
Introduction

How to understand the numbers we encountered in secondary school, and equations

involving them: this is our point of departure in studying Galois theory.

No two people have identical experiences in secondary school, to be sure; I would

venture, however, that we all encountered numbers such as 1/7,
√

2, 3
√−5, 4

√
20, and

11 + 13/
√

17. Now to begin a proper mathematical study of these numbers, we should

consider what these numbers have in common – and which numbers we should exclude

from our study. After all, a mathematical discipline proceeds by studying a little bit of

mathematical reality quite closely, widening the field of vision only later.

A moment’s reflection reveals that each of our numbers bears a certain relationship

to rational numbers. Each is either a rational number, a root of a rational number, or

some combination – using addition, subtraction, multiplication, and division – of rational

numbers and roots of integral degree. Having made this observation, we might choose

to take the plunge and restrict ourselves to arithmetic combinations of rational numbers

and their roots, a set which would appear easy to manipulate.

Before rushing headlong into definitions and theorems, however, we should step back

and contemplate whether we are comfortable with what it is that we are representing by

the symbols above. For instance, what exactly do we mean by the symbol 3
√−5? A priori,

all that we know of the number is that its cube is −5. An excellent question to ask at this

point is whether or not such a number actually exists, and any answer to this question

will depend, in some measure, on what we mean by the word number.

For the moment, let us simply ask whether or not there is, at least, some complex

number such that its cube is −5. Our answer then is yes because, by the Fundamental

Theorem of Algebra, inside the complex numbers exist roots of every polynomial (in one

variable) with complex number coefficients. Hence there exists a complex number which
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2 Introduction

is a root of X3 + 5. Stated another way, there must be a complex number that is a solution

to the equation X3 = −5. We may agree, therefore, that when we think of a number, we

will think of an element of the complex numbers.

We are not done, however, exploring what we mean by 3
√−5. After all, when we write

3
√−5 we are expressing only that we mean some root of the polynomial X3 + 5, and there

may exist several solutions – three, in fact. Our symbol 3
√−5, therefore, does not uniquely

define a number. With this observation we face one of the dangerous subtleties in the

naming of things.

To address this ambiguity, we now make a pact that when we write down a symbol

for a number, we agree to specify that number as precisely as we can. Since there are

three third roots of −5, we should provide another distinguishing characteristic of the

number to indicate which of the three we mean. One distinguishing characteristic, for

instance, is a complex approximation to the number. Only at the very end of the book, in

section 35, will this pact expire, and adventurers there will have to decide amid the sound

and fury of a grand generalization whether, in fact, what we signify there with our new

definitions is nothing – or, somehow, everything.

Returning to our consideration of the numbers of secondary school, observe that

we have isolated an important property of these numbers: they are not only complex

numbers but also solutions to polynomial equations. It turns out that to think of rational

numbers and their roots as part of a larger system of roots of polynomials is to give our

work a more natural context. (We will return specifically to rational numbers and their

roots in section 34, where we discuss solvability by radicals.)

Now we might choose to study the full set of numbers that are roots of polynomials, say

polynomials with any complex coefficients whatsoever. Such a system, however, would

cast the net extremely far out, since any complex number would be such a number. After

all, if c is a complex number, it is certainly a root of the polynomial X − c. While the study

of the arithmetic of the entire set of complex numbers is certainly compelling, we would

quickly be caught short by the fact that there are complex numbers that we grasp very

differently from those in our initial list.

Notice that, apart from rational numbers, we are able to express most complex

numbers only by their properties. Furthermore, the nature of these properties typically

dictates the way in which we study them. Even leaving aside the question of existence

for numbers defined only by properties, we surely do not grasp such numbers or their
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Introduction 3

“values” in the same sense as we grasp rational numbers, and the properties that complex

numbers have may be quite varied.

For instance, we are familiar with the idea that i is a certain solution to the polynomial

equation X2 = −1, whileπ , on the other hand, is the ratio of the circumference of a circle to

its diameter. It takes some work to associate a nongeometric property with π , such as, for

instance, to see π as an infinite sum. Now to understand numbers defined by properties,

we must look for ways to understand the connections between their properties. We have

an enormous advantage with i, it turns out, since i is a root of polynomial with rational

coefficients, and the fact that π is not the root of a polynomial with rational coefficients –

in other words, the fact that π is transcendental – means that the methods of studying i

are very likely not going to be especially useful in studying π .

In approaching Galois theory, we choose, then, to consider only those numbers that

are roots of polynomials with rational number coefficients. Each of the numbers sug-

gested at the beginning of this section satisfies this stronger criterion: 1/7 is a root of

7X − 1;
√

2 is a root of X2 − 2; 3
√−5 is a root of X3 + 5; 4

√
20 is a root of X4 − 20, and

11 + 13/
√

17 is a root of X2 − 22X + (1888/17). We call a root of a polynomial with rational

coefficients an algebraic number.

Now that we have settled on a precise context for the numbers we wish to study, a

context that is neither too narrow nor too broad, we turn to determining which equa-

tions involving algebraic numbers are valid. Immediately we ask whether one algebraic

number may be expressed in terms of another. For instance, if ω is a nonreal third root of

1 – that is, a nonreal solution of X3 − 1 = 0 – then we observe with interest that the other

nonreal third root is ω2, and, even further, that the three third roots are arithmetically

related: 1 + ω + ω2 = 0. These observations cause us to wonder if there might be a

reduced form of an expression involving algebraic numbers, so that by finding a unique

reduced form we might decide if two sides of a purported equation are in fact equal.

For instance, if we could reduce 2 + ω3 and 4 + ω + ω2 to reduced forms, we might then

notice that each is equal to 3.

These same observations will later lead us to ask whether this coincidence – that

an expression involving one root of a polynomial is equal to another root of the same

polynomial – is frequent or rare. Along the way we will consider the set of all expres-

sions involving a particular root of a polynomial, calling this set a field extension, and

we will wonder if the field extensions determined by two different roots of the same
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4 Introduction

polynomial are somehow similar. Perhaps, under the right additional hypotheses, they

are even isomorphic. In answering these questions, we will appreciate a group, the group

of automorphisms of a field extension, that has been visible for only the past two cen-

turies. The answers will also embrace an elegant correspondence between subsets of

algebraic numbers and subgroups of Galois groups, a correspondence used to great

effect by mathematicians today.

This text tells what is really only the first episode in the story of the algebraic numbers.

We will review in the first chapter some preliminaries, and in the second chapter we will

begin a close study of algebraic numbers. Moving into the third chapter, we will question

what relationships exist among the many algebraic numbers, the polynomials of which

they are roots, and the field extensions that they generate. The fourth chapter will show

you how to consider more than one algebraic number at the same time, developing quite

a bit of theory about isomorphisms, and then the fifth chapter will reveal the Galois

correspondence. Along the way, pay particular attention to exercises marked with an

asterisk, for they are referred to in the text, either beforehand or afterwards. Finally, for

the adventurous who seek mathematical applications of the glorious correspondence, we

offer several classical topics in the last chapter. Enjoy!
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chapter one

Preliminaries

This chapter briefly reviews some of the basic results and notation from a first course in

abstract algebra that we need in our exposition of algebraic numbers and Galois theory.

We also introduce a few functions from Maple and Mathematica that may assist the

reader in exploring some of the material.

In this text, N denotes the integers greater than 0, and, given a field K , K ∗ denotes the

multiplicative group of nonzero elements of K .

1. Polynomials, Polynomial Rings, Factorization, and Roots in C

Definition 1.1 (Polynomial, Polynomial Ring). Let K be a field. The polynomial ring K [X]

over K is the set of formal sums

{ n∑
i=0

ai Xi
∣∣∣ ai ∈ K , n ∈ N ∪ {0}, an = 0

}
∪ {0}.

Elements of K [X ] are called polynomials over K . Under the usual polynomial addition

and multiplication, K [X ] is a commutative ring. The polynomial 0 is the additive identity,

and the polynomial 1 is the multiplicative identity.

We usually denote polynomials by letters, but when we wish to indicate the underlying

variable, we parenthesize the variable and append the expression to the name, as in p(X ).

A useful notion of the size of a nonzero polynomial over a field K is its degree.
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6 Preliminaries

Definition 1.2 (Degree of a Polynomial). Let K be a field and p = p(X ) = ∑n
i=0 ai Xi a

nonzero polynomial with an = 0. The degree deg( p) is n, the greatest power of X with

nonzero coefficient in p.

The degree is therefore a function

deg: K [X ] \ {0} → N ∪ {0} = {0, 1, 2, . . . }

satisfying deg( f + g) ≤ max{deg( f ), deg(g)} and deg( f g) = deg( f ) + deg(g) for f, g ∈
K [X ].

The degree of a polynomial p is 0 if and only if it is a nonzero element of K ; hence

deg( p) = 0 ⇔ p ∈ K ∗ ⊂ K [X ]. We call such polynomials, together with the polynomial 0,

constants.

The analogy between polynomials and integers is one of the most fruitful in algebra,

and in the following definitions and propositions we proceed to develop this analogy.

Definition 1.3 (Polynomial Factor, Reducible Polynomial). Let K be a field and p ∈ K [X ]

a nonconstant polynomial. We say that p factors over K , or is reducible over K , if p = f g

for nonconstant polynomials f, g ∈ K [X ]. Otherwise, p is irreducible over K .

We may omit the indication “over K ” if the context makes its mention redundant. Note

that we are uninterested in the case in which p = f g with f or g an element of K since

every p ∈ K [X ] may be so expressed: p = (1/k)(kp) for any k ∈ K ∗. We may multiply a

nonzero polynomial p by an element of K in order to “normalize” it by changing the

coefficient of its highest-order term to 1, just as for any nonzero integer we may always

choose an element of {+1, −1} by which to multiply the integer in order that the result is

positive.

Definition 1.4 (Monic, Leading Coefficient). Let K be a field. A nonzero polynomial

0 = p = p (X ) =
n∑

i=0

ai Xi ∈ K [X ]

is monic if its leading coefficient an is 1.

As with integers, we may divide one polynomial by another to produce a unique quo-

tient and remainder.
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1. Polynomials, Polynomial Rings, Factorization, and Roots in C 7

Theorem 1.5 (Division Algorithm). Let K be a field and f, g ∈ K [X ] polynomials with

f = 0. Then we may constructively divide f into g so that there exist a unique quotient

polynomial q ∈ K [X ] and a unique remainder polynomial r ∈ K [X ] such that

• g = q f + r and

• either deg r < deg f or r = 0.

Proof. The algorithm follows by analogy the standard procedure for long division of

integers, where in place of a decomposition of an integer into a sum of powers of 10, with

coefficients ranging from 0 to 9, we decompose the polynomial into a sum of powers of

X , with coefficients in K .

First we give a procedure that produces a q and r in K [X ] satisfying g = q f + r . If g = 0,

then let q = 0 and r = 0. Otherwise, suppose

f =
deg f∑
i=0

fi Xi, fi ∈ K , g =
deg g∑
i=0

gi Xi, gi ∈ K .

If deg f > deg g, then let q = 0 and r = g, and we are done. Otherwise, we will find

q =
deg(g)−deg( f )∑

i=0

qi Xi

with the qi ∈ K determined, one at a time, as follows.

Let n = deg(g) − deg( f ), and set qn, the highest-order coefficient of q, to be the quotient

of the highest-order coefficients of g and f , so that

qn = gdeg g/ fdeg f .

Then the polynomials g and (qnXn) f agree in highest-order terms, and hence their

difference,

dn = g − (qnXn) f,

has degree no greater than deg(g) − 1. If n = 0, then deg dn < deg f and we may stop after

setting r = dn.

Otherwise, we begin an induction on the coefficients of q. At each step, we define

the coefficient qn−i in such a way that g − (qnXn + · · · + qn−i Xn−i) f has degree at most

deg(g) − (i + 1). Clearly we have established the base case i = 0. Now assume that the

induction is true for i < n.
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8 Preliminaries

Write dn−i as

dn−i =
deg(g)−(i+1)∑

j=0

dn−i, j X j, dn−i, j ∈ K

and set qn−(i+1) to be the quotient of certain coefficients of dn−i and f :

qn−(i+1) = dn−i,deg(g)−(i+1)/ fdeg f .

One checks that g and (qnXn + · · · + qn−(i+1) Xn−(i+1)) f have identical coefficients for the

terms with Xdeg(g), Xdeg(g)−1, . . . , Xdeg(g)−(i+1). As a result, the difference

dn−(i+1) = g −
(

n∑
j=n−(i+1)

qj X j

)
f

has degree no greater than deg(g) − (i + 2). Hence we have shown that the inductive

statement is true for i + 1. By the principle of mathematical induction, it is true for all

0 ≤ i ≤ n and we have defined a polynomial q.

By the induction property, g − q f has degree no greater than deg(g) − (n + 1) =
deg( f ) − 1. Letting r = g − q f , then, we have found a pair of polynomials q and r that

satisfy the conclusions of the theorem.

Now we show that the q and r we constructed are unique. Suppose that there exist

two pairs q, r ∈ K [X ] and q ′, r ′ ∈ K [X ] with

q f + r = g = q ′ f + r ′

and each of r, r ′ is either zero or of degree less than deg f . Then, subtracting the two

representations of g, we have that the zero polynomial is equal to (q − q ′) f + (r − r ′), or

that

(q − q ′) f = r ′ − r.

If (q − q ′) f is not the zero polynomial, then its degree is at least deg f ; however, if r ′ −
r is not zero, the degree of r ′ − r is less than deg f . Hence, if equality in (q − q ′) f =
r ′ − r is to hold, both sides must be the zero polynomial, which implies that r = r ′ and

q = q ′. �

Replacing the field K in the Division Algorithm with a larger field L (but keeping the

same polynomials f, g ∈ K [X ] ⊂ L[X ]) does not change the outcome of the algorithm.

However, the general question of whether or not a polynomial f ∈ K [X ] is reducible does
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1. Polynomials, Polynomial Rings, Factorization, and Roots in C 9

depend on the field L ⊃ K : if L is sufficiently large, a polynomial irreducible over K may

become reducible over L. For example, the polynomial X2 + 1 is irreducible over K = Q,

but over a field L containing i (for instance, L = C), X2 + 1 factors into X + i and X − i.

Just as with integers, we may define a greatest common divisor of two polynomials in

K [X ] and find this greatest common divisor by means of a Euclidean Algorithm.

Definition 1.6 (Greatest Common Divisor I). Let K be a field and f, g ∈ K [X ] nonzero

polynomials. A nonzero monic polynomial p ∈ K [X ] is the greatest common divisor

gcd( f, g), or GCD, of f and g if p is a factor of both f and g, and, moreover, whenever a

polynomial h ∈ K [X ] is a factor of both f and g, then h is a factor of p.

Theorem 1.7 (Euclidean Algorithm). Let K be a field and f, g ∈ K [X ] nonzero polyno-

mials. Then the greatest common divisor gcd( f, g) ∈ K [X ] of f and g is the result of the

following Euclidean Algorithm.

Let r0 = f and r1 = g ∈ K [X ], and set i = 0. Apply the Division Algorithm (Theo-

rem 1.5) repeatedly for successively greater i to find qi+2, ri+2 ∈ K [X ] such that ri =
ri+1qi+2 + ri+2, where deg ri+2 < deg ri+1, until ri+2 = 0. Let j be the first index such that

r j = 0.

Then if a is the leading coefficient of r j−1, then (1/a)r j−1 is the greatest common divisor

gcd( f, g) of f and g.

Working backwards, one may constructively express gcd( f, g) as a K [X ]-linear combi-

nation of f and g, i.e., there constructively exist z, w ∈ K [X ] such that gcd( f, g) = zf + wg.

Proof. It is an exercise (5.9) to show that the algorithm must terminate. We show first

that r j−1 is a common divisor of f and g, and then we show that every common divisor

of f and g divides r j−1. Adjusting the coefficient a of the highest-order term, we find that

(1/a)r j−1 is then a monic polynomial that is the greatest common divisor of f and g.

From the last equation,

r j−2 = r j−1qj + r j = r j−1qj,

we have that r j−1 divides r j−2. Since each rk, 0 ≤ k ≤ j − 2, is defined to be a combination

of rk+1 and rk+2, it follows by induction that r j−1 divides every rk, 0 ≤ k ≤ j − 2. But then

r j−1 divides r0 = f and r1 = g. Hence r j−1 is a common divisor of f and g.

Going the other direction, suppose that a polynomial h ∈ K [X ] is a divisor of f and

g. Then h divides r0 = f and r1 = g. Since each rk, 2 ≤ k ≤ j − 1, is the remainder upon
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10 Preliminaries

dividing rk−2 by rk−1, it follows by induction that h divides every rk, 0 ≤ k ≤ j − 1. But

then h divides r j−1.

It is an exercise (5.10) to show that gcd( f, g) may be expressed as a combination of

f and g. �

It is an exercise (5.4) to prove that replacing K by a larger field L in the Euclidean

Algorithm does not change its outcome.

Just as integers factor uniquely, up to a reordering of the factors, into a product of ±1

and a set of primes, polynomials similarly factor in a unique way.

Theorem 1.8 (K [X ] is a Unique Factorization Domain). Let K be a field. Then K [X ] is

a unique factorization domain. In other words, every nonzero element f ∈ K [X ] has a

factorization

f = k
n∏

i=1

fi, k ∈ K ∗, 0 = fi ∈ K [X ],

where for each i, deg( fi) ≥ 1 and fi is monic and irreducible. Moreover, any such fac-

torization of f is unique up to a reordering of the factors.

A proof of Theorem 1.8 based on the Euclidean Algorithm is an exercise (5.11).

The definition of a unique factorization domain is usually expressed more generally in

terms of associates and irreducibles. Recall that an integral domain is a commutative ring

with unity having no zero-divisors.

Definition 1.9 (Unique Factorization Domain). Let D be an integral domain. We say

that d ∈ D with d = 0 is irreducible if d is not a unit (i.e., is not invertible) and if d = ab

for a, b ∈ D, then either a or b is a unit. Two elements a, b of D are called associates if

a = ub for u a unit of D. We say that D is a unique factorization domain if (a) every

nonzero element of D may be expressed as a product of irreducibles in D and (b) for each

d ∈ D, all factorizations of d are equivalent by allowing permutation of the elements in

the factorization and replacement of irreducibles by associates.

Knowing Theorem 1.8, we may define the greatest common divisor in an alternate

fashion.
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