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Chow varieties, the Euler–Chow series

and the total coordinate ring

E. Javier Elizondo

Instituto de Matemáticas, Ciudad Universitaria, UNAM, México DF 04510, Mexico

Introduction

Chow varieties play an important role in the geometry and topology of algebraic

varieties. However, their geometry and topology are not well understood. It is

important to mention the work of Blaine Lawson, Eric Friedlander, Paulo Lima-

Filho and others on the homotopy and topology of the space of cycles with fixed

dimension. Chapter 3 by Lima-Filho is relevant in this aspect.

In this article we would like to present other aspects of the geometry and

topology of Chow varieties.

In Section 1.1 we introduce Chow varieties and give some important exam-

ples. In the last part of this section we mention the case of zero cycles, and we

state a theorem where it is shown that they are isomorphic to a certain symmetric

product.

In Section 1.2 we study the Euler–Chow series. These are a class of invariants

for projective varieties arising from the Euler characteristic of their Chow vari-

eties. It is a series that in a way generalizes the Hilbert series and also appears in

many different problems in algebraic geometry. It is also worth mentioning that

it belongs, for the correct dimension, as an element in the quantum cohomology

of the variety. We do not know what role it plays here, but it shows that a lot

more has to be understood before we can get a clear picture of the role of this

series in geometry.

In this section we start with simple and interesting examples, then we go

through some formalism in order to understand the product of two Euler–Chow

series of different varieties. Then some properties of the series are shown and

the series is computed for some important examples, like toric varieties, abelian

varieties, projective closure of line bundles, and other cases. In Section 1.2.4
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we relate the Euler–Chow series for the Grassmannian varieties with the Chow

quotients, another interesting fact that perhaps shows how the series is full of

information about the geometry of the variety.

In Section 1.3 we state some open problems and introduce the total coordinate

ring of a variety, stating some theorems. This ring is associated to the Euler–

Chow series of a projective variety and only for divisors. The ring itself is very

interesting; it is related to different classical problems in algebraic geometry,

canonical rings and Mori theory, an old classical problem by Zariski, and some

others.

1.1 Chow varieties

In this section we will sketch the construction of Chow varieties and give some

examples. There are two main references, the first of which is the book of

Shafarevich [Sha77]. It is important to note that the last edition which consists

of two volumes does not have the construction of the Chow varieties. The second

main reference where most of the examples and material can be found is the

book of Gelfand, Kapranov and Zelevinsky [GKZ94]. The reader is encouraged

to consult the latter for details and proofs of some of the theorems.

We should also mention the book of Kollár [Kol96]; it has an excellent

exposition of Hilbert schemes and Chow varieties in characteristic p. Although

this is very important, it is not possible to cover it in these notes. Throughout

this section we work over an algebraic closed field.

1.1.1 Chow forms of irreducible varieties

Let X ⊂ P
n−1 be an irreducible subvariety of dimension k − 1 and degree

d . Let Z(X ) be the set of all (n − k − 1)-dimensional projective subspaces

L ∈ P
n−1 that intersect X . This is a subvariety in the Grassmannian G (n − k, n)

parametrizing all the (n − k − 1)-dimensional projective subspaces in P
n−1.

Then we have the following theorem.

Theorem 1.1.1.1 The subvariety Z(X ) is an irreducible hypersurface of degree

d in G (n − k, n).

We shall call Z(X ) the associated hypersurface of X . Let B = ⊕Bm be the

coordinate ring of the Grassmannian G (n − k, n). It can be proven that Z(X )

is defined by the vanishing of some element RX ∈ Bd . This element is called

the Chow form of X . The coefficients of this form are the Chow coordinates of

X . It is important to notice that X can be recovered from its Chow coordinates.

Consider these examples.
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1 Chow varieties and Euler–Chow series 5

Example 1.1.1.2

1. Let X be a curve in P
3. Its associate hypersurface is the variety of all lines

which intersect X .

2. Let X be a hypersurface in P
n−1. The Grassmannian G (n − k, n) coincides

with P
n−1 and the associated hypersurface Z(X ) coincides with X .

3. Let X be a point p, then G (n − k, n) is the dual projective space (Pn−1)∗ and

Z(X ) is the hyperplane dual to p.

4. Let X be a linear projective subspace. The variety Z(X ) is known as the

Schubert divisor in G (n − k, n). We can assume that the linear equations

of X are given by x1 = 0, . . . , xn−k = 0 where x1, . . . , xn are coordinate

functions. Then the associate variety is given by the vanishing of the Plücker

coordinates p1, . . . , pn−k . For explicit formulas of the Plücker coordinates,

see [Ful98].

Now, we have the following theorem that tells us that we can recover X from

Z(X ).

Theorem 1.1.1.3 A (k − 1)-dimensional irreducible subvariety X ⊂ P
n−1 is

determined uniquely by its associated hypersurface Z(X ). More precisely, a

point p ∈ P
n−1 lies in X if and only if any (n − k − 1)-dimensional plane

containing p belongs to Z(X ).

1.1.2 Definition of Chow variety

In this section we construct for any irreducible (k − 1)-dimensional subvariety

X ⊂ P
n−1, its Chow form RX . This is a polynomial RX ( f1, . . . , fk) in coef-

ficients of k indeterminate linear forms on C
n which vanishes whenever the

projective subspace { f1 = · · · = fk = 0} of P
n−1 intersects X . It also satisfies

the following homogeneity property, if g = (gi j ) is a matrix in GL(k), we have

that

RX (g11 f1 + · · · + g1k fk, . . . , gk1 f1 + · · · + gkk fk)

= det(g)d RX ( f1, . . . , fk)

where d = deg X . The space of polynomials with this property is denoted

by Fd .

Let X =
∑

mi X i be a (k − 1)-dimensional effective algebraic cycle in P
n−1

of degree d . We define the Chow form of X as

RX =
∏

R
mi

X i
∈ Fd .

The coordinates of the vector RX are called Chow coordinates of X . Let us
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denote by Ck−1,d

(

P
n−1

)

the space of all the effective (k − 1)-cycles in P
n−1 of

degree d . The main result is a theorem due to Chow and van der Waerden.

Theorem 1.1.2.1 The map X �−→ RX defines an embedding of Ck−1,d

(

P
n−1

)

into the projective space P
Fd as a closed algebraic variety.

The variety Ck−1,d

(

P
n−1

)

with the algebraic structure defined by the above

embedding is called the Chow embedding. For a proof of this theorem see

[GKZ94, p. 126].

1.1.3 Examples of Chow varieties

Example 1.1.3.1

1. The Chow variety Ck−1,1

(

P
n−1

)

is the Grassmannian G (k, n) and its Chow

embedding coincides with the Plücker embedding.

2. Consider the Chow variety Cn−2,d

(

P
n−1

)

, parametrizing cycles of degree

d and codimension 1 in P
n−1, that is hypersurfaces. We saw in Example

1.1.1.2 that the Chow form of an irreducible hypersurface is just its equation

which is an irreducible homogeneous polynomial of degree d in n variables.

Algebraic cycles of codimension 1 corresond to all non-zero homogeneous

polynomials, irreducible or not, of degree d . Therefore, the Chow variety

Cn−2,d

(

P
n−1

)

is the projective space of such polynomials, i.e.

Cn−2,d

(

P
n−1

)

= P
N−1 where N =

(

n + d − 1

d

)

.

Example 1.1.3.2 Consider C1,2

(

P
3
)

. Thus we are considering curves of degree

2 in P
3. There are two cases, either an irreducible curve or two lines. A curve

of degree 2 must be a plane quadric, by Bézout. This implies that C1,2

(

P
3
)

has two irreducible components C and D corresponding to planar quadrics and

pairs of lines. C ∩ D consists of pairs of coplanar lines. Now, dim D = 8 since

one line in P
3 depends on four parameters. What is interesting, and rare, in

Chow varieties is that dim C = 8. This is easy to see since a plane needs three

parameters, and a quadric in a plane needs five parameters.

Example 1.1.3.3 This example is C1,3

(

P
3
)

parametrizing 1-dimensional cy-

cles in P
3 of degree 3. The possible curves for those cycles are:

1. an irreducible curve of degree 3; here we have two possible choices (see

[Har75b, IV.6]), either a twisted curve or a plane cubic;

2. a line and a planar quadric;

3. three lines.
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A twisted cubic is a curve which can be modified by a projective transformation

of P
3 to the standard Veronese curve given in homogeneous coordinates by

{(

x3
0 : x2

0 x1 : x0x2
1 : x3

1

) ∣

∣ (x0 : x1) ∈ P
1
}

. (1)

If we denote by C1, C2, C3, C4 the subvarieties of C1,3

(

P
3
)

parametrizing

twisted curves, plane cubics, a line and a planar quadric, and three lines, then

we have that

C1,3

(

P
3
)

= C1 ∪ C2 ∪ C3 ∪ C4.

The dimension of C4 is 12, since one line depends on four parameters. The

dimension of C3 is also 12; check the last example. The dimension of C1 is also

12. To see this we observe that all twisted cubics are images of one particular

twisted cubic, see equation (1), under projective transformations. The stabilizer

of the curve in (1) is the group PGL(2) of projective transformations of P
1

embedded into PGL(4) via the map

GL(2) = GL(C2) →֒ GL(4) = GL(S3
C

2)

by the correspondence

g �−→ S3g

where S3
C

2 is the space of all homogeneous polynomials of degree d in two

variables. Hence, C1 = PGL(4)/PGL(2), and its dimension is equal to 15 −

3 = 12.

For C2, the dimension is given by the number of parameters defining a plane,

which is three, plus the dimension of the space of cubics in a given plane, which

is nine, therefore, dim C2 = 12.

It is tempting to conjecture that all components of the variety C1,d

(

P
3
)

have

dimension 4d . However, there is this example.

Example 1.1.3.4 Consider the Chow variety C1,4

(

P
3
)

of 1-dimensional cycles

in P
3 of degree 4. This variety has many components corresponding to the

various possibilities that occur for a cycle of degree 4:

1. an irreducible curve of degree 4;

2. a cubic and a line;

3. two quadric curves;

4. a quadric curve and two lines;

5. four lines.
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From the previous examples it is reasonably clear that all of the components

in cases 2–5 above have dimension 16. Thus, we have to concentrate on the

first component, let us call it C . This variety also has reducible components,

irreducible curves of degree 4 that can be of three different types (see [Har75b,

IV.6]), namely:

1. a planar quartic;

2. a rational curve of degree 4;

3. a spatial elliptic curve of degree 4.

The last one is the intersection of two quadric surfaces. Let C1, C2, C3 be the

components corresponding to 1, 2, 3. C2 and C3 have dimension 16. However,

the number of parameters defining a plane is three, plus the dimension of the

space of quartics in a given plane is 14. Therefore dim C1 = 17.

We mention in passing that Eisenbud and Harris have computed the dimen-

sion of the Chow variety of curves [EH92]. A student of Harris, Pablo Azcue,

computed in his Ph.D. thesis the dimension of Chow varieties in higher dimen-

sions. In both cases there are small numbers of Chow varieties (of low degree)

that cannot be considered by their computations.

1.1.4 Zero cycles

A positive 0-cycle of degree d is just an unordered collection {x1, . . . , xd} of

d points (not necessarily distinct) in P
n−1. Thus, as a set C0,d (Pn) is identified

with Symd (Pn−1), the d-fold symmetric product of P
n−1. So we start with a

comparison of the dimensions of C0,d

(

P
n−1

)

and Symd (Pn−1).

Suppose that our projective space P
n−1 is P(V ) where V is an n-dimensional

vector space. The Chow form of a point x ∈ P(V ) is the linear function lx on

V ∗ given by the scalar product with x :

lx (ξ ) = (x, ξ ) .

If X =
∑

mi xi is a positive 0-cycle in P(V ) then, by our convention, the Chow

form RX is the polynomial ξ �→
∏

lmi
xi

(ξ ). We arrive at the following.

Proposition 1.1.4.1 The Chow variety C0,d

(

P
n−1

)

of positive 0-cycles in P
n−1

of degree d is the projectivization of the space of homogeneous polynomials of

degree d in n variables which are products of linear forms.

The set Y of decomposable (into linear factors) polynomials of degree d was

already used several times in the course of proving the Chow–van der Waerden

theorem. Note that this set has, as its ‘odd’analogue, the set of polyvectors from

www.cambridge.org/9780521545471
www.cambridge.org


Cambridge University Press
978-0-521-54547-1 — Transcendental Aspects of Algebraic Cycles
Edited by S. Müller-Stach , C. Peters
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1 Chow varieties and Euler–Chow series 9

∧d
C

n which are decomposable into wedge products of d vectors. The projec-

tivization of the set of decomposable polyvectors is, as we have seen in Section

1.1.3, nothing more than the Grassmannian G(d, n) in its Plücker embedding.

So the variety of 0-cycles is the ‘even’ analogue of the Grassmannian.

Recall now the definitions of symmetric products. Let X be a quasi-projective

algebraic variety. The symmetric product Symd (X ) is the quotient of the Carte-

sian product Xd by the action of the symmetric group Sd permuting the factors.

A more precise definition is as follows.

Suppose first that X is an affine variety and R is its coordinate ring. So R⊗d =

R ⊗ · · · ⊗ R is the coordinate ring of Xd . The coordinate ring of Symd (X ) is,

by definition, the subring of Sd -invariants in R⊗d . In other words, this is the ring

of regular functions f (x1, . . . , xd ) of d variables xi ∈ X which are symmetric,

i.e. invariant under any permutation of the xi .

If X is an arbitrary, not necessarily affine, quasi-projective variety then the

symmetric product Symd (X ) is defined by gluing affine varieties Symd (U ) for

various affine open subsets U ⊂ X .

It follows from these definitions that we have a regular morphism of algebraic

varieties

γ : Symd(Pn−1) → C0,d

(

P
n−1

)

{x1, . . . , xd} �→
∑

xi , (2)

which is set theoretically a bijection. Note that this does not automatically imply

that γ is an isomorphism of algebraic varieties: the morphism from the affine

line A1 to the cubic y2 = x3, given by x(t) = t2, y(t) = t3, is bijective but

not an isomorphism since the cubic is singular at (0, 0). So the following fact

requires a proof.

Theorem 1.1.4.2 The morphism γ : Symd (Pn−1) → C0,d

(

P
n−1

)

is an isomor-

phism of algebraic varieties (over the field of complex numbers).

It is important to note that over a field of finite characteristic the statement

is no longer true [Nee91].

Finally, we would like to state two more results.

Theorem 1.1.4.3 The symmetric product Symd (P1) = C0,d

(

P
1
)

is isomorphic

to P
d .

Theorem 1.1.4.4 For any d and n, the variety Symd (Pn−1) = C0,d

(

P
n−1

)

is

rational, i.e. it is birationally isomorphic to the projective space P
d(n−1).
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1.2 The Euler–Chow series of Chow varieties

1.2.1 General definitions

The use of topological invariants on moduli spaces has played a vital role in var-

ious branches of mathematics and mathematical physics in the last two decades.

A quick sampling under this vast umbrella includes works in gauge theory, the

theory of instantons, various moduli spaces of vector bundles, moduli spaces

of curves and their compactifications, Chow varieties and Hilbert schemes.

In this section we study a class of invariants for projective varieties arising

from the Euler characteristics of their Chow varieties. We will see that quite

nice and elegant behaviour which can often be codified in simple generating

functions comes from these Euler characteristics.

Basic examples

In this subsection we follow [ELF98]. As for motivation, we start with some

particular cases which are well studied in the literature. Let X be a connected

projective variety and let S P(X ) denote the disjoint union
∐

d≥0 S Pd (X ) of all

symmetric products of X , with the disjoint union topology, where S P0(X ) is a

single point. One can define a function E0(X ) : Z+ = π0(S P(X )) → Z which

sends d to the Euler characteristicχ (S Pd (X )) of the d-fold symmetric product of

X . This is what we call the 0th Euler–Chow function of X. The same information

can be codified as a formal power series E0(X ) =
∑

d≥0 χ (S Pd (X ))td , and a

result of Macdonald [Mac62] shows that E0(X ) is given by the rational function

E0(X ) = (1/(1 − t))χ (X ).

Another familiar instance arises in the case of divisors. Given an n-

dimensional projective variety X , let Div+(X ) denote the space of effec-

tive divisors on X and assume that Pic0(X ) = {0}. Consider the function

E : Pic(X ) → Z which sends L ∈ Pic(X ) to dim H 0(X, O(L)). Observe that:

1. given L ∈ Pic(X ), then E(L) �= 0 if and only if L = O(D) for some effective

divisor D;

2. under the given hypothesis, algebraic and linear equivalence coincide, and

two effective divisors D and D′ are algebraically equivalent if and only if

they are in the same linear system.

The last observation implies that Div+(X ) can be written as Div+(X ) =
∐

α∈A
≥
n−1

(

X

) Div+(X )α , where A
≥
n−1

(

X
)

is the monoid of algebraic equivalence

classes of effective divisors (cf. [Ful98, Section 12]), and Div+(X )α is the lin-

ear system associated to α ∈ A
≥
n−1

(

X
)

. The first observation shows that the

only data relevant to E is given by A
≥
n−1

(

X
)

⊂ Pic(X ). Therefore, we might

as well restrict E and define the (n − 1)-st Euler–Chow function of X as the
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function En−1

(

X
)

: A
≥
n−1

(

X
)

→ Z+ which sends α ∈ A
≥
n−1

(

X
)

to the Euler

characteristic χ (Div+(X )α) = dim H 0(X, O(Lα)), where Lα is the line bundle

associated to α.

Example 1.2.1.1 An even more restrictive case arises when Pic(X ) ∼= Z, and

A
≥
n−1

(

X
)

∼= Z+ is generated by the class of a very ample line bundle L . Then

the (n − 1)-st Euler–Chow function En−1

(

X
)

=
∑

d≥0 dim H 0(X ; O(L⊗n))tn

is just the Hilbert function associated to the projective embedding of X induced

by L . This is once again a rational function.

Preliminary definitions

Let us start with an abelian monoid M , whose multiplication we denote by

∗M : M × M −→ M . When no confusion is likely to arise we use an additive

notation + : M × M −→ M with no subscripts attached. We say that M has

finite multiplication if ∗M has finite fibers. Typical examples are the freely

generated monoids, such as the non-negative integers Z+ under addition.

Definition 1.2.1.2 Given a monoid with finite multiplication M , and a commu-

tative ring S, denote by SM the set of all functions from M to S. If f and f ′ are

elements in SM , let f + f ′ ∈ SM be defined by pointwise addition, i.e. ( f +

f ′)(m) = f (m) + f ′(m). Define the product f ∗ f ′ ∈ SM as the ‘convolution’

( f ∗ f ′)(m) =
∑

a∗M b=m

f (a) f ′(b).

It is easy to see that SM then becomes a commutative ring with unity, under

these operations.

Remark 1.2.1.3 The ring SM can be identified with the completion S[[M]] of

the monoid algebra S[M] at its augmentation ideal. Therefore, the elements of

SM can be written as a formal power series f =
∑

m∈M sm · tm, on variables

tm and coefficients in S. In this form the multiplication is given by the relation

tm tm ′

= tm+m ′

for elements m, m ′ ∈ M .

Definition 1.2.1.4 Given a monoid morphism � : M −→ N , f ∈ SM and g ∈

SN , define �♯g ∈ SM and �♯ f ∈ SN by

(�♯g)(m) = g(�(m))

and

(�♯ f )(n) =
∑

m∈�−1(n)

f (m)

if � has finite fibers.
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