Cambridge University Press

0521547652 - Data Structures and Algorithms Using Visual Basic.NET
Michael McMillan

Excerpt

More information

Introduction

In this preliminary chapter, we introduce a couple of topics we’ll be using
throughout the book. First, we discuss how to use classes and object-oriented
programming (OOP) to aid in the development of data structures and algo-
rithms. Using OOP techniques will make our algorithms and data structures
more general and easier to modify, not to mention easier to understand.

The second part of this Introduction familiarizes the reader with techniques
for performing timing tests on data structures and, most importantly, the
different algorithms examined in this book. Running timing tests (also called
benchmarking) is notoriously difficult to get exactly right, and in the .NET
environment, it is even more complex than in other environments. We develop
a Timing class that makes it easy to test the efficiency of an algorithm (or a data
structure when appropriate) without obscuring the code for the algorithm or
data structures.

DEVELOPING CLASSES

This section provides the reader with a quick overview of developing classes
in VB.NET. The rationale for using classes and for OOP in general is not dis-
cussed here. For a more thorough discussion of OOP in VB.NET, see McMillan
(2004).

One of the primary uses of OOP is to develop user-defined data types. To aid
our discussion, and to illustrate some of the fundamental principles of OOP,

1

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521547652
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521547652 - Data Structures and Algorithms Using Visual Basic.NET
Michael McMillan

Excerpt

More information

2 INTRODUCTION

we will develop two classes for describing one or two features of a geometric
data processing system: the Point class and the Circle class.

Data Members and Constructors

The data defined in a class, generally, are meant to stay hidden within the
class definition. This is part of the principle of encapsulation. The data stored
in a class are called data members, or alternatively, fields. To keep the data
in a class hidden, data members are usually declared with the Private access
modifier. Data declared like this cannot be accessed by user code.

The Point class will store two pieces of data—the x coordinate and the y
coordinate. Here are the declarations for these data members:

Public Class Point

Private x As Integer
Private y As Integer

'More stuff goes here'

End Class

When a new class object is declared, a constructor method should be called
to perform any initialization that is necessary. Constructors in VB.NET are
named New by default, unlike in other languages where constructor methods
are named the same as the class.

Constructors can be written with or without arguments. A constructor with
no arguments is called the default constructor. A constructor with arguments
is called a parameterized constructor. Here are examples of each for the Point
class:

Public Sub New ()

x =0
y =0
End Sub

Public Sub New (ByVal xcor As Integer, ByVal ycor As —

Integer)
X = XCOor
y = ycor
End Sub

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521547652
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521547652 - Data Structures and Algorithms Using Visual Basic.NET
Michael McMillan

Excerpt

More information

Developing Classes 3

Property Methods

After the data member values are initialized, the next set of operations we
need to write involves methods for setting and retrieving values from the
data members. In VB.NET, these methods are usually written as Property
methods.

A Property method provides the ability to both set and retrieve the value
of a data member within the same method definition. This is accomplished
by utilizing a Get clause and a Set clause. Here are the property methods for
getting and setting x-coordinate and y-coordinate values in the Point class:

Public Property Xval() As Integer
Get
Return x
End Get
Set (ByVal Value As Integer)
x = Value
End Set
End Property

Public Property Yval() As Integer
Get
Return y
End Get
Set (ByVal Value As Integer)
v = Value
End Set
End Property

When you create a Property method using Visual Studio.NET, the editor
provides a template for the method definition like this:

Public Property Xval() As Integer
Get

End Get
Set (ByVal Value As Integer)

End Set
End Property

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521547652
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521547652 - Data Structures and Algorithms Using Visual Basic.NET
Michael McMillan

Excerpt

More information

4 INTRODUCTION

Other Methods

Of course, constructor methods and Property methods aren’t the only methods
we will need in a class definition. Just what methods you’ll need depend on
the application. One method included in all well-defined classes is a ToString
method, which returns the current state of an object by building a string that
consists of the data member’s values. Here’s the ToString method for the Point
class:

Public Overrides Function ToString() As String
Return x & "," & y
End Function

Notice that the ToString method includes the modifier Overrides. This
modifier is necessary because all classes inherit from the Object class and this
class already has a ToString method. For the compiler to keep the methods
straight, the Overrides modifier indicates that, when the compiler is working
with a Point object, it should use the Point class definition of ToString and
not the Object class definition.

One additional method many classes include is one to test whether two
objects of the same class are equal. Here is the Point class method to test for
equality:

Public Function Equal (ByVal p As Point) As Boolean
If (Me.x = p.x) And (Me.y = p.y) Then
Return True
Else
Return False
End If
End Function

Methods don’t have to be written as functions; they can also be subroutines,
as we saw with the constructor methods.

Inheritance and Composition

The ability to use an existing class as the basis for one or more new classes
is one of the most powerful features of OOP. There are two major ways to

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521547652
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521547652 - Data Structures and Algorithms Using Visual Basic.NET
Michael McMillan

Excerpt

More information

Developing Classes 5

use an existing class in the definition of a new class: 1. The new class can be
considered a subclass of the existing class (inheritance); and 2. the new class
can be considered as at least partially made up of parts of an existing class
(composition).

For example, we can make a Circle class using a Point class object to
determine the center of the circle. Since all the methods of the Point class are
already defined, we can reuse the code by declaring the Circle class to be a
derived class of the Point class, which is called the base class. A derived class
inherits all the code in the base class plus it can create its own definitions.

The Circle class includes both the definition of a point (x and y coordinates)
as well as other data members and methods that define a circle (such as the
radius and the area). Here is the definition of the Circle class:

Public Class Circle
Inherits Point

Private radius As Single

Private Sub setRadius (ByVal r As Single)
If (r > 0) Then

radius = r
Else
radius = 0.0
End If
End Sub

Public Sub New (ByVal r As Single, ByVal x As —
Integer, ByVal y As Integer)
MyBase.New(x, V)
setRadius (r)
End Sub

Public Sub New ()
setRadius (0)
End Sub

Public ReadOnly Property getRadius() As Single
Get
Return radius
End Get
End Property

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521547652
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521547652 - Data Structures and Algorithms Using Visual Basic.NET
Michael McMillan

Excerpt

More information

6 INTRODUCTION

Public Function Area() As Single
Return Math.PI * radius * radius
End Function

Public Overrides Function ToString() As String
Return "Center = " & Me.Xval & "," & Me.Yval & _
" - radius = " & radius
End Function

End Class

There are a couple of features in this definition you haven't seen before.
First, the parameterized constructor call includes the following line:

MyBase.New (xX,V)

This is a call to the constructor for the base class (the Point class) that matches
the parameter list. Every derived class constructor must include a call to one
of the base classes’ constructors.

The Property method getRadius is declared as a ReadOnly property. This
means that it only retrieves a value and cannot be used to set a data member’s
value. When you use the ReadOnly modifer, Visual Studio.NET only provides
you with the Get part of the method.

TimING TESTS

Because this book takes a practical approach to the analysis of the data struc-
tures and algorithms examined, we eschew the use of Big O analysis, preferring
instead to run simple benchmark tests that will tell us how long in seconds
(or whatever time unit) it takes for a code segment to run.

Our benchmarks will be timing tests that measure the amount of time it
takes an algorithm to run to completion. Benchmarking is as much of an art
as a science and you have to be careful how you time a code segment to get
an accurate analysis. Let’s examine this in more detail.

An Oversimplified Timing Test

First, we need some code to time. For simplicity’s sake, we will time a
subroutine that writes the contents of an array to the console. Here’s the

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521547652
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521547652 - Data Structures and Algorithms Using Visual Basic.NET
Michael McMillan

Excerpt

More information

Timing Tests 7

code:

Sub DisplayNums (ByVal arr () As Integer)
Dim index As Integer
For index = 0 To arr.GetUpperBound (0)
Console.Write(arr (index))
Next
End Sub

The array is initialized in another part of the program, which we’ll examine
later.

To time this subroutine, we need to create a variable that is assigned the
system time just as the subroutine is called, and we need a variable to store
the time when the subroutine returns. Here’s how we wrote this code:

Dim startTime As DateTime

Dim endTime As TimeSpan

startTime = DateTime.Now

DisplayNums (nums)

endTime = DateTime.Now.Subtract (startTime)

Running this code on a laptop (running at 1.4 MHz on Windows XP Pro-
fessional) takes about 5 seconds (4.9917 seconds to be exact). Whereas this
code segment seems reasonable for performing a timing test, it is completely
inadequate for timing code running in the .NET environment. Why?

First, this code measures the elapsed time from when the subroutine was
called until the subroutine returns to the main program. The time used by
other processes running at the same time as the VB.NET program adds to the
time being measured by the test.

Second, the timing code used here doesn’t take into account garbage col-
lection performed in the .NET environment. In a runtime environment such
as .NET, the system can pause at any time to perform garbage collection. The
sample timing code does nothing to acknowledge garbage collection and the
resulting time can be affected quite easily by garbage collection. So what do
we do about this?

Timing Tests for the .NET Environment

In the .NET environment, we need to take into account the thread in which
our program is running and the fact that garbage collection can occur

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521547652
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521547652 - Data Structures and Algorithms Using Visual Basic.NET
Michael McMillan

Excerpt

More information

8 INTRODUCTION

at any time. We need to design our timing code to take these facts into
consideration.

Let’s start by looking at how to handle garbage collection. First, let’s dis-
cuss what garbage collection is used for. In VB.NET, reference types (such as
strings, arrays, and class instance objects) are allocated memory on something
called the heap. The heap is an area of memory reserved for data items (the
types previously mentioned). Value types, such as normal variables, are stored
on the stack. References to reference data are also stored on the stack, but the
actual data stored in a reference type are stored on the heap.

Variables that are stored on the stack are freed when the subprogram in
which the variables are declared completes its execution. Variables stored on
the heap, in contrast, are held on the heap until the garbage collection process
is called. Heap data are only removed via garbage collection when there is not
an active reference to those data.

Garbage collection can, and will, occur at arbitrary times during the execu-
tion of a program. However, we want to be as sure as we can that the garbage
collector is not run while the code we are timing is executing. We can head
off arbitrary garbage collection by calling the garbage collector explicitly. The
.NET environment provides a special object for making garbage collection
calls, GC. To tell the system to perform garbage collection, we simply write
the following:

GC.Collect ()

Thats not all we have to do, though. Every object stored on the heap has a
special method called a finalizer. The finalizer method is executed as the last
step before deleting the object. The problem with finalizer methods is that they
are not run in a systematic way. In fact, you can’t even be sure an object’s final-
izer method will run at all, but we know that before we can be certain an object
is deleted, its finalizer method must execute. To ensure this, we add a line of
code that tells the program to wait until all the finalizer methods of the objects
on the heap have run before continuing. The line of code is as follows:

GC.WaitForPendingFinalizers ()

We have cleared one hurdle but one remains: using the proper thread. In the
.NET environment, a program is run inside a process, also called an application
domain. This allows the operating system to separate each different program
running on it at the same time. Within a process, a program or a part of a

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521547652
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521547652 - Data Structures and Algorithms Using Visual Basic.NET
Michael McMillan

Excerpt

More information

Timing Tests 9

program is run inside a thread. Execution time for a program is allocated by the
operating system via threads. When we are timing the code for a program, we
want to make sure that we're timing just the code inside the process allocated
for our program and not other tasks being performed by the operating system.

We can do this by using the Process class in the .NET Framework. The
Process class has methods for allowing us to pick the current process (the
process in which our program is running), the thread in which the program
is running, and a timer to store the time the thread starts executing. Each
of these methods can be combined into one call, which assigns its return
value to a variable to store the starting time (a TimeSpan object). Here’s the
code:

Dim startingTime As TimeSpan
startingTime = Process.GetCurrentProcess.Threads(0). —
UserProcessorTime

All we have left to do is capture the time when the code segment we're
timing stops. Here’s how it's done:

duration = Process.GetCurrentProcess.Threads(0). —
UserProcessorTime. Subtract (startingTime)

Now let’s combine all this into one program that times the same code we
tested earlier:

Module Modulel
Sub Main ()

Dim nums (99999) As Integer

BuildArray (nums)

Dim startTime As TimeSpan

Dim duration As TimeSpan

startTime = Process.GetCurrentProcess.Threads(0). _
UserProcessorTime

DisplayNums (nums)

duration = Process.GetCurrentProcess.Threads (0) .
UserProcessorTime.Subtract (startTime)

Console.WriteLine("Time: " & duration.TotalSeconds)

End Sub

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521547652
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521547652 - Data Structures and Algorithms Using Visual Basic.NET
Michael McMillan

Excerpt

More information

10 INTRODUCTION

Sub BuildArray (ByVal arr() As Integer)

Dim index As Integer
For index = 0 To 99999
arr (index) = index
Next
End Sub

End Module

Using the new-and-improved timing code, the program returns in just
0.2526 seconds. This compares with the approximately 5 seconds return time
using the first timing code. Clearly, a major discrepancy between these two
timing techniques exists and you should use the .NET techniques when timing
code in the .NET environment.

A Timing Test Class

Although we don't need a class to run our timing code, it makes sense to
rewrite the code as a class, primarily because we’ll keep our code clear if we
can reduce the number of lines in the code we test.

A Timing class needs the following data members:

* startingTime—to store the starting time of the code we are testing,
* duration—the ending time of the code we are testing,

The starting time and the duration members store times and we chose to use
the TimeSpan data type for these data members. We’'ll use just one constructor
method, a default constructor that sets both the data members to 0.

We'll need methods for telling a Timing object when to start timing code
and when to stop timing. We also need a method for returning the data stored
in the duration data member.

As you can see, the Timing class is quite small, needing just a few methods.
Here’s the definition:

Public Class Timing

Private startingTime As TimeSpan
Private duration As TimeSpan

Public Sub New ()

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521547652
http://www.cambridge.org
http://www.cambridge.org

