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Why (2+1)-dimensional gravity?

The past 25 years have witnessed remarkable growth in our understand-
ing of fundamental physics. The Weinberg-Salam model has successfully
unified electromagnetism and the weak interactions, and quantum chro-
modynamics (QCD) has proven to be an extraordinarily accurate model
for the strong interactions. While we do not yet have a viable grand unified
theory uniting the strong and electroweak interactions, such a unification
no longer seems impossibly distant. At the phenomenological level, the
combination of the Weinberg-Salam model and QCD - the Standard
Model of elementary particle physics — has been spectacularly successful,
explaining experimental results ranging from particle decay rates to high
energy scattering cross-sections and even predicting the properties of new
elementary particles.

These successes have a common starting point, perturbative quantum
field theory. Alone among our theories of fundamental physics, general
relativity stands outside this framework. Attempts to reconcile quantum
theory and general relativity date back to the 1930s, but despite decades
of hard work, no one has yet succeeded in formulating a complete, self-
consistent quantum theory of gravity. The task of quantizing general
relativity remains one of the outstanding problems of theoretical physics.

The obstacles to quantizing gravity are in part technical. General
relativity is a complicated nonlinear theory, and one should expect it to be
more difficult than, say, electrodynamics. Moreover, viewed as an ordinary
field theory, general relativity has a coupling constant G'/? with dimensions
of an inverse mass, and standard power-counting arguments — confirmed
by explicit computations — indicate that the theory is nonrenormalizable,
that is, that the perturbative quantum theory involves an infinite number
of undetermined coupling constants.

But the problem of finding a consistent quantum theory of gravity
goes deeper. General relativity is a geometric theory of spacetime, and
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2 1 Why (2+1)-dimensional gravity?

quantizing gravity means quantizing spacetime itself. In a very basic sense,
we do not know what this means. For example:

e Ordinary quantum field theory is local, but the fundamental (diffeo-
morphism-invariant) physical observables of quantum gravity are
necessarily nonlocal;

e Ordinary quantum field theory takes causality as a fundamental
postulate, but in quantum gravity the spacetime geometry, and thus
the light cones and the causal structure, are themselves subject to
quantum fluctuations;

e Time evolution in quantum field theory is determined by a Hamilto-
nian operator, but for spatially closed universes, the natural candi-
date for a Hamiltonian in quantum gravity is identically zero when
acting on physical states;

e Quantum mechanical probabilities must add up to unity at a fixed
time, but in general relativity there is no preferred time-slicing on
which to normalize probabilities;

e Scattering theory requires the existence of asymptotic regions in
which interactions become negligible and states can be approximated
by those of free fields, but the gravitational self-coupling in general
relativity never vanishes;

e Perturbative quantum field theory depends on the existence of a
smooth, approximately flat spacetime background, but there is no
reason to believe that the short-distance limit of quantum gravity
even resembles a smooth manifold.

Faced with such problems, it is natural to look for simpler models
that share the important conceptual features of general relativity while
avoiding some of the computational difficulties. General relativity in 2+1
dimensions — two dimensions of space plus one of time — is one such model.
As a generally covariant theory of spacetime geometry, (2+1)-dimensional
gravity has the same conceptual foundation as realistic (3+1)-dimensional
general relativity, and many of the fundamental issues of quantum gravity
carry over to the lower dimensional setting. At the same time, however, the
(2+1)-dimensional model is vastly simpler, mathematically and physically,
and one can actually write down candidates for a quantum theory. With a
few exceptions, (2+1)-dimensional solutions are physically quite different
from those in 3+1 dimensions, and the (2+1)-dimensional model is not
very helpful for understanding the dynamics of realistic quantum gravity.
But for the analysis of conceptual problems — the nature of time, the
construction of states and observables, the role of topology and topology
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1.1 General relativity in 2+1 dimensions 3

change, the relationships among different approaches to quantization —
the model has proven highly instructive.

Work on (241)-dimensional gravity dates back at least to 1963, when
Staruszkiewicz first described the behavior of static solutions with point
sources [243]. Work continued intermittently over the next twenty years,
but the modern rebirth of the subject can be credited to the seminal
work of Deser, Jackiw, 't Hooft, and Witten in the mid-1980s [88, 89,
90, 247, 287, 288]. Over the past decade, (2+1)-dimensional gravity has
become an active field of research, drawing insights from general relativity,
differential geometry and topology, high energy particle theory, topological
field theory, and string theory. The subject is far from being completed,
but this book will summarize some of the basic features as they are
currently understood.

1.1 General relativity in 241 dimensions

The subject of this book is the theory of gravity obtained from the
standard Einstein—Hilbert action,

1
167G

/ Bx = (R = 2A) + Inarer, (L.1)
M

in three spacetime dimensions. (See appendix C for my conventions
for Riemannian geometry.) As in 341 dimensions, the resulting Euler—
Lagrange equations are the standard Einstein field equations

1
R, — Eg”VR + Agy = —8nGT)y,, (1.2)

with a cosmological constant A that I will often take to be zero. Just as in
ordinary general relativity, the field equations are generally covariant; that
is, they are invariant under the action of the group of diffeomorphisms of
the spacetime M, which can be viewed as a ‘gauge group’.

The fundamental physical difference between general relativity in 2+1
and 341 dimensions originates in the fact that the curvature tensor in
2+1 dimensions depends linearly on the Ricci tensor:

1
Ryypo = upRvs + 8vaRyp — 8vpRus — guoRvp — 5(8up8ve — guo'gvp)R~
2 (13)

In particular, this means that every solution of the vacuum Einstein
equations with A = 0 is flat, and that every solution with a nonvanish-
ing cosmological constant has constant curvature. Physically, a (2+1)-
dimensional spacetime has no local degrees of freedom: curvature is
concentrated at the location of matter, and there are no gravitational
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4 1 Why (2+1)-dimensional gravity?

waves. If the spacetime M is topologically trivial, there are, in fact, no
gravitational degrees of freedom at all. If M has a nontrivial fundamental
group, though, we shall see later that a finite number of global degrees
of freedom remain, providing the classical starting point for a quantum
theory.

This absence of local degrees of freedom can be verified by a simple
counting argument. In n dimensions, the phase space of general relativity
is characterized by a spatial metric on a constant-time hypersurface, which
has n(n — 1)/2 components, and its time derivative (or conjugate momen-
tum), which adds another n(n — 1)/2 degrees of freedom per spacetime
point. It is well known, however, that n of the Einstein field equations
are constraints on initial conditions rather than dynamical equations, and
that n more degrees of freedom can be eliminated by coordinate choices.
We are thus left with n(n — 1) — 2n = n(n — 3) physical degrees of freedom
per spacetime point.

If n = 4, this gives the four phase space degrees of freedom of ordinary
general relativity, two gravitational wave polarizations and their conjugate
momenta. If n = 3, on the other hand, there are no field degrees of
freedom: up to a finite number of possible global degrees of freedom, the
geometry is completely determined by the constraints.

Now, a theory of gravity with no propagating degrees of freedom might
be expected to have a rather unusual Newtonian limit. This is indeed the
case: general relativity in 2+1 dimensions has a Newtonian limit in which
there is no force between static point masses. To see this, let us write the
metric as

Suv =N + huv (1.4)

where 7, is the usual flat Minkowski metric and h,, is a small correction.
A gauge can always be chosen in which the n-dimensional field equations
take the form

1y a s
—31" Ouvha: + O(W?) = 8nGT,,

ﬂuvauhvo‘ =0, (1.5)

where

1 .
ho: = hor — ‘i’?ar’luvhuv, 1e.,
- 1 ~
hor = hor — — 2’70’1’7uvhuv- (1.6)

The Newtonian limit is obtained by setting Tpo &~ p, where p is the mass
density; neglecting all other components of the stress—energy tensor; and

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521545889
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521545889 - Quantum Gravity in 2+1 Dimensions - Steven Carlip
Excerpt

More information

1.1 General relativity in 241 dimensions 5

ignoring time derivatives, which are suppressed by powers of v/c. The
only nonzero component of 4, is then

hoo = —4®, (1.7)
where @ is the Newtonian potential,
V20 = 4nGp. (1.8)
In this limit, the geodesic equation
d?x? dx# dxY
utiadll p &V =
152 + 1%, s 0 (1.9)
reduces to
2xt 1
Combining (1.6) and (1.7), we see that
d&x 2(n—3)
—0;0=0. 1.11
dr? + n—2 0 0 (L1D)

In four dimensions, equation (1.11) gives the standard Newtonian equa-
tions of motion, and for n > 4 the standard equations may be obtained
by rescaling the coupling constant G. In three spacetime dimensions,
however, test particles experience no Newtonian force.

This absence of a Newtonian limit does not make the theory trivial:
moving particles, for example, can still exhibit nontrivial scattering. In fact,
point particle solutions in 241 dimensions are good models for parallel
cosmic strings in 341 dimensions [134]. Cosmic strings are topological
solitons that occur in certain gauge theories; it is conjectured that they
may have formed during phase transitions in the early universe, where
they could have played an important role in the formation of large-scale
structure. A straight cosmic string along, say, the z axis is characterized by
a stress tensor of the form Ty = —T33 = pd(z), and the large tension in
the z direction alters the Newtonian limit of ordinary (3+1)-dimensional
general relativity. Indeed, the ‘effective Newtonian mass density’ for an
object with pressures T;; = p; is

o+ pi (1.12)
i

which vanishes for a cosmic string. The dynamics of a set of such parallel
strings may be described in terms of their behavior on the z = 0 plane,
and for this purpose, (2+1)-dimensional gravity provides a useful model.
This is a classical problem, however — at scales at which quantum gravity
becomes important, a cosmic string can no longer be represented as a
point defect — and I will have little to say about it in the remainder of
this book.
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6 1 Why (2+1 )-dimensional gravity?

1.2 Generalizations

There are several generalizations of (241)-dimensional general relativity
that restore local degrees of freedom, making the dynamics more like that
of realistic (3+1)-dimensional gravity. The quantization of these models is
not yet well understood, and they will not be a major topic of this book,
but they they warrant a brief introduction.

The first generalization is (241)-dimensional dilaton gravity, that is,
general relativity coupled to a scalar field ¢ (the dilaton). In its most
general form, the action can be written as [273]

vo = [ @x 72 (ClolR = 21gm,00,0 + 20V 101 s

where C, w, and V are arbitrary functions of ¢. Models of this kind arise
naturally in string theory,” with

Clol =9, olpl=-1, Vip]=A/2 (1.14)

while the choice

Clol =0, wle]l=ws, VIp] =0 (L15)

corresponds to three-dimensional Brans-Dicke-Jordan theory. In such
models, the scalar field ¢ becomes a local dynamical degree of freedom,
and a judicious choice of couplings can lead to a limit not unlike New-
tonian gravity [30]. Many versions of dilaton gravity are known to have
black hole solutions (see, for example, [74, 75, 233}), but the quantization
of these models has not been studied in any great detail.

A second generalization is unique to 2+1 dimensions, where a ‘gravita-
tional Chern-Simons term’

2
Iges = — / d3xei"”1“ (5 1"” + 317“1“3‘,)

32“G/‘ (1.16)

can be added to the gravitational action [91, 92]. This rather unusual-
looking term appears as a counterterm in the renormalization of quantum
field theory in a (2+1)-dimensional gravitational background [265, 262,
132]. The expression (1.16) does not appear to be generally covariant,
but it is, at least when the manifold M is closed: it may be checked that
an infinitesimal coordinate change merely adds a total derivative to the
Lagrangian, leaving the action unchanged.
Variation of the total action I + Ig¢cs yields the equations of motion

G* + e =0, (1.17)

* In string theory, the field ¢ is usually denoted as e~2¢.
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1.3 A note on units 7

where C# is the conformally invariant Cotton tensor,

1
cH = %e"p"Vﬂ(R}; — Z0R). (1.18)

The simple counting argument that gave us the number of degrees of
freedom in Einstein gravity no longer holds: for such third-order equations
of motion, the spatial metric and its time derivative must both be treated
as configuration space variables with associated canonical momenta, and
the analysis becomes more elaborate. Instead, as Deser, Jackiw, and
Templeton first observed [91], the linearized equations of motion are
those of a massive scalar field,

O+ ue =0, (1.19)
where
¢ = (8 + 00k,  with & = o(—V?)~1/2. (1.20)

The existence of such a massive excitation can be confirmed by looking
at the effective interaction of static external sources: one finds a Yukawa
attraction with an interaction energy

E=— / d*x Too(—V? + 1) L Too, (1.21)

as expected for a massive scalar ‘graviton’. This model is commonly
called topologically massive gravity (‘topological’, somewhat misleadingly,
because the Chern—Simons term (1.16) is important in topology). Topolog-
ically massive gravity has been shown to be perturbatively renormalizable
[94, 168], and a number of interesting classical solutions are known. Fairly
little is known about the quantization of this system, however, although
some progress has been made in understanding the canonical structure
and the asymptotic states [46, 93, 137].

1.3 A note on units

It is customary in quantum gravity to express masses in terms of the Planck
mass and lengths in terms of the the Planck length. In 2+1 dimensions
the gravitational constant G has units of an inverse momentum, and the
Planck mass (in units with ¢ = 1) is

1
Mp; = el (1.22)
while the Planck length is
Lp; = hG. (1.23)
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8 1 Why (2+1 )-dimensional gravity?

If a cosmological constant is present, |A|~1/? has units of length. The
theory then has a dimensionless length scale,

1

Y . S— 1.24
1672RG|A|1/2 (1:29)

Roughly speaking, this scale measures the radius of curvature of the
universe.

Throughout this book, I will use units such that 162G = 1 and A = 1,
unless otherwise stated. This choice simplifies a number of equations,
particularly those involving canonical momenta. In concrete applications,
of course — if we are interested in the thermodynamic characteristics of
black holes, for instance — it is important to restore factors of G and h.
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Classical general relativity in 2+1 dimensions

If we wish to quantize (2+1)-dimensional general relativity, it is important
to first understand the classical solutions of the Einstein field equations.
Indeed, many of the best-understood approaches to quantization start
with particular representations of the space of solutions. The next three
chapters of this book will therefore focus on classical aspects of (2+1)-
dimensional gravity. Our goal is not to study the detailed characteristics
of particular solutions, but rather to develop an understanding of the
generic properties of the space of solutions.

In this chapter, I will introduce two fundamental approaches to classical
general relativity in 241 dimensions. The first of these, based on the
Arnowitt-Deser—Misner (ADM) decomposition of the metric, is familiar
from (3+1)-dimensional gravity [9]; the main new feature is that for
certain topologies, we will be able to find the general solution of the
constraints. The second approach, which starts from the first-order form
of the field equations, is also similar to a (3+1)-dimensional formalism,
but the first-order field equations become substantially simpler in 2+1
dimensions.

In both cases, the goal is to set up the field equations in a manner
that permits a complete characterization of the classical solutions. The
next chapters will describe the resulting spaces of solutions in more detail.
I will also derive the algebra of constraints in each formalism — a vital
ingredient for quantization — and I will discuss the (2+1)-dimensional
analogs of total mass and angular momentum.

2.1 The topological setting

Before plunging into a detailed analysis of the field equations, it is useful
to ask a preliminary question: what spacetime topologies can occur in
(2+1)-dimensional gravity?
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Fig. 2.1. The manifold M has an initial boundary £~ and a final boundary Z*.

As we shall see below, the interesting cosmological solutions have non-
trivial topologies, and to understand their structure, we shall need a num-
ber of mathematical tools. For readers unfamiliar with the fundamentals
of the topology of manifolds, appendices A and B provide a brief summary
of some relevant mathematics. Readers familiar with topology at the level
of reference [204] should be able to skip these appendices, although they
may serve as useful references for some particular applications.

It is helpful to divide our question into two parts. First, which three-
manifolds admit Lorentzian metrics, that is, metrics that have the signature
(— + +)? Second, which of these manifolds admit solutions of the empty
space Einstein field equations? Note that in 241 dimensions, this second
question is more tractable than it might appear. As we saw in chapter 1,
the vacuum field equations (with A = 0) require the metric to be flat, so
we are really asking which three-manifolds admit flat Lorentzian metrics.

The first of these questions can be answered in full. In appendix B, it is
shown that any noncompact three-manifold admits a Lorentzian metric,
as does any closed three-manifold. (‘Closed’ means ‘compact and without
boundary’.) For compact manifolds with boundary, the problem becomes
more interesting. Given a manifold with several boundary components,
one can look for a Lorentzian metric for which these components are the
past and future spatial boundaries of the universe, as in figure 2.1. Sorkin
has shown that a three-manifold M admits a time-orientable Lorentzian
metric with spacelike past boundary X~ and spacelike future boundary
=+ (and no other boundary components) if and only if

2E7) = x(ZD), (2.1)

where y(Z) is the Euler number (or Euler—Poincaré characteristic) of Z
[242].

If =~ and T7F are both connected, this result prohibits topology change,
since the Euler number of a connected surface completely determines its

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521545889
http://www.cambridge.org
http://www.cambridge.org

