


ECOLOGY OF WOODLANDS AND FORESTS Description, Dynamics and Diversity

Taking a functional rather than an ecosystem or a utilitarian approach, Thomas and Packham provide a concise account of the structure of woodlands and forests. Using examples from around the world – from polar treelines to savannas to tropical rain forests – the authors explain the structure of the soil and the hidden world of the roots; how the main groups of organisms that live within them interact both positively and negatively. There is particular emphasis on woodland and forest processes, especially those involving the flow and cycling of nutrients, as well as the dynamics of wooded areas, considering how and why they have changed through geological time and continue to do so. This clear, non-technical text will be of interest to undergraduates, foresters, ecologists and land managers.

PETER A. THOMAS is senior lecturer in environmental science at Keele University, UK, where his teaching encompasses a wide range of tree and woodland related topics including tree design and biomechanics, tree and woodland ecology and woodland management. His research interests focus on tree ecology, dendrochronology and forest fires. He is the author of *Trees: Their Natural History* published by Cambridge University Press.

JOHN R. PACKHAM is Emeritus Professor of Ecology at the University of Wolverhampton, where he headed the Woodland Research Group for many years. He has special interests in forestry, was a founder member of the Continuous Cover Forestry Group (CCFG) and has worked extensively in English and Scandinavian forests. His research is particularly concerned with virgin forests, the ecology of the woodland field layer, and the establishment of attractive and diverse communities in new woodlands. Executive editor of *The Ecological Flora of the Shropshire Region* (1985), he was the first author of two major books on woodland and forest ecology and one on coastal ecology, and an organizing editor of *Ecology and Geomorphology of Coastal Shingle* (2001).

Forest type African elephant *Loxodonta cyclotis* feeding on acacia canopy. (Formerly regarded as a subspecies of the African elephant *Loxodonta africana*, the forest elephant is now considered a separate species.)

ECOLOGY OF WOODLANDS AND FORESTS

Description, Dynamics and Diversity

PETER A. THOMAS and JOHN R. PACKHAM

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo
Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

 $www. cambridge.org\\ Information on this title: www. cambridge.org/9780521834520$

© P. A. Thomas and J. R. Packham 2007

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2007

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-83452-0 hardback ISBN 978-0-521-54231-9 paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To our wives, Jody and Mary, who have supported our work so thoroughly. Also to those planting the forests of the future and conserving those of the present.

Epigraph

For ye shall go out with joy, and be led forth with peace: the mountains and the hills shall break forth before you into singing, and all the trees of the field shall clap their hands.

(Isaiah 55, v.12)

Contents

	Preface		
	Acknowledgements		xiii
	Metric equivalents		xiv
1	Introduction: Forest basics		1
	1.1	Characteristics of woodlands and forests	1
	1.2	The value of woodlands and forests	5
	1.3	Tree biology and how it influences woodland ecology	6
	1.4	Spatial structure	13
	1.5	The woodland ecosystem: food chains, food webs	
		and the plant, animal and decomposition subsystems	19
	1.6	Forest types and classification	25
	1.7	Regional classifications of forests and woodlands	35
2	Forest soils, climate and zonation		39
	2.1	Soils and trees	39
	2.2	Features of forest soils	41
	2.3	Roots, foraging and competition	58
	2.4	Forest zonation and site quality	66
	2.5	Rain forests: climate, soils and variation	76
3	Primary production and forest development		84
	3.1	Plant life forms and biological spectra	84
	3.2	Light and shade	91
	3.3	Water	110
	3.4	Temperature and pollutant influences on tree growth	115
	3.5	Altitudinal zonation and timberlines	117
	3.6	Evergreen and deciduous strategies: aspects of	
		competitive advantage	127
	3.7	Contrasts between three widespread tree genera: the pines,	
		beeches and oaks	131
	3.8	Ecology and significance of ageing trees	139

VII	1	Contents	
4	Reproductive strategies of forest plants		
	_	Plant strategies	144
	4.2		152
	4.3	Reproduction and fruiting	162
	4.4		165
	4.5	Roles and influences of animals	178
	4.6	Time constraints	181
5	Biotic interactions		187
	5.1	Producers and consumers	187
	5.2	The interdependence of producers and consumers	188
	5.3	Insect defoliation and damage	191
	5.4	Forest fungi	201
	5.5	Specialized heterotrophs: epiphytes, parasites	
		and saprotrophs	214
	5.6	Exotic plants	218
	5.7	Herbivorous mammals and birds	219
	5.8	The impact of woodland carnivores and omnivores	230
	5.9	Herbivores and the Holocene: did the lowland	
		European forest have a closed canopy?	235
6	Biodiversity in woodlands		241
	6.1	Genetic variation in populations and its implications	241
	6.2	Selection pressures and biodiversity	242
	6.3	Biodiversity at organism, population	
		and habitat levels	247
		Changes in species diversity over time	257
	6.5	What allows species to co-exist in a woodland?	266
	6.6	Conservation, biodiversity, population integrity	
		and uniqueness	273
7	Decomposition and renewal		276
	7.1	The vital key to a working forest	276
		Decomposition	277
	7.3	Degradative stages	285
	7.4	How much dead material is there?	288
	7.5	What controls the rate of decomposition?	291
	7.6	Rates of decomposition	298
		Woody material	302
8	Energy and nutrients		318
	8.1	Growth of forests	318
	8.2	Energy flow through forest ecosystems	326
	8.3	Nutrient cycling	328

		Contents	ix
	8.4	Nitrogen	331
	8.5	Nutrient dynamics in different forests	341
	8.6	Human influences	345
9	Forest change and disturbance		
	9.1	Ecology of past forests	350
	9.2	Ecological processes that govern change	366
	9.3	Disturbance, patch dynamics and scales of change	374
	9.4	Examples of forest change	387
	9.5	Stability and diversity	395
10	Working forests		397
	10.1	Forest resources and products	397
	10.2	Single- and multi-use forests	409
	10.3	Silviculture and the replacement of trees	410
	10.4	Improving the forest: choice of species	
		and provenance	420
	10.5	Forest practices	424
	10.6	Sustainable forest management	427
	10.7	Landscape ecology and forests	429
11	The future – how will our forests change?		441
	11.1	Threats to forests and the increasing demand	
		for timber	441
	11.2	Desertification	445
	11.3	Climate change	447
	11.4	Other causes of forest decline	461
	11.5	Problems in urban forests – the social interface	471
	11.6	Agroforestry and new forests	474
	11.7	The final challenge	481
	References		483
	Index	r	514

Preface

As its subtitle implies, the aim of this book is to provide within a relatively small compass an account of the structure of the woodlands and forests of the world, the relationships between the main groupings of organisms which live within them, and a discussion of the significance of plant and animal diversity at both the community and regional level. There is particular emphasis on woodland processes, especially those involving the flow of energy and cycling of nutrients. An attempt has also been made to show how communities dominated by trees, together with their constituent animals and plants, have gradually evolved during geological time.

Foresters and conservationists have of necessity to be far-sighted, and are usually both cheerful and philosophical. While Isaiah 55, v.12 presents a somewhat unusual view of tree behaviour, it does convey a very positive approach, one well suited to the major forest tasks which have to be dealt with in this new century. One function of this book is to provide a background against which foresters, ecologists, land managers and others can view the past and plan for the future. This book, while drawing on previous work, is wherever possible based upon the most recent research, in the hope that those familiar with our other books will find something more of value here. It uses the ecosystem approach and endeavours to show how various organisms, often diverse in space and time, have employed basically similar strategies, sometimes resulting in the repeated evolution of special features that enable them to exploit particular environmental niches. It is intended to provide undergraduates, teachers, and all those interested in vegetation dominated by trees, with a concise account of woodlands and how they operate. The more society at large gets to know about these systems, which never cease to fascinate the authors, the greater is the chance that rare species and habitats – and in particular old woodlands – will be effectively protected.

A great deal of interest attaches itself to the study of particular ecosystems. Amongst the ultimate aims of a plant ecologist, however, must be the ability to

xii Preface

predict the ways in which vegetation will change, and the achievement of an understanding of the general rules which govern plant and vegetation behaviour. Many eminent scientists have devoted much of their research to studies along these lines, notably Grime whose *Plant Strategies, Vegetation Processes, and Ecosystem Properties* (2001) is a seminal reference. In his preface, Grime quotes MacArthur (1972) 'To do science is to search for repeated patterns not accumulate facts'. We hope that the examples described in this book are illustrative of the general patterns that are the basis of woodland and forest ecology.

Bold type is used to emphasize key ideas and concept words when first explained, while entries involving definitions are printed in bold in the index. Much of the book is written directly from our own experience. Where the work of others is quoted, the names of the authors are given together with dates of publication, so that the article can be looked up in the references at the end of the book.

Acknowledgements

We are indebted to the many colleagues with whom we have discussed topics of interest. These include Frans Vera, colleagues at Forest Research, Alice Holt, Farnham and many others including Håkan Hytteborn and Roland Moberg who introduced JRP to Scandinavian forests. We are grateful also to the late Arthur Willis, who read the whole draft, and to many who helped with discussion and the provision of information and diagrams including Ena Adam, Martyn Ainsworth, Ian Baillie, Posy Busby, John Campbell, Eleanor Cohn, Bill Currie, Ed Faison, Geoff Hilton, Jonathan Humphrey, Jim Karagatzides, Keith Kirby, Andy Lawrence, Pat Morris, Brooks Mathewson, Robert McDonald, Tony Polwart, Jack Putz, Glenn Motzkin, Tim Sparks, Brian Stocks, Robin Stuttard, Sarah Taylor, Jill Thompson, Ian Trueman and Ruth Yanai. Alan Crowden at Cambridge University Press is thanked for his constant encouragement as is David Harding for contributions to Chapters 2, 5 and 7, as well as his long continued friendship and co-operation from long before the publication of Packham and Harding (1982). Peter Hobson produced elegant drawings, comments on the draft and information regarding African forests; Nick Musgrove provided long continued assistance with data acquisition and computing; Malcolm Inman and Richard Homfrey also gave expert help. PAT gratefully acknowledges that much of his contribution to this book was written while a Bullard Fellow at Harvard Forest, Massachusetts; David Foster and his staff are thanked for their help and encouragement. We are both particularly grateful to Peter Alma for his initial suggestions regarding the original plan of the book and for his comments on the final draft.

Metric equivalents

Metre = 39.37 inches = 3.28 feet

Kilometre = 0.6214 statute mile

Hectare = 2.4711 acres Kilogram = 2.2046 lb

Tonne = 0.985 ton

1 mile = 1.6093 km