
1

Propositional logic

The aim of logic in computer science is to develop languages to model the
situations we encounter as computer science professionals, in such a way
that we can reason about them formally. Reasoning about situations means
constructing arguments about them; we want to do this formally, so that
the arguments are valid and can be defended rigorously, or executed on a
machine.

Consider the following argument:

Example 1.1 If the train arrives late and there are no taxis at the station,
then John is late for his meeting. John is not late for his meeting. The train
did arrive late. Therefore, there were taxis at the station.

Intuitively, the argument is valid, since if we put the first sentence and
the third sentence together, they tell us that if there are no taxis, then John
will be late. The second sentence tells us that he was not late, so it must be
the case that there were taxis.

Much of this book will be concerned with arguments that have this struc-
ture, namely, that consist of a number of sentences followed by the word
‘therefore’ and then another sentence. The argument is valid if the sentence
after the ‘therefore’ logically follows from the sentences before it. Exactly
what we mean by ‘follows from’ is the subject of this chapter and the next
one.

Consider another example:

Example 1.2 If it is raining and Jane does not have her umbrella with her,
then she will get wet. Jane is not wet. It is raining. Therefore, Jane has her
umbrella with her.

This is also a valid argument. Closer examination reveals that it actually
has the same structure as the argument of the previous example! All we have

1

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-54310-1 - Logic in Computer Science: Modelling and Reasoning about Systems
Michael Huth and Mark Ryan
Excerpt
More information

http://www.cambridge.org/9780521543101
http://www.cambridge.org
http://www.cambridge.org


2 1 Propositional logic

done is substituted some sentence fragments for others:

Example 1.1 Example 1.2
the train is late it is raining
there are taxis at the station Jane has her umbrella with her
John is late for his meeting Jane gets wet.

The argument in each example could be stated without talking about trains
and rain, as follows:

If p and not q, then r. Not r. p. Therefore, q.

In developing logics, we are not concerned with what the sentences really
mean, but only in their logical structure. Of course, when we apply such
reasoning, as done above, such meaning will be of great interest.

1.1 Declarative sentences

In order to make arguments rigorous, we need to develop a language in which
we can express sentences in such a way that brings out their logical structure.
The language we begin with is the language of propositional logic. It is based
on propositions, or declarative sentences which one can, in principle, argue
as being true or false. Examples of declarative sentences are:

(1) The sum of the numbers 3 and 5 equals 8.
(2) Jane reacted violently to Jack’s accusations.
(3) Every even natural number >2 is the sum of two prime numbers.
(4) All Martians like pepperoni on their pizza.
(5) Albert Camus était un écrivain français.
(6) Die Würde des Menschen ist unantastbar.

These sentences are all declarative, because they are in principle capable of
being declared ‘true’, or ‘false’. Sentence (1) can be tested by appealing to
basic facts about arithmetic (and by tacitly assuming an Arabic, decimal
representation of natural numbers). Sentence (2) is a bit more problematic.
In order to give it a truth value, we need to know who Jane and Jack are
and perhaps to have a reliable account from someone who witnessed the
situation described. In principle, e.g., if we had been at the scene, we feel
that we would have been able to detect Jane’s violent reaction, provided
that it indeed occurred in that way. Sentence (3), known as Goldbach’s
conjecture, seems straightforward on the face of it. Clearly, a fact about
all even numbers >2 is either true or false. But to this day nobody knows
whether sentence (3) expresses a truth or not. It is even not clear whether
this could be shown by some finite means, even if it were true. However, in

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-54310-1 - Logic in Computer Science: Modelling and Reasoning about Systems
Michael Huth and Mark Ryan
Excerpt
More information

http://www.cambridge.org/9780521543101
http://www.cambridge.org
http://www.cambridge.org


1.1 Declarative sentences 3

this text we will be content with sentences as soon as they can, in principle,
attain some truth value regardless of whether this truth value reflects the
actual state of affairs suggested by the sentence in question. Sentence (4)
seems a bit silly, although we could say that if Martians exist and eat pizza,
then all of them will either like pepperoni on it or not. (We have to introduce
predicate logic in Chapter 2 to see that this sentence is also declarative if no
Martians exist; it is then true.) Again, for the purposes of this text sentence
(4) will do. Et alors, qu’est-ce qu’on pense des phrases (5) et (6)? Sentences
(5) and (6) are fine if you happen to read French and German a bit. Thus,
declarative statements can be made in any natural, or artificial, language.

The kind of sentences we won’t consider here are non-declarative ones,
like

� Could you please pass me the salt?
� Ready, steady, go!
� May fortune come your way.

Primarily, we are interested in precise declarative sentences, or statements
about the behaviour of computer systems, or programs. Not only do we
want to specify such statements but we also want to check whether a given
program, or system, fulfils a specification at hand. Thus, we need to develop
a calculus of reasoning which allows us to draw conclusions from given as-
sumptions, like initialised variables, which are reliable in the sense that they
preserve truth: if all our assumptions are true, then our conclusion ought to
be true as well. A much more difficult question is whether, given any true
property of a computer program, we can find an argument in our calculus
that has this property as its conclusion. The declarative sentence (3) above
might illuminate the problematic aspect of such questions in the context of
number theory.

The logics we intend to design are symbolic in nature. We translate a cer-
tain sufficiently large subset of all English declarative sentences into strings
of symbols. This gives us a compressed but still complete encoding of declar-
ative sentences and allows us to concentrate on the mere mechanics of our
argumentation. This is important since specifications of systems or software
are sequences of such declarative sentences. It further opens up the possibil-
ity of automatic manipulation of such specifications, a job that computers
just love to do1. Our strategy is to consider certain declarative sentences as

1 There is a certain, slightly bitter, circularity in such endeavours: in proving that a certain
computer program P satisfies a given property, we might let some other computer program Q try
to find a proof that P satisfies the property; but who guarantees us that Q satisfies the property
of producing only correct proofs? We seem to run into an infinite regress.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-54310-1 - Logic in Computer Science: Modelling and Reasoning about Systems
Michael Huth and Mark Ryan
Excerpt
More information

http://www.cambridge.org/9780521543101
http://www.cambridge.org
http://www.cambridge.org


4 1 Propositional logic

being atomic, or indecomposable, like the sentence

‘The number 5 is even.’

We assign certain distinct symbols p, q, r, . . ., or sometimes p1, p2, p3, . . . to
each of these atomic sentences and we can then code up more complex
sentences in a compositional way. For example, given the atomic sentences

p: ‘I won the lottery last week.’
q: ‘I purchased a lottery ticket.’
r: ‘I won last week’s sweepstakes.’

we can form more complex sentences according to the rules below:

¬: The negation of p is denoted by ¬p and expresses ‘I did not win the lottery
last week,’ or equivalently ‘It is not true that I won the lottery last week.’

∨: Given p and r we may wish to state that at least one of them is true: ‘I won the
lottery last week, or I won last week’s sweepstakes;’ we denote this declarative
sentence by p ∨ r and call it the disjunction of p and r2 .

∧: Dually, the formula p ∧ r denotes the rather fortunate conjunction of p and r:
‘Last week I won the lottery and the sweepstakes.’

→: Last, but definitely not least, the sentence ‘If I won the lottery last week,
then I purchased a lottery ticket.’ expresses an implication between p and q,
suggesting that q is a logical consequence of p. We write p → q for that3. We
call p the assumption of p → q and q its conclusion.

Of course, we are entitled to use these rules of constructing propositions
repeatedly. For example, we are now in a position to form the proposition

p ∧ q → ¬r ∨ q

which means that ‘if p and q then not r or q’. You might have noticed a
potential ambiguity in this reading. One could have argued that this sentence
has the structure ‘p is the case and if q then . . . ’ A computer would require
the insertion of brackets, as in

(p ∧ q) → ((¬r) ∨ q)

2 Its meaning should not be confused with the often implicit meaning of or in natural language
discourse as either . . . or. In this text or always means at least one of them and should not be
confounded with exclusive or which states that exactly one of the two statements holds.

3 The natural language meaning of ‘if . . . then . . . ’ often implicitly assumes a causal role of
the assumption somehow enabling its conclusion. The logical meaning of implication is a bit
different, though, in the sense that it states the preservation of truth which might happen
without any causal relationship. For example, ‘If all birds can fly, then Bob Dole was never
president of the United States of America.’ is a true statement, but there is no known causal
connection between the flying skills of penguins and effective campaigning.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-54310-1 - Logic in Computer Science: Modelling and Reasoning about Systems
Michael Huth and Mark Ryan
Excerpt
More information

http://www.cambridge.org/9780521543101
http://www.cambridge.org
http://www.cambridge.org


1.2 Natural deduction 5

to disambiguate this assertion. However, we humans get annoyed by a pro-
liferation of such brackets which is why we adopt certain conventions about
the binding priorities of these symbols.

Convention 1.3 ¬ binds more tightly than ∨ and ∧, and the latter two
bind more tightly than →. Implication → is right-associative: expressions of
the form p → q → r denote p → (q → r).

1.2 Natural deduction

How do we go about constructing a calculus for reasoning about proposi-
tions, so that we can establish the validity of Examples 1.1 and 1.2? Clearly,
we would like to have a set of rules each of which allows us to draw a con-
clusion given a certain arrangement of premises.

In natural deduction, we have such a collection of proof rules. They al-
low us to infer formulas from other formulas. By applying these rules in
succession, we may infer a conclusion from a set of premises.

Let’s see how this works. Suppose we have a set of formulas4 φ1, φ2,
φ3, . . . , φn, which we will call premises, and another formula, ψ, which we
will call a conclusion. By applying proof rules to the premises, we hope
to get some more formulas, and by applying more proof rules to those, to
eventually obtain the conclusion. This intention we denote by

φ1, φ2, . . . , φn � ψ.

This expression is called a sequent ; it is valid if a proof for it can be found.
The sequent for Examples 1.1 and 1.2 is p ∧ ¬q → r,¬r, p � q. Construct-
ing such a proof is a creative exercise, a bit like programming. It is not
necessarily obvious which rules to apply, and in what order, to obtain the
desired conclusion. Additionally, our proof rules should be carefully chosen;
otherwise, we might be able to ‘prove’ invalid patterns of argumentation. For

4 It is traditional in logic to use Greek letters. Lower-case letters are used to stand for formulas
and upper-case letters are used for sets of formulas. Here are some of the more commonly used
Greek letters, together with their pronunciation:

Lower-case
φ phi
ψ psi
χ chi
η eta
α alpha
β beta
γ gamma

Upper-case
Φ Phi
Ψ Psi
Γ Gamma
∆ Delta

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-54310-1 - Logic in Computer Science: Modelling and Reasoning about Systems
Michael Huth and Mark Ryan
Excerpt
More information

http://www.cambridge.org/9780521543101
http://www.cambridge.org
http://www.cambridge.org


6 1 Propositional logic

example, we expect that we won’t be able to show the sequent p, q � p ∧ ¬q.
For example, if p stands for ‘Gold is a metal.’ and q for ‘Silver is a metal,’
then knowing these two facts should not allow us to infer that ‘Gold is a
metal whereas silver isn’t.’

Let’s now look at our proof rules. We present about fifteen of them in
total; we will go through them in turn and then summarise at the end of
this section.

1.2.1 Rules for natural deduction

The rules for conjunction Our first rule is called the rule for conjunc-
tion (∧): and-introduction. It allows us to conclude φ ∧ ψ, given that we
have already concluded φ and ψ separately. We write this rule as

φ ψ

φ ∧ ψ
∧i.

Above the line are the two premises of the rule. Below the line goes the
conclusion. (It might not yet be the final conclusion of our argument;
we might have to apply more rules to get there.) To the right of the line,
we write the name of the rule; ∧i is read ‘and-introduction’. Notice that we
have introduced a ∧ (in the conclusion) where there was none before (in the
premises).

For each of the connectives, there is one or more rules to introduce it and
one or more rules to eliminate it. The rules for and-elimination are these
two:

φ ∧ ψ

φ
∧e1

φ ∧ ψ

ψ
∧e2 . (1.1)

The rule ∧e1 says: if you have a proof of φ ∧ ψ, then by applying this rule
you can get a proof of φ. The rule ∧e2 says the same thing, but allows
you to conclude ψ instead. Observe the dependences of these rules: in the
first rule of (1.1), the conclusion φ has to match the first conjunct of the
premise, whereas the exact nature of the second conjunct ψ is irrelevant.
In the second rule it is just the other way around: the conclusion ψ has to
match the second conjunct ψ and φ can be any formula. It is important
to engage in this kind of pattern matching before the application of proof
rules.

Example 1.4 Let’s use these rules to prove that p ∧ q, r |− q ∧ r is valid.
We start by writing down the premises; then we leave a gap and write the

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-54310-1 - Logic in Computer Science: Modelling and Reasoning about Systems
Michael Huth and Mark Ryan
Excerpt
More information

http://www.cambridge.org/9780521543101
http://www.cambridge.org
http://www.cambridge.org


1.2 Natural deduction 7

conclusion:

p ∧ q

r

q ∧ r

The task of constructing the proof is to fill the gap between the premises
and the conclusion by applying a suitable sequence of proof rules. In this
case, we apply ∧e2 to the first premise, giving us q. Then we apply ∧i to this
q and to the second premise, r, giving us q ∧ r. That’s it! We also usually
number all the lines, and write in the justification for each line, producing
this:

1 p ∧ q premise

2 r premise

3 q ∧e2 1

4 q ∧ r ∧i 3, 2

Demonstrate to yourself that you’ve understood this by trying to show on
your own that (p ∧ q) ∧ r, s ∧ t |− q ∧ s is valid. Notice that the φ and ψ can
be instantiated not just to atomic sentences, like p and q in the example we
just gave, but also to compound sentences. Thus, from (p ∧ q) ∧ r we can
deduce p ∧ q by applying ∧e1, instantiating φ to p ∧ q and ψ to r.

If we applied these proof rules literally, then the proof above would actu-
ally be a tree with root q ∧ r and leaves p ∧ q and r, like this:

p ∧ q
∧e2

q r
∧i

q ∧ r

However, we flattened this tree into a linear presentation which necessitates
the use of pointers as seen in lines 3 and 4 above. These pointers allow
us to recreate the actual proof tree. Throughout this text, we will use the
flattened version of presenting proofs. That way you have to concentrate only
on finding a proof, not on how to fit a growing tree onto a sheet of paper.

If a sequent is valid, there may be many different ways of proving it. So if
you compare your solution to these exercises with those of others, they need
not coincide. The important thing to realise, though, is that any putative
proof can be checked for correctness by checking each individual line, starting
at the top, for the valid application of its proof rule.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-54310-1 - Logic in Computer Science: Modelling and Reasoning about Systems
Michael Huth and Mark Ryan
Excerpt
More information

http://www.cambridge.org/9780521543101
http://www.cambridge.org
http://www.cambridge.org


8 1 Propositional logic

The rules of double negation Intuitively, there is no difference be-
tween a formula φ and its double negation ¬¬φ, which expresses no more
and nothing less than φ itself. The sentence

‘It is not true that it does not rain.’

is just a more contrived way of saying

‘It rains.’

Conversely, knowing ‘It rains,’ we are free to state this fact in this more
complicated manner if we wish. Thus, we obtain rules of elimination and
introduction for double negation:

¬¬φ

φ
¬¬e

φ

¬¬φ
¬¬i.

(There are rules for single negation on its own, too, which we will see later.)

Example 1.5 The proof of the sequent p,¬¬(q ∧ r) � ¬¬p ∧ r below uses
most of the proof rules discussed so far:

1 p premise

2 ¬¬(q ∧ r) premise

3 ¬¬p ¬¬i 1

4 q ∧ r ¬¬e 2

5 r ∧e2 4

6 ¬¬p ∧ r ∧i 3, 5

Example 1.6 We now prove the sequent (p ∧ q) ∧ r, s ∧ t |− q ∧ s which
you were invited to prove by yourself in the last section. Please compare
the proof below with your solution:

1 (p ∧ q) ∧ r premise

2 s ∧ t premise

3 p ∧ q ∧e1 1

4 q ∧e2 3

5 s ∧e1 2

6 q ∧ s ∧i 4, 5

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-54310-1 - Logic in Computer Science: Modelling and Reasoning about Systems
Michael Huth and Mark Ryan
Excerpt
More information

http://www.cambridge.org/9780521543101
http://www.cambridge.org
http://www.cambridge.org


1.2 Natural deduction 9

The rule for eliminating implication There is one rule to introduce
→ and one to eliminate it. The latter is one of the best known rules of
propositional logic and is often referred to by its Latin name modus ponens.
We will usually call it by its modern name, implies-elimination (sometimes
also referred to as arrow-elimination). This rule states that, given φ and
knowing that φ implies ψ, we may rightfully conclude ψ. In our calculus, we
write this as

φ φ → ψ

ψ
→e.

Let us justify this rule by spelling out instances of some declarative sen-
tences p and q. Suppose that

p : It rained.
p → q : If it rained, then the street is wet.

so q is just ‘The street is wet.’ Now, if we know that it rained and if we
know that the street is wet in the case that it rained, then we may combine
these two pieces of information to conclude that the street is indeed wet.
Thus, the justification of the →e rule is a mere application of common sense.
Another example from programming is:

p : The value of the program’s input is an integer.
p → q : If the program’s input is an integer, then the program outputs

a boolean.

Again, we may put all this together to conclude that our program outputs
a boolean value if supplied with an integer input. However, it is important
to realise that the presence of p is absolutely essential for the inference
to happen. For example, our program might well satisfy p → q, but if it
doesn’t satisfy p – e.g. if its input is a surname – then we will not be able to
derive q.

As we saw before, the formal parameters φ and the ψ for →e can be
instantiated to any sentence, including compound ones:

1 ¬p ∧ q premise

2 ¬p ∧ q → r ∨ ¬p premise

3 r ∨ ¬p →e 2, 1

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-54310-1 - Logic in Computer Science: Modelling and Reasoning about Systems
Michael Huth and Mark Ryan
Excerpt
More information

http://www.cambridge.org/9780521543101
http://www.cambridge.org
http://www.cambridge.org


10 1 Propositional logic

Of course, we may use any of these rules as often as we wish. For example,
given p, p → q and p → (q → r), we may infer r:

1 p → (q → r) premise

2 p → q premise

3 p premise

4 q → r →e 1, 3

5 q →e 2, 3

6 r →e 4, 5

Before turning to implies-introduction, let’s look at a hybrid rule which
has the Latin name modus tollens. It is like the →e rule in that it eliminates
an implication. Suppose that p → q and ¬q are the case. Then, if p holds
we can use →e to conclude that q holds. Thus, we then have that q and ¬q

hold, which is impossible. Therefore, we may infer that p must be false. But
this can only mean that ¬p is true. We summarise this reasoning into the
rule modus tollens, or MT for short:5

φ → ψ ¬ψ

¬φ
MT.

Again, let us see an example of this rule in the natural language setting:
‘If Abraham Lincoln was Ethiopian, then he was African. Abraham
Lincoln was not African; therefore he was not Ethiopian.’

Example 1.7 In the following proof of

p → (q → r), p, ¬r � ¬q

we use several of the rules introduced so far:

1 p → (q → r) premise

2 p premise

3 ¬r premise

4 q → r →e 1, 2

5 ¬q MT 4, 3

5 We will be able to derive this rule from other ones later on, but we introduce it here because it
allows us already to do some pretty slick proofs. You may think of this rule as one on a higher
level insofar as it does not mention the lower-level rules upon which it depends.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-54310-1 - Logic in Computer Science: Modelling and Reasoning about Systems
Michael Huth and Mark Ryan
Excerpt
More information

http://www.cambridge.org/9780521543101
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9780521543101: 


