
Introduction

0.1 Generalities

The formalism of equilibrium statistical mechanics – which we shall call ther-
modynamic formalism – has been developed since G. W. Gibbs to describe
the properties of certain physical systems. These are systems consisting of a
large number of subunits (typically 1027) like the molecules of one liter of air
or water. While the physical justification of the thermodynamic formalism re-
mains quite insufficient, this formalism has proved remarkably successful at
explaining facts.

In recent years it has become clear that, underlying the thermodynamic for-
malism, there are mathematical structures of great interest: the formalism hints
at the good theorems, and to some extent at their proofs. Outside of statistical
mechanics proper, the thermodynamic formalism and its mathematical methods
have now been used extensively in constructive quantum field theory∗ and in
the study of certain differentiable dynamical systems (notably Anosov diffeo-
morphisms and flows). In both cases the relation is at an abstract mathematical
level, and fairly inobvious at first sight. It is evident that the study of the physical
world is a powerful source of inspiration for mathematics. That this inspiration
can act in such a detailed manner is a more remarkable fact, which the reader
will interpret according to his own philosophy.

The main physical problem which equilibrium statistical mechanics tries to
clarify is that of phase transitions. When the temperature of water is lowered,
whydo its properties changefirst smoothly, then suddenly as the freezingpoint is
reached?Whilewe have some general ideas about this, andmany special results,

∗ See for instance Velo and Wightman [1].
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2 Introduction

a conceptual understanding is still missing.† The mathematical investigation of
the thermodynamic formalism is in fact not completed; the theory is a young
one, with emphasis still more on imagination than on technical difficulties. This
situation is reminiscent of preclassic art forms, where inspiration has not been
castrated by the necessity to conform to standard technical patterns. We hope
that some of this juvenile freshness of the subject will remain in the present
monograph!

The physical systems to which the thermodynamic formalism applies are
idealized to be actually infinite, i.e. to fill Rν (where ν = 3 in the usual world).
This idealization is necessary because only infinite systems exhibit sharp phase
transitions. Much of the thermodynamic formalism is concerned with the study
of states of infinite systems.

For classical systems the states are probability measures on an appropriate
space of infinite configurations; such states can also be viewed as linear func-
tionals on an abelian algebra (an algebra of continuous functions in the case of
Radon measures). For quantum systems the states are “expectation value” linear
functionals on non-abelian algebras. Due to their greater simplicity, classical
systems have been studied more than quantum systems. In fact attention has
concentrated on the simplest systems, the classical lattice systems where Rν

is replaced by Zν (a ν-dimensional crystal lattice). For such systems the con-
figuration space is a subset 	 of

∏
x∈Zν 	x (where 	x is for instance the set

of possible “spin values” or “occupation numbers” at the lattice site x). We
shall assume that 	x is finite. Due to the group invariance (under Zν or Rν)
the study of states of infinite systems is closely related to ergodic theory. There
are however other parts of the thermodynamic formalism concerned with quite
different questions (like analyticity problems).

The present monograph addresses itself to mathematicians. Its aim is to give
an account of part of the thermodynamic formalism, and of the corresponding
structures andmethods.Wehave restricted ourselves to classical lattice systems.
The thermodynamic formalism extends to many other classes of systems, but
the theory as it exists now for those systems is less complete, more singular,
and filled with technical difficulties. The formalism which we shall describe
would not apply directly to the problems of constructive quantum field theory,
but it is appropriate to the discussion of Anosov diffeomorphisms and related
dynamical systems.

† At a more phenomenological level, a good deal is known about phase transitions and much
attention has been devoted to critical points and “critical phenomena”; the latter remain
however for the moment inaccessible to rigorous investigations.
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Description of the thermodynamic formalism 3

The mathematics underlying the thermodynamic formalism consists of gen-
eral methods and special techniques. We have restricted ourselves in this mono-
graph to the general methods; we hope that a complement on special techniques
will be published later. As a rough rule, we have decided that a result was not
“general” if it required that the configuration space of the system factorize com-
pletely in the form 	 = ∏

	x , where 	x is the finite set of “spin values” at
the lattice site x . The body of general methods thus defined has considerable
unity. As for the special techniques, let us mention the correlation inequalities,
the method of integral equations, the Lee-Yang circle theorem, and the Peierls
argument. These techniques look somewhat specialized from the general point
of view taken in this monograph, but are often extremely elegant. They provide,
in special situations, a variety of detailed results of great interest for physics.

0.2 Description of the thermodynamic formalism

The contents of this section are not logically required for later chapters. We
describe here, for purposes of motivation and orientation, some of the ideas and
results of the thermodynamic formalism.∗ The reader may go over this material
rapidly, or skip it entirely.

I. Finite systems

Let 	 be a non-empty finite set. Given a probability measure σ on 	 we define
its entropy

S(σ ) = −
∑
ξ∈	

σ {ξ} log σ {ξ},

where it is understood that t log t = 0 if t = 0.Given a functionU : 	 → R, we
define a real number Z called the partition function and a probability measure
ρ on 	 called the Gibbs ensemble by

Z =
∑
ξ∈	

exp[−U (ξ )],

ρ{ξ} = Z−1 exp[−U (ξ )]. (0.1)

Proposition (Variational principle). The maximum of the expression†

S(σ ) − σ (U )

∗ We follow in part the Séminaire Bourbaki, exposé 480.
† We write σ (U ) = ∑

ξ σ {ξ}U (ξ ) or more generally σ (U ) = ∫
U (ξ )σ (dξ ).
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4 Introduction

over all probability measures σ on 	 is log Z, and is reached precisely for
σ = ρ.

For physical applications, 	 is interpreted as the space of configurations of a
finite system.OnewritesU = βE , where E(ξ ) is the energy of the configuration
ξ , and β = 1/kT , where T is the absolute temperature and k is a factor known
as Boltzmann’s constant. The problem of why the Gibbs ensemble describes
thermal equilibrium (at least for “large systems”) when the above physical
identifications have been made is deep and incompletely clarified. Note that the
energy E maydependonphysical parameters called “magnetic field,” “chemical
potential,” etc. Note also that the traditional definition of the energy produces
a minus sign in exp[−βE], which is in practice a nuisance. From now on we
absorb β in the definition ofU , and callU the energy. We shall retain from the
above discussion only the hint that the Gibbs ensemble is an interesting object
to consider in the limit of a “large system.”

The thermodynamic formalism studies measures analogous to the Gibbs
ensemble ρ in a certain limit where 	 becomes infinite, but some extra structure
is present. Imitating the variational principle of the above Proposition, one
defines equilibrium states (see II below). Imitating the definition (0.1), one
defines Gibbs states (see III below).

II. Thermodynamic formalism on a metrizable compact set

Let 	 be a non-empty metrizable compact set, and x → τ x a homomorphism of
the additive group Zν(ν � 1) into the group of homeomorphisms of 	. We say
that τ is expansive if, for some allowed metric d, there exists δ > 0 such that

(d(τ xξ, τ xη) � δ for all x) ⇒ (ξ = η).

Definition of the pressure. If A = (Ai ), B = (B j ) are covers of 	, the cover
A ∨ B consists of the sets Ai ∩ B j . This notation extends to any finite family
of covers. We write

τ−xA = (τ−xAi ),

A� = ∨
x∈�

τ−xA if � ⊂ Zν,

diam A = sup
i

diam Ai ,

where diam Ai is the diameter of Ai for an allowed metric d on 	.
The definition of the pressure which we shall now give will not look simple

and natural to someone unfamiliar with the subject. This should not alarm the
reader: the definitionwill give us quick access to a general statement of theorems
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Description of the thermodynamic formalism 5

of statistical mechanics. It will otherwise recur only in Chapter 6, with more
preparation.

We denote by C = C (	) the space of continuous real functions on 	. Let
A ∈ C , A be a finite open cover of 	, and � be a finite subset of Zν ; define

Z�(A, A) = min

{∑
j

exp

[
sup
ξ∈Bj

∑
x∈�

A(τ xξ )

]

: (B j ) is a subcover of A�

}
.

If a1, . . . , aν are integers >0, let a = (a1, . . . , aν) and

�(a) = {(x1, . . . , xν) ∈ Zν : 0 � xi < ai for i = 1, . . . , ν}.

The function a → log Z�(a)(A, A) is subadditive, and one can write
(with |�(a)| = card �(a) = ∏

i a
i )

P(A, A) = lim
a1,...,aν→∞

1

|�(a)| log Z�(a)(A, A)

= inf
a

1

|�(a)| log Z�(a)(A, A),

and

P(A) = lim
diam A→0

P(A, A).

The function P : C → R ∪ {+∞} is the (topological) pressure. P(A) is finite
for all A if and only if P(0) is finite; in that case P is convex and continuous
(for the topology of uniform convergence in C). P(0) is the topological entropy;
it gives a measure of the rate of mixing of the action τ .

Entropy of an invariant measure. If σ is a probability measure on 	, and
A = (Ai ) a finite Borel partition of 	, we write

H (σ, A) = −
∑
i

σ (Ai ) log σ (Ai ).

The real measures on 	 constitute the dual C
∗ of C. The topology of weak dual

of C on C
∗ is called the vague topology. Let I ⊂ C

∗ be the set of probability
measures σ invariant under τ , i.e. such that σ (A) = σ (A ◦ τ x ); I is convex and
compact for the vague topology. If A is a finite Borel partition and σ ∈ I , we
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6 Introduction

write

h(σ, A) = lim
a1,...,aν→∞

1

|�(a)|H (σ, A�(a))

= inf
a

1

|�(a)|H (σ, A�(a));

h(σ ) = lim
diam A→0

h(σ, A).

The function h : I → R ∪ {+∞} is affine � 0; it is called the (mean) entropy.
If τ is expansive, h is finite and upper semi-continuous on I (with the vague
topology).

Theorem 1 (Variational principle).

P(A) = sup
σ∈I

[h(σ ) + σ (A)]

for all A ∈ C.

This corresponds to the variational principle for finite systems if – A is
interpreted as the contribution to the energy of one lattice site.

Let us assume that P is finite. The set IA of equilibrium states for A ∈ C is
defined by

IA = {σ ∈ I : h(σ ) + σ (A) = P(A)}.

IA may be empty.

Theorem 2 Assume that h is finite and upper semi-continuous on I (with the
vague topology).

(a) IA = {σ ∈ C
∗ : P(A + B) � P(A) + σ (B) for all B ∈ C}. This set is not

empty; it is convex, compact; it is a Choquet simplex and a face of I.
(b) The set D = {A ∈ C : card IA = 1} is residual in C .
(c) For every σ ∈ I ,

h(σ ) = inf
A∈C

[P(A) − σ (A)].

The fact that IA is a metrizable simplex implies that each σ ∈ IA has a unique
integral representation as the barycenter of a measure carried by the extremal
points of IA. It is known that I is also a simplex. The fact that IA is a face
of I implies that the extremal points of IA are also extremal points of I (i.e.
τ -ergodic measures on 	).
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Description of the thermodynamic formalism 7

III. Statistical mechanics on a lattice

The above theorems extend results known for certain systems of statistical
mechanics (classical lattice systems). For instance, if F is a non-empty finite
set (with the discrete topology),we can take	 = FZν

with the product topology,
and τ x defined in the obvious manner. More generally we shall take for 	 a
closed τ -invariant non-empty subset of FZν

. For the physical interpretation,
note that 	 is the space of infinite configurations of a system of spins on a
crystal lattice Zν . Up to sign and factors of β, P can be interpreted as the “free
energy” or the “pressure,” depending on the physical interpretation of F as the
set of “spin values” or of “occupation numbers” at a lattice site. For simplicity
we have retained the word “pressure.”

If x = (xi ) ∈ Zν , we write |x | = max |xi |. Let 0 < λ < 1; if ξ, η ∈ 	, with
ξ = (ξx )x∈Zν , η = (ηx )x∈Zν , we define

d(ξ, η) = λk with k = inf{|x | : ξx �= ηx }.
d is a distance compatible with the topology of 	. One checks with this defini-
tion that τ is expansive; hence Theorem 2 applies.

We shall henceforth assume that there exists a finite set � ⊂ Zν andG ⊂ F�

such that

	 = {ξ ∈ FZν

: τ xξ |� ∈ G for all x}.
If � ⊂ Zν we denote by pr�, pr′� the projections of FZν

on F� and FZν\�

respectively.
Let 0 < α � 1, and denote by C

α the Banach space of real Hölder continuous
functions of exponent α on 	 (with respect to the metric d). Let ξ = (ξx ) ∈
	, η = (ηx ) ∈ 	. If ξx = ηx except for finitely many x , and A ∈ C

α , we can
write

gA(ξ, η) =
∏
x∈Zν

exp[A(τ xξ ) − A(τ xη)]

because |A(τ xξ ) − A(τ xη)| → 0 exponentially fast when |x | → ∞. For finite
�, a continuous function f� : pr�	 × pr′�	 → R is then defined by

f�(ξ ) =




[ ∑
η∈	:pr′�η=pr′�ξ

gA(η, ξ )

]−1

if ξ ∈ 	,

0 if ξ �∈ 	.

Definition. Let A ∈ C
α; we say that a probability measure σ on 	 is a Gibbs

state if the following holds.
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8 Introduction

For every finite � ⊂ Zν , let ε� be the measure on pr�	 which gives to each
point of this set the mass 1. Then

σ = f� · (ε� ⊗ pr′�σ );

(we have again denoted by σ the image of this measure by the canonical map
	 �→ pr�	 × pr′�	).

Another formulation of the definition is this: σ is a Gibbs state if, for every
finite �, the conditional probability that ξ |� is realized in �, knowing that
ξ |(Zν\�) realized in Zν\�, is f�(ξ ).

Theorem 3 Let A ∈ C
α .

(a) Every equilibrium state is a τ -invariant Gibbs state.
(b) If 	 = FZ ν

, every τ -invariant Gibbs state is an equilibrium state.

In view of (a), the Gibbs states are the probability measures which have
the same conditional probabilities f� as the equilibrium states. Part (b) of the
theorem holds under conditions much more general than 	 = FZν

. The as-
sumption A ∈ C

α can also be considerably weakened. For simplicity we have in
this section made an unusual description of statistical mechanics, using (Hölder
continuous) functions on 	, rather than the “interactions” which are much more
appropriate to a detailed study.

Theorem 4 The set of Gibbs states for A ∈ C
α is a Choquet simplex.

Every Gibbs state has thus a unique integral decomposition in terms of
extremal (or “pure”) Gibbs states.

Physical interpretation. The extremal equilibrium states are τ -ergodic mea-
sures. They are interpreted as pure thermodynamic phases. Since the equilib-
rium states correspond to tangents to the graph of P (Theorem 2(a)), the dis-
continuities of the derivative of P correspond to phase transitions. One would
thus like to know if P is piecewise analytic (in a suitable sense) on C

α . An ex-
tremal equilibrium state σ may have a non-trivial decomposition into extremal
Gibbs states (those will not be τ -invariant, because of Theorem 3(b)). This
is an example of symmetry breaking (the broken symmetry is the invariance
under τ ).

The main problem of equilibrium statistical mechanics is to understand the
nature of phases and phase transitions. Because of this, the main object of
the thermodynamic formalism is to study the differentiability and analyticity
properties of the function P , and the structure of the equilibrium states and
Gibbs states. As already mentioned, detailed results are known only in special
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Summary of contents 9

cases, but we shall restrict ourselves in the present monograph to the general
theory, as it is known at the time of writing.

For “one-dimensional systems,” i.e. for ν = 1, there are fairly complete
results, which can be summarized by saying that there are no phase transitions.
Let us assume that

	 = {ξ = (ξx )x∈Z ∈ FZ : tξx ξx+1 = 1 for all x},
where t = (tuv) is a matrix with elements 0 or 1. We assume also that there
exists an integer N > 0 such that all the matrix elements of t N are > 0.

Theorem 5 If the above conditions are satisfied, P : C
α →R is real analytic.

Furthermore for every A ∈ C
α there is only one Gibbs state (which is also the

only equilibrium state).

All these properties are false for ν > 1.

0.3 Summary of contents

Chapters 1 to 5 of this monograph are devoted to the general theory of equi-
librium statistical mechanics of classical lattice systems; complete proofs are
generally given. Chapters 6 and 7 extend the thermodynamic formalism outside
of the traditional domain of statistical mechanics: here the proofs are largely
omitted or only sketched.* We give now some more details.

Chapters 1 and 2 give the theory ofGibbs states, without assuming invariance
under lattice translations (the lattice Zν is thus replaced by a general infinite
countable set L). Chapter 3 assumes translation invariance and develops the the-
ory of equilibrium states and of the pressure for classical lattice systems; general
results on phase transitions are also obtained. Chapter 4 is central, and estab-
lishes the connexion between Gibbs states and equilibrium states. Chapter 5
deals with one-dimensional systems and prepares Chapter 7. Chapter 6 extends
the theory of equilibrium states to the situation where the configuration space 	

is replaced by a general compact metrizable space on which Zν acts by home-
omorphisms. Chapter 7 extends the theory of Gibbs states (and related topics)
to a certain class of compact metric spaces, which we call Smale spaces, on
which Z acts by homeomorphisms. Smale spaces include Axiom A basic sets
and in particular manifolds with an Anosov diffeomorphism.

Someextramaterial is given in the formof exercises at the endof the chapters.
Bibliographic references are given either in the text or in notes at the end

of the chapters. For purposes of orientation, it may be good to read these notes

* Of course references to the literature are indicated as needed.
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10 Introduction

before the corresponding chapter. The reader is particularly advised to con-
sult the following original papers: Ruelle [1], Dobrushin [2], [3], Lanford and
Ruelle [1], Israel [1], and Sinai [4].

Some background material has been collected in Appendices A.1 to A.5.
These appendices recall some well-known facts to establish terminology, and
also provide access to less standard results. In general the reader is assumed to
be familiar with basic facts of functional analysis, but no knowledge of physics
is presupposed.

A few open problems are collected in Appendix B. Appendix C contains a
brief introduction to flows.

Concerning notation and terminology we note the following points. We shall
often write |X | for the cardinality of a finite set X . We shall use in Chapters
5–7 the notation Z>, Z�, Z<, Z� for the sets of integers which are respec-
tively >0, � 0, <0, � 0. A measure ρ will (unless otherwise indicated) be a
Radon measure on a compact set 	. If f : 	 → 	′ is a continuous map, the
image of ρ by f (see Appendix A.4) is denoted by fρ (not f ∗ρ).

We refer the reader to Ruelle [3] for a wider study of equilibrium statisti-
cal mechanics, and to the excellent monograph by Bowen [6] for applications
to differentiable dynamical systems.* Let us also mention the monograph by
Israel [2] and the notes by Lanford [2], Georgii [1], and Preston [1], [2]. Mono-
graphs are planned by various authors on aspects of statistical mechanics not
covered here, but at this time, much interesting material is not available in book
form.

Before proceeding with Chapter 1, the reader is invited to go rapidly through
the Appendices A.1–A.5.

* For modern introductions to ergodic theory and topological dynamics, see Walters [2]: Denker,
Grillenberger, and Sigmund [1].

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521546494 - Thermodynamic Formalism: The Mathematical Structures of Equilibrium
Statistical Mechanics, Second Edition
David Ruelle
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/0521546494

