to
allow arbitrary real numbers: these permit the kind of continuity one ex-
pects from a sketch of a curve. However, it turns out that a much richer
structure is obtained if we allow complex coefficients, and although the
geometry involved when there are two complex variables is harder to pic-
ture, there have been major advances in this type of geometry in recent
years. One of our main concerns will be understanding the interrelation
between these geometrical aspects of our curves with invariants defined
from a more algebraic viewpoint. We will occasionally restrict to real
coefficients; results over other fields will be mentioned sometimes in the
notes at the end of chapters.

The topic of this book is not so much the study of entire curves,
though we will obtain a number of important results valid for the curve
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2 Preliminaries

as a whole, as a very detailed study of what may happen near a sin-
gular point of a curve. Thus we will mainly study curves just in a
neighbourhood of the origin O (with coordinates (0, 0)) in the complex
plane C2. For this local study it is not important that the equation
f(x, y) =

∑
0≤i,j ai,jx

iyj defining the curve should be given by a finite
sum. So we need to consider more carefully just what kind of expression
f is to be: let us give some precise definitions.

A polynomial in one variable t is a sum of finitely many terms ant
n,

where the coefficients an are complex numbers and the exponents n are
non-negative integers. The degree of the polynomial is the largest number
n such that an is non-zero. Polynomials may be added and multiplied
in the usual way, and form a ring, denoted C[t]. An immediate and
important consequence of our choice of complex numbers as coefficients
is that polynomials can be factorised: if f =

∑n
0 arx

r has degree n, then
the roots αi of f(x) = 0 are such that f(x) ≡ an

∏n
1 (x− αi).

An expression
∑∞

0 art
r, where infinitely many non-zero terms are al-

lowed, is called a formal power series. The usual rules still allow us to
add and multiply such expressions, yielding a much larger ring, denoted
C[[t]]. The order of the formal power series is the smallest number n such
that an is non-zero.

It is easy to write down a formal power series such that if any non-
zero complex number is substituted for t, the resulting series of complex
numbers fails to converge. A simple example is

∑∞
0 r!tr. We recall from

complex variable theory that if
∑∞

0 art
r converges at t = v, then the

terms |an|Rn (where R = |v|) are bounded (indeed, they tend to 0), and
that if conversely this condition holds then the series converges for all
values of t such that |t| < R. If this condition holds for some value of
R > 0, we call the series a convergent power series.

A function of one (or several) complex variable(s) defined on some
region U ⊂ C (or U ⊂ Cn) and which possesses a derivative on U is
said to be holomorphic on U . Standard complex variable theory tells us
that any function of t which is holomorphic on some neighbourhood of O
can be expanded as a convergent power series (some books use the word
analytic to describe functions defined by convergent power series, so the
result can be stated as ‘analytic = holomorphic’). Given two holomorphic
functions, each defined on some neighbourhood of O, we can add and
multiply them (on a smaller neighbourhood of O); it follows that the
convergent power series form a subring of C[[t]]. It is denoted by C{t}.

Correspondingly for functions of two variables we have the polyno-
mials, which are sums of finitely many terms

∑
ai,jx

iyj (with i and j

non-negative integers and the coefficients ai,j complex numbers), and

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521547741 - Singular Points of Plane Curves
C. T. C. Wall
Excerpt
More information

http://www.cambridge.org/0521547741
http://www.cambridge.org
http://www.cambridge.org


1.1 What is a plane curve? 3

form a ring denoted C[x, y]. We have the formal power series, which are
expressions

∑∞
i=0

∑∞
j=0 ai,jx

iyj and form a ring, denoted C[[x, y]]. The
degree of a polynomial is the largest number n such that ai,j is non-zero
for some i, j with i + j = n. The order of a power series is the smallest
number n such that ai,j is non-zero for some i, j with i + j = n.

A power series in two variables is said to be convergent if there ex-
ist positive real numbers R,S such that the numbers |am,n|RmSn are
bounded. In this case, the series is convergent on the region |x| <

R, |y| < S, and summing it defines a holomorphic function on this re-
gion. Conversely, a function which is holomorphic on a neighbourhood of
O is said to be holomorphic at O and can be expanded as a convergent
power series. Such series form a ring, denoted C{x, y}.

Each convergent power series converges on some neighbourhood of
t = 0. Formal power series do not in general converge at any t �= 0: a
compensating advantage is that they can be constructed term-by-term.
Thus a sequence {fk(t)} of polynomials (or power series) such that, for
each n, the coefficient of tn in fk(t) is the same for all large enough
values of k, defines a formal power series f∞(t) having these coefficients.
We say that fk converges to f∞ in the mt-adic sense.

As a simple example, observe that a series 1−a(t) with constant term
1 has an inverse, since the series

∑∞
0 a(t)r converges in the mt-adic

sense, and its sum is the desired inverse. Thus any series with non-zero
constant term also has an inverse in the ring. This result is also true
in the ring C{x, y} for the simpler reason that if the function f(x, y) is
differentiable in a neighbourhood of O and f �= 0 at – and hence in some
neighbourhood of – O, then the usual rule allows us to differentiate also

1
f(x,y) in such a neighbourhood.

Thus in the 1-variable cases C[[x]] and C{x}, any element of order m

is equal to xm multiplied by a power series with non-zero constant term,
which has an inverse in the ring. This gives a complete description of
factorisation in these rings.

Another way to approach the idea of plane curves is by parametrisa-
tions. The most familiar example is that of a graph, where y is expressed
as a function of x: in general we have a parameter t, with each of x

and y expressed in terms of t – say x = φ(t), y = ψ(t). As above, the
functions φ and ψ may be taken as polynomials or power series (prefer-
ably convergent).

The starting point for the analysis of singular points is the solution
of a holomorphic equation f(x, y) = 0 to express y as a function of x.
This will be discussed in the next chapter. It follows from the implicit
function theorem 1.4.2 that if ∂f/∂y is non-zero at O, we can solve for
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4 Preliminaries

y as a holomorphic function of x near O. In this case, the curve Γ given
by the equation f(x, y) = 0 is said to be non-singular or (more briefly)
smooth at the origin; its tangent there is given by x∂f

∂x (O)+y ∂f
∂y (O) = 0.

The example

f(x, y) ≡ x + y − xy; y = −
∞∑
1

xr

shows that even if f is a polynomial we will need power series, not just
polynomials, to express y as a function of x. The example

f(x, y) ≡ x2 − y3; y = x
2
3

shows that in general fractional powers of x will be involved.
This last example may be represented by a parametrisation (x, y) =

(t3, t2). We also have the parametrisation (x, y) = (u6, u4), obtained by
substituting t = u2. Clearly the latter is less satisfactory: each point of
the curve is represented by two values of u, differing in sign. We will
say that a parametrisation (x, y) = (φ(t), ψ(t)) is good (an alternative
term is ‘primitive’) if a general point of the curve corresponds to just
one value of the parameter, i.e. the map t → (φ(t), ψ(t)) is injective on
some region |t| < ε.

Thus an equation f(x, y) = 0 with f ∈ C[x, y], or a parametrisation
with φ, ψ ∈ C[t], defines a curve Γ as a subset of the plane C2. If we
merely have f ∈ C{x, y} or, respectively, φ, ψ ∈ C{t}, then there is
a neighbourhood U of O in C2 on which the series converges, so the
equation f(x, y) = 0 defines a curve in U . We will see in Chapter 2
that we obtain the same class of holomorphic curves whether we use
equations or parametrisations.

It is convenient to introduce some terminology for this situation. Two
functions fi : Ui → C (i = 1, 2), defined on neighbourhoods U1, U2

of O in C2 are said to define the same germ at O if they coincide on
some neighbourhood U ⊂ U1 ∩ U2 of O. In the case of holomorphic
functions, this is the case if and only if the power series expansions of
f1 and f2 coincide. Correspondingly, subsets Xi ⊂ Ui of neighbourhoods
U1, U2 of O define the same germ at O if for some neighbourhood U ⊂
U1 ∩U2 of O we have X1 ∩U = X2 ∩U . In practice, rather than use the
word ‘germ’, we will speak of curves defined in some neighbourhood of a
point, usually O, and always be prepared to pass to smaller neighbour-
hoods.

The above discussion is concentrated on what happens in a small
neighbourhood of the origin in the plane C2. Sometimes we wish to
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1.1 What is a plane curve? 5

think of curves in the large, and then it is more convenient to work in
the projective plane (we may refer to C2, when we wish to emphasise
the distinction, as the affine plane).

In general we define n-dimensional projective space Pn(C) to be the
set of lines through the origin in Cn+1. We may take coordinates x =
(x0, . . . , xn) in Cn+1; then any point other than the origin (so with
coordinate vector x �= 0 in Cn+1) is joined to the origin by a unique
line, and if x and y lie on the same such line, then y = λx for some
λ �= 0. Thus the point is determined by the ratios of the coordinates:
(x0 : x1 : . . . : xn). Note also that we may (if it is convenient to do so)
change coordinates by any linear transformation of Cn+1 onto itself.

If f(x0, . . . , xn) is some function, then when we replace x by y = λx
we will get a different function, so the condition f(x0, . . . , xn) = 0 is
not in general well defined on Pn(C). It is so is f is homogeneous, that
is, if f(λx0, . . . , λxn) ≡ λkf(x0, . . . , xn) for some value of k, the degree
of f . In general, when working in projective space, only homogeneous
polynomial functions f are considered.

Ratios are not always convenient to work with. Observe that the sub-
sets Ur of Pn(C) given (for 0 ≤ r ≤ n) by xr �= 0 are well defined.
Since we had x �= 0 above, any point in Pn(C) lies in at least one of
these subsets. In the subset Ur we may omit xr and take the ratios
zs = xs/xr (s �= r) as coordinates in the usual sense, or equivalently,
fix xr = 1. Thus each Ur is isomorphic to the affine space Cn. Observe
that if f is any polynomial function on Ur, and d is the highest degree of
any term in f , then we may define a homogeneous polynomial function
on Pn(C) by

F (x0, . . . , xn) = xd
rf(z0, . . . , zr−1, ↑r, zr+1, . . . , zn).

A projective algebraic variety is a subset of Pn(C) defined by some
homogeneous polynomial equations. We will be particularly interested
in subsets of P 2(C) defined by a single such equation: projective plane
curves. The solutions of f = 0 coincide with the solutions of f2 = 0.
It will usually be convenient to insist that we consider only equations
with no squared factor (these are called reduced). If f = 0 is a reduced
equation, homogeneous of degree d, for a curve Γ, then Γ is said to be
of degree d, and we write d = deg Γ.

A useful background reference for the first three sections (and some
later ones) of this book is the student text [99] by Kirwan, which assumes
less background than we do.
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6 Preliminaries

1.2 Intersection numbers

We will have frequent occasion to consider intersections of curves, and
to count intersection numbers. If the curves Γ1 and Γ2 are both smooth
at the origin and have distinct tangents there, we will say that they have
intersection number 1 at O. In general, we seek to deform one or both
the curves a small amount so that at each point of intersection of the
resulting curves, both are smooth and they have distinct tangents. Thus
for example, for the curves given by y = 0 and y = x2, we deform the
latter to y = x2 − t2, giving two intersection points (t, 0) and (−t, 0), so
the intersection number is 2.

More generally, consider the curves y = 0 and y = f(x) in C2. If f
is a polynomial, we may factorise it as A

∏n
1 (x− ti), where the roots ti

need not all be distinct. Since a small deformation will make them so,
if just r of the ti take a given value T , the intersection number at (T, 0)
is equal to r. If f is not a polynomial, but can be expressed as a power
series f(x) =

∑∞
0 arx

r of order m, then we may write f(x) = xmg(x)
with g(0) �= 0, and then the intersection number at O is equal to m.
Sometimes we will also refer to the order m as the multiplicity of 0 as a
root of f .

To count intersections of y = 0 with a general curve Γ given by an
equation g(x, y) = 0, we substitute y = 0 in the equation to obtain
g(x, 0) and proceed as above with g(x, 0) in place of f(x). Unless g has
a repeated factor, Γ will intersect a general line y = ε in distinct points,
which (for small ε) provide a deformation of the intersection Γ∩{y = 0}
as before.

Suppose we have a curve Γ1 given by an equation g(x, y) = 0 and a
curve Γ2 given by a good parametrisation (x, y) = (φ(t), ψ(t)) such that
φ(0) = ψ(0) = 0. Then the intersection number of Γ1 and Γ2 at O is
equal to the order of g(φ(t), ψ(t)). For a first perturbation of g will ensure
that g does not vanish at singular points of Γ2, and for intersections at
non-singular points we can take local coordinates in which Γ2 is given
by y = 0 with parameter t = x, and then argue as above. In future we
will often find it convenient to write the parametrisation as a single map
γ : C → C2, with γ(0) = O.

We will denote the intersection number of Γ1 and Γ2 at a point P

by (Γ1.Γ2)P or, if P is understood, simply by Γ1.Γ2. The above unsym-
metrical rule for calculating intersection numbers is very convenient, but
does not cover all needs. For a general discussion of intersection num-
bers, including precise definitions, the reader may refer to [188], [99]
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1.2 Intersection numbers 7

or, for a more advanced treatment, [74]. We now list some key proper-
ties.

Lemma 1.2.1
(i) Let C1, C2 be germs of holomorphic curves at a point P ∈ C2,

with P an isolated point of C1 ∩ C2, then there is a well defined
intersection number C1.C2, which is a positive integer.

(ii) If C1 has equation g1(x, y) = 0 and C2 has a good parametrisation
γ : C → C2, with γ(0) = O, then C1.C2 is equal to the order of
g(γ(t)).

(iii) If g1 factorises as g3g4 so that C1 = C3∪C4, then C1.C2 = C3.C2 +
C4.C2.

(iv) If Ci has equation gi(x, y) = 0 for i = 1, 2 and P = O, then C1.C2

is equal to the dimension of the quotient ring C{x, y}/〈g1, g2〉.
(v) Intersection numbers are symmetric: C1.C2 = C2.C1.
(vi) Suppose given a holomorphic map F : C2 → C2, defined near O,

with F (O) = O, a good parametrisation γ2 : C → C2 with γ(0) = O

of a curve C2 such that F ◦ γ2 is a good parametrisation of F (C2),
and an equation g1 of a curve C1, so that we can define a curve
F−1C1 by the equation g1 ◦ F . Then C1.FC2 = F−1C1.C2.

Proof We omit (or defer) the proof that (ii) and (iv) give the same
result, which is independent of all choices. Then (i) follows from either
version of the definition, (iii) follows from (ii) and (v) from (iv).

(vi) is an immediate consequence of (ii), since each of the intersection
numbers is equal to the order of the composite function g1 ◦ F ◦ γ2. �

Consider a curve Γ of degree d in the projective plane P 2(C). A general
line in the plane intersects Γ in d points, and (unless Γ contains the whole
line as a subset) any line has intersections with Γ whose intersection
numbers add up to d. For we may choose coordinates (x : y : z) so that
the line is given by y = 0 and Γ does not pass through (1, 0, 0). Then
if f(x, y, z) = 0 is the equation of Γ, the intersections are given by the
vanishing of f(x, 0, 1), which is a polynomial of degree d, and the sum
of the multiplicities of the roots of such a polynomial is equal to d.

More generally, suppose Γ1,Γ2 are two projective plane curves, of re-
spective degrees d1, d2, and such that their intersection does not contain
a curve. Then the sum of the intersection multiplicities at all points of
Γ1∩Γ2 is equal to d1d2. This is known as Bézout’s theorem; a proof may
be found in [99]; see also the following section.
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8 Preliminaries

1.3 Resultants and discriminants

Suppose f(x, y), g(x, y) are homogeneous polynomials of respective de-
grees m,n. Then

xn−s−1ysf(x, y) (0 ≤ s < n), xm−r−1yrg(x, y) (0 ≤ r < m)

are m + n homogeneous polynomials of degree m + n − 1, so their co-
efficients form a square matrix. Its determinant is denoted R(f, g) and
called the resultant of f and g. If f and g have a common factor (e.g.
(x − λy)), then this divides all the above polynomials, so these are
linearly dependent, the matrix is singular, and R(f, g) = 0. In fact
we have the following well-known results: see e.g. [18]1.4.4; see also
[182] Sections 26–28 for this section.

Lemma 1.3.1 For polynomials f(x, y) = c
∏m

1 (x − aiy), g(x, y) =
c′

∏n
1 (x− bjy) in factorised form, with c, c′ �= 0, we have:

(i) R(f, g) = cnc
′m ∏

i,j(ai − bj);

(ii) R(g, f) = (−1)mnR(f, g);

(iii) R(f, gh) = R(f, g)R(f, h);

(iv) R(f, g) = cn
∏m

1 g(ai, 1);

(v) if deg φ = deg f − deg g, R(f + gφ, g) = R(f, g);

(vi) R(f, g) = 0 if and only if f and g have a common factor.

We have used the fact that we are working over the field C to factorise
our polynomials. But the definition and the formulae (ii), (iii), (v) are
valid if the coefficients are taken in any commutative ring. The conclu-
sion (vi) also holds, provided that we work over a unique factorisation
domain. General results about unique factorisation in commutative rings
may be found in elementary algebra texts, e.g. in [182] Section 19.

For a single homogeneous polynomial f(x, y), we can form the resul-
tant of ∂f/∂x and ∂f/∂y: the result D(f) = R(∂f/∂x, ∂f/∂y) is called
the discriminant of f . This also has important properties.

Lemma 1.3.2 If f(x, y) = c
∏m

1 (x− aiy), with c �= 0, we have

(i) D(f) = mm−2c2m−2
∏

i �=j(ai − aj), and hence

(ii) D(f) = 0 if and only if f has a repeated factor.
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1.4 Manifolds and the Implicit Function Theorem 9

Indeed since mf = x∂f/∂x + y∂f/∂y, we have

R(mf, ∂f/∂x) = R(y∂f/∂y, ∂f/∂x) = (−1)m−1R(y, ∂f/∂x)D(f),

and as R(y, ∂f/∂x) = mc, this reduces to (−1)m−1mcD(f).
By substituting y = 1 we can regard these as results about polynomials

in a single variable. Although this version is more familiar, there is a
certain ambiguity since, for example, the function f = bx2 + cx + d

may be regarded as a quadratic, or as a special case of a cubic f =
ax3+bx2+cx+d where the coefficient a happens to be 0. This ambiguity
disappears if we insist, as we often will, that the coefficient of the highest
power of x is 1. Such polynomials are called monic. Thus for monic
polynomials, D(f) = (−1)m−1mm−2R(f, df/dx).

We will sometimes be interested in the situation where the coefficients
of f and g depend on a further parameter. Consider for example two
homogeneous polynomials f(x, y, z), g(x, y, z) of respective degrees p

and q. Substituting yt for y and zt for z makes them homogeneous
in the two variables x and t; forming the resultant as above gives a
homogeneous polynomial P (y, z) of degree pq in y and z. The roots of
P (y, 1) = 0 are those values y0 of y for which the polynomials f(x, y0, 1),
g(x, y0, 1) have a common root, and thus correspond to the intersections
of the curves f(x, y, z) = 0 = g(x, y, z). One proof of Bézout’s theorem
consists in counting these intersections carefully to see that indeed the
multiplicities correspond to those of the roots of P .

1.4 Manifolds and the Implicit Function Theorem

One of the main objectives of the book is to explore the topology of
plane curve singularities, so it will be necessary from Chapter 5 on to
assume that the reader knows the rudiments of topology. There are nu-
merous textbooks on this subject: for example the beginner’s text [9]
and the rather detailed exposition [169]. Although we need only elemen-
tary algebraic topology, the concept of manifold is important to us, and
we now recall some basic facts.

A space X is an n-dimensional manifold if every point of X has
a neighbourhood Uα such that there is a homeomorphism (a ‘chart’)
φα : Uα → Vα where Vα is an open set in Rn. We have coordinate
transformations defined on the overlaps: if all of these are differen-
tiable, more precisely, C∞, then X is a differentiable manifold. If Y1

and Y2 are subsets of X which are differentiable manifolds, and the
identity map of Y1 ∩ Y2 is smooth in terms of charts of Y1 on one side
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10 Preliminaries

and of Y2 on the other, then the collection of all the charts gives X

the structure of differentiable manifold. This construction is known as
glueing.

A differentiable n-manifold X has a well defined tangent space TP (X)
at each point P , which is an n-dimensional vector space; there are sev-
eral equivalent definitions. The notion of differentiable, or smooth, map
is defined using charts and requiring differentiability in the local co-
ordinate systems. A smooth map f : X → Y induces a linear map
TP f : TP (X) → Tf(P )(Y ) of corresponding tangent spaces. In local co-
ordinates, if f : Rm → Rn is defined and differentiable at O, its partial
derivatives ∂fi/∂xj form an m × n matrix, the Jacobian matrix of f ,
which we denote DfO, which is the matrix of the map TOf .

A bijection f : X → Y such that both f and f−1 are smooth maps is
called a diffeomorphism of X to Y . Diffeomorphism is the basic equiva-
lence relation between smooth manifolds.

A smooth map f : X → Y is called a smooth embedding if it is
injective and, for each P ∈ X, the induced map TP (X) → Tf(P )(Y ) is
also injective (strictly speaking, if X is non-compact one adds a further
requirement to ensure that at each point of f(X) there is a chart of Y in
which X corresponds to a linear subspace). A smooth embedding S1 →
S3 is called a (smooth) knot. A link is a finite collection of knots with
disjoint images, so can be taken as a smooth embedding A × S1 → S3

with A a finite set.
A manifold with boundary is defined in the same way as a manifold

except that charts may map to open subsets of Rn
+ := {(x1, . . . , xn) ∈

Rn |xn ≥ 0}. The boundary is the part corresponding in these charts to
the subset where xn = 0: it is an (n− 1) dimensional manifold. All the
above extend naturally to this case.

The key to discussing changes of coordinates is the Inverse Function
Theorem, which is proved in many textbooks, e.g. [52].

Theorem 1.4.1 Let U be a neighbourhood of O ∈ Rn; let f : U →
Rn be differentiable, and suppose TOf an isomorphism. Then there is
a neighbourhood U1 ⊂ U of O such that f |U1 is a bijection of U1 with
a neighbourhood V1 of f(O) and its inverse f−1 : V1 → U1 is again
differentiable.

An important application is the Implicit Function Theorem, which
gives a first general result for proceeding from a subset of Euclidean
space defined by equations to one given by a parametrisation.
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