This highly illustrated monograph provides a comprehensive treatment of the study of the structure and function of proteins, nucleic acids and viruses using synchrotron radiation and crystallography.

Synchrotron radiation is intense, polychromatic and finely collimated, and is highly effective for probing the structure of macromolecules. This is a fast-expanding field, and this timely monograph gives a complete introduction to the technique and its uses. Beginning with chapters on the fundamentals of macromolecular crystallography and macromolecular structure, the book goes on to review the sources and properties of synchrotron radiation, instrumentation and data collection. There are chapters on the Laue method, on diffuse X-ray scattering and on variable wavelength dispersion methods. The book concludes with a description and survey of applications including studies at high resolution, the use of small crystals, the study of large unit cells, and time-resolved crystallography (particularly of enzymes). Appendices are provided which present essential information for the synchrotron user as well as information about synchrotron facilities currently available and planned. A detailed bibliography and reference section completes the volume. Many tables, diagrams and photographs are included.

This book is aimed at crystallographers, physicists, chemists and biochemists in universities, research institutes and in the pharmaceutical industry.
MACROMOLECULAR CRYSTALLOGRAPHY WITH SYNCHROTRON RADIATION
Macromolecular crystallography with synchrotron radiation

JOHN R. HELLIWELL
Professor of Structural Chemistry
at the
University of Manchester
and
Joint Appointee
at
SERC, Daresbury Laboratory
To

my Mother and the memory of my Father
and

Madeleine, James, Nicholas and Katherine
Contents

Preface xiii
Acknowledgements xvii
A note on units xix

1 Introduction 1
 1.1 Why do we want to know a macromolecular structure? 3
 1.2 The importance of SR in macromolecular crystallography 5

2 Fundamentals of macromolecular crystallography 11
 2.1 Crystallisation, crystals and crystal perfection, symmetry 11
 2.2 Geometry: Bragg’s Law, the Laue equations, the reciprocal lattice and the Ewald sphere construction 36
 2.3 Structure factor and electron density equations 38
 2.4 Phase determination 38
 2.5 The difference Fourier technique in protein crystallography 48
 2.6 Refinement of the structures of biological macromolecules 49

3 Fundamentals of macromolecular structure 52
 3.1 Principles of protein structure 54
 3.2 Principles of nucleic acid structure 81
 3.3 Multimacromolecular complexes 87
 3.4 Applications to medicine and industry: drug design and protein engineering 91

4 Sources and properties of SR 94
 4.1 Radiated power (bending magnet) 96
 4.2 Angular distribution 97
 4.3 Spectral distribution 99
 4.4 Polarisation properties 101
 4.5 The machine, beam line front ends, beam position monitoring and stability 102
 4.6 Time structure 107
 4.7 Beam current and lifetime 108
 4.8 Source emittance 109

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9 Flux, intensity, brightness and brilliance</td>
</tr>
<tr>
<td>4.10 Insertion devices (wigglers and undulators) and radiation properties</td>
</tr>
<tr>
<td>4.11 Criteria for the choice and design of synchrotron X-ray sources for macromolecular crystallography</td>
</tr>
<tr>
<td>5 SR instrumentation</td>
</tr>
<tr>
<td>5.1 Definition of requirements</td>
</tr>
<tr>
<td>5.2 Monochromator systems</td>
</tr>
<tr>
<td>5.3 Mirrors</td>
</tr>
<tr>
<td>5.4 Detectors</td>
</tr>
<tr>
<td>5.5 General instrumentation</td>
</tr>
<tr>
<td>5.6 Gazetteer of SR workstations for macromolecular crystallography</td>
</tr>
<tr>
<td>6 Monochromatic data collection</td>
</tr>
<tr>
<td>6.1 Fundamentals</td>
</tr>
<tr>
<td>6.2 Instrument smearing effects</td>
</tr>
<tr>
<td>6.3 Lorentz and polarisation factors</td>
</tr>
<tr>
<td>6.4 Absorption of X-rays</td>
</tr>
<tr>
<td>6.5 Radiation damage and sample heating</td>
</tr>
<tr>
<td>6.6 The use of short wavelengths in data collection</td>
</tr>
<tr>
<td>6.7 Possible uses of very short and ultra-short wavelengths in macromolecular crystallography with ultra-radiation sensitive samples</td>
</tr>
<tr>
<td>7 The synchrotron Laue method</td>
</tr>
<tr>
<td>7.1 Historical perspective</td>
</tr>
<tr>
<td>7.2 Diffraction geometry</td>
</tr>
<tr>
<td>7.3 Reflection bandwidth and spot size</td>
</tr>
<tr>
<td>7.4 Analysis of Laue data and wavelength normalisation</td>
</tr>
<tr>
<td>7.5 Experimental parameters and instrumentation</td>
</tr>
<tr>
<td>7.6 Results establishing the credentials of the method</td>
</tr>
<tr>
<td>8 Diffuse X-ray scattering from macromolecular crystals</td>
</tr>
<tr>
<td>8.1 Neutron studies of diffuse scattering</td>
</tr>
<tr>
<td>8.2 Examples of diffuse diffraction patterns in monochromatic geometry</td>
</tr>
<tr>
<td>8.3 Contributions to the 'diffuse diffraction ring'</td>
</tr>
<tr>
<td>8.4 Acoustic scattering</td>
</tr>
<tr>
<td>8.5 Discussion and concluding remarks</td>
</tr>
<tr>
<td>9 Variable wavelength anomalous dispersion methods and applications</td>
</tr>
<tr>
<td>9.1 The dispersion coefficients, f" and f'</td>
</tr>
</tbody>
</table>
Contents

9.2 The optimal wavelengths for phase determination 353
9.3 Trigonometric relationships of the structure amplitude as a function of wavelength 356
9.4 Separation of anomalously and non-anomalously scattering contributions: MAD and Karle phasing analysis 358
9.5 The use of Bijvoet ratios rather than differences 362
9.6 The effect of thermal vibration and molecular disorder 362
9.7 Results illustrating the scope of the method: variable single wavelength and multi-wavelength methods 365
9.8 Utilisation of modified proteins and genetic engineering 376
9.9 An assessment of potential sources of error in variable wavelength anomalous dispersion methods 378
9.10 Concluding remark 382

10 More applications 383
10.1 Early history and general introduction 383
10.2 Reduction of radiation damage: high resolution, weak diffraction and crystal assessment 386
10.3 Small crystals 410
10.4 Time resolved macromolecular crystallography 414
10.5 Large unit cells (virus and ribosome studies) 431

11 Conclusions and future possibilities 454

Appendix 1 Summary of various monochromatic diffraction geometries 457
A1.1 Monochromatic still exposure 462
A1.2 Rotation/oscillation geometry 463
A1.3 Weissenberg geometry 474
A1.4 Precession geometry 476
A1.5 Diffractometry 480

Appendix 2 Conventional X-ray sources 485
A2.1 The spectrum from a conventional X-ray source 485
A2.2 Data collection on a conventional X-ray source with an area detector (including tabulated cases) and relationship to synchrotron radiation 486

Appendix 3 Fundamental data 496
A3.1 Properties of the elements 497
A3.2 Anomalous dispersion corrections 501
xii

Contents

A3.3 Fundamental constants 526
A3.4 Cell parameters of silicon and germanium monochromator crystals 526

Appendix 4

Extended X-ray absorption fine structure (EXAFS) 528
A4.1 Introduction 528
A4.2 Phenomenological description 529
A4.3 Data analysis 530
A4.4 Multiple scattering 533
A4.5 Concluding remarks 533

Appendix 5

Synchrotron X-radiation laboratories: addresses and contact names (given in alphabetical order of country) 534

Bibliography 536
References 542
Glossary 583
Index 587
Preface

The scope of this book covers the use of synchrotron radiation in the X-ray analysis of single crystals of proteins, nucleic acids and viruses. The impact of this new X-ray source with its polychromatic nature and associated high intensity and fine collimation has brought important advances in the field of macromolecular crystallography. It has extended structure determinations to higher resolution, allowed use of smaller samples and larger, more complex, unit cells. Several new methods have come to the fore and some old methods have been revived. Firstly, the Laue method is being developed and used now for quantitative, time resolved analysis of structure. Secondly, variable wavelength methods are being developed and used for phase determination for metallo-proteins or derivatised proteins. Thirdly, the diffuse scattering is being measured more easily and procedures for analysing it are being developed in order to study molecular flexibility; hopefully its use will be increasingly widespread but at present it is the least developed of these three methods. The availability of the synchrotron is a very modern development but it has reopened fundamental questions of which crystallographic method to use. It is interesting to wonder what von Laue, W. H. and W. L. Bragg and the other early pioneers would have made of the synchrotron instead of starting with the X-ray emission tube. Certainly the Braggs were advocates of the monochromatic rotating crystal method. Wyckoff and Pauling used the Laue method although the weakness of the Bremsstrahlung continuum argued against it. With these difficulties it was fine then to be dismissive, as the Braggs were, of this method. The Braggs raised other fundamental objections to Laue geometry. These were the ‘multiplicity problem’, the ‘wavelength normalisation problem’ and the problem of determining absolute cell parameters from Laue data. Only the last of these three is limiting although progress is being made even there.

Variable wavelength approaches to phase determination using anomalous dispersion were discussed in the late 1950s by Okaya and Pepinsky as well as Mitchell, in the 1960s by Herzenberg and Lau and Karle and pioneered by Hoppe and Jakubowski. Technically these methods and others have only become really feasible with the synchrotron.
Preface

Diffuse scattering was pioneered as a technique by Lonsdale and others. One imagines that these investigators would have been delighted to see the diversity of the diffuse scattering in the single crystal diffraction patterns recorded from macromolecular crystals at the synchrotron. As station master for the two instruments for protein crystallography at the SERC Synchrotron Radiation Source in Daresbury, England from 1980 to 1985 I saw hundreds of samples and their diffraction patterns during routine data collection runs. The uniqueness and diversity of the diffuse scattering was most striking.

This book will, I hope, serve as a source of information on the properties of synchrotron radiation from storage rings, diffraction instrumentation (such as optics and detectors) as well as diffraction methods and applications. To help the newcomer to the field or to assist experts from other disciplines, there are two chapters covering the fundamentals. The basics of macromolecular crystallography are described. Also, the principles of macromolecular structure are covered and various aspects of biological functions are discussed including oxygen transport and storage, enzyme catalysis, the ribosome and protein synthesis and virus structure. Applications in biotechnology such as protein engineering and drug design are mentioned. There is a wealth of results where synchrotron radiation has been critical to a given structure determination or definition of molecular function. The role of synchrotron radiation in furthering particular crystallographic analyses is therefore addressed and tabulated in detail.

The underlying importance of structure in defining function has meant that a wide range of structure determining methods have been developed in the last few decades. These other methods, such as extended X-ray absorption fine structure (EXAFS) spectroscopy (see Appendix 4), fibre diffraction and nuclear magnetic resonance (NMR), have been brought to bear in various studies as complementary tools to X-ray crystallography. In the Bibliography therefore I have given references to texts on these other techniques. However, macromolecular crystallography is the main method for precisely determining three-dimensional molecular structure over a huge range of molecular weights (up to several million in the case of viruses).

Synchrotron radiation is used when a conventional, home, X-ray source with electronic or image plate area detector proves inadequate. This is not to belittle the X-ray tube or rotating anode. On the contrary, I have also endeavoured to develop conventional X-ray source data collection capabilities based on area detectors. It is fair to say that a synchro-
Preface

tron radiation source is a national and international resource for tackling the most technically demanding problems and an investigator may turn to it when necessary. The usefulness of synchrotron radiation in this research has been recognised by pharmaceutical companies who are now participating actively at synchrotron radiation facilities in the building and use of instruments dedicated to macromolecular crystallography.

Manchester, UK
January, 1991

John R. Helliwell
Acknowledgements

A variety of people have kindly offered comments and criticisms on drafts of sections of the manuscript of this book. I am grateful therefore to D. W. J. Cruickshank, M. Hellwell, W. N. Hunter, J. Raftrey, R. Beddoes, I. Haneef, A. W. Thompson, S. Harrop, M. M. Harding, K. Moffat, S. S. Hasnain, N. M. Allinson, D. J. Thompson, R. P. Walker, S. A. Rule, T. Higashi, I. D. Glover, A. Liljas, R. Liddington, S. Popov and D. S. Moss for their help which has undoubtedly improved it. I am particularly grateful to Dr C. Nave for his critical reading of the final copy. Any errors that may be are, of course, my own responsibility.

Dr S. A. Rule and Mr S. Harrop assisted in the preparation of the tables in chapters 6, 9 and 10 as well as appendix A2. Professor J. Drenth kindly gave permission for use of figures 2.2–2.7. Dr R. P. Walker kindly provided table 4.2 and figure 4.18(b). Dr S. Sasaki kindly provided data included in appendices A3.1 and A3.2. Professor M. Hart was very helpful with appendix A3.4. Dr J. Raftrey helped with the preparation of figures 3.8, 3.9, 3.10 and 3.12 using coordinates deposited in the Protein Data Bank; specific acknowledgements are given in the caption to each figure.

I must also thank Rufus Neal of Cambridge University Press who took me through the mechanics of publishing a book and also Mrs M. Storey of CUP who, as sub-editor, considerably improved the submitted draft.

Mrs Yvonne Cook was tireless in the typing of the manuscript and great thanks must go to her. Claire Murphy helped in the proof-reading. Miss Julie Holt typed some of the tables and provided secretarial help which was greatly appreciated. John Rowcroft and Alan Gebbie are thanked for their draughtsmanship.

I would like to express my gratitude to Ossett School and the Universities of York, Oxford, Keele, Manchester and Alabama (in Birmingham, USA) as well as the Science and Engineering Research Council’s (SERC) Daresbury Laboratory for providing such splendid environments in which to study and work.

Finally, I would like to thank my wife, Madeleine Hellwell, and family for their support.
A note on units

Currently accepted units of measurement are used in this book. This generally means the SI system. An exception is the use of ångstrom (Å) rather than nanometre (nm). Although the latter is the SI standard the Å is the unit in common use. Inevitably therefore the Å is adopted here also. Indeed this is a reasonable unit of length because a carbon–hydrogen bond length is of the order of 1 Å (10⁻¹⁰ m).