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Prelude

A reminder

We have done our best to make this book reasonably self-contained. The
intention is that a reader with no specialist knowledge of group theory,
topology, number theory or Lie algebra theory should follow the main
thread of the argument without undue difficulty. (This is less true of
the ‘Interludes’, which touch on various topics, and of Chapter 13, which
depends on a certain amount of commutative algebra.)

However, there are a number of elementary facts and concepts which
are frequently used and can reasonably be classed under the heading of
‘non-specialist knowledge’. These (apart from any that we may have
missed) are collected together here, for the convenience of the reader.

0.1 Commutators
G denotes a group, z, ¥, z elements of G, and A, B, C subgroups of G.

1

¥ =y ey, [ryl=a

R O i |2 P Sy I i

[A, Bl = ([a,b] | a€ A, b€ B)
where (X) denotes the subgroup of G generated by a subset X of G.
[A, B,C] =[[4, B],C].

0.1. [zy, 2] = [z, 2]Y[y, 2], [z, yz] = [z, 2][z, y]*.
These are verified by inspection. Repeated applications of 0.1 give the

first two claims of:

0.2. For a positive integer n,

n—1

@) [z y] = [z, eyl eyl [,
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(i) [ y"] = [o 9] - [2,9l? - fo, )"
(i) (zy)" = 2™y [y, 2]"""D/?  (mod 13(G)).

Part (iii) is easily proved by induction on n, using (i). It is the begin-
ning of the Hall-Petrescu formula, proved in full in Appendix A.

0.3 ‘Three-subgroup lemma’. If A, B and C are normal subgroups
of G then

[4,B,C] < [B,C, A][C, A, B].

Proof This follows from the Hall-Witt identity:
[a,b7 1, (b, ¢, a)lc, 0™, b]% = 1, (%)

which is most quickly verified by putting v = acb®,v = bac®,w = cba®
and noting that [a,b7!, ]’ = u™1v, etc.

0.2 Nilpotent groups

The terms of the lower central series of a group G are defined by v (G) =
G, %+1(G) = [%(G),G] for i > 1. The group G is nilpotent, of class at
most ¢, if v..1(G) = 1. The centre of G is Z(G) = {z € G| zg = gz for
all g € G}.

G is a finite p-group (where p is a prime) if |G| = p™ for some n.

0.4. Let G be a finite group.

(i) G 1is nilpotent if and only if Z(G/N) > 1 for every proper normal
subgroup N of G.

(ii) If G is a p-group then G is nilpotent.

(iif) If G is a p-group then every mazimal proper subgroup of G is
normal and has indezx p in G.

(iv) If G is nilpotent and 1 < N <1 G then [N,G] < N and NNZ(G) >
1.

(v) If G is nilpotent and 1 < N < G then some mazimal proper
subgroup of N is normal in G.

{(vi) If G is nilpotent then so are every gquotient and every subgroup of
G.

(vil) If G is nilpotent then the elements of finite order in G form a
subgroup.
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0.2 Nilpotent groups 3

Proof (i) ‘If’: induction on |G|. By hypothesis, 1 < Z(G) = Z, say.
Inductively, v (G/Z) = 1 for some-m. Then v,11(G) = 1.

‘Only if’:  Suppose v;4+1(G) = 1. For some k, we then have v 1(G) <
N, v(G) £ N. This implies 1 < v (G)N/N < Z(G/N).

(ii) By (i), it suffices to show that Z(G) # 1. Let hq,... , h, represent
the non-central conjugacy classes of G. Then |G : Cg(h;)] = p* > 1 s0

Z(G)| = [G] = |G : Ca(h)| =0 (mod p).
i=1
Since |Z(G)| > 1 it follows that |Z(G)| > p.

(iil) Let M be a maximal proper subgroup of G. By (ii), Z(G) contains
an element z of order p. If z € M, M/ (z) is a maximal proper subgroup
of G/ {z) and we argue by induction. If z ¢ M then M (z) = G. In this
case M << G and |G : M| =p.

(iv) For some k, v(G) N N # 1 and v411(G) NN = 1. Then
Y(G)NN < Z(G)NN,s0 Z(G)NN # 1. If [N,G] = 1 then [N,G] < N.
If [N,G] > 1, then (since [N,G] < G) we have 1 < [N,G] N Z(G) = K,
say. Then 1 < N/K <1 G/K and we argue by induction.

(v) By (iv), [N,G] < N. Any maximal proper subgroup of N con-
taining [V, G| is necessarily normal in G.

{vi) Clear.

(vii) Let z,y € G have finite order; it will suffice to prove that the
subgroup H = (z,y) that they generate is finite. Now H/v;(H) is
finite. Suppose that ~;_1(H)/v;(H) is finite for some ¢ > 2. There is
a well-defined bilinear mapping from H/vy2(H) X vi—1(H)/v:(H) into
Yi(H)/vi+1(H) given by

(av2(H), byi(H)) = [a, b]vi+1(H),

which induces an epimorphism H/v2(H) ® vi—1(H)/vi(H) — v(H)/
Yi+1(H). Hence v;(H)/vi+1(H) is finite. It follows by induction that
~i(H)/vi+1(H) is finite for every i; but v.41(H) = 1 where ¢ is the
nilpotency class of G.

0.5. Let G be any group and o an eutomorphism of G which induces
the identity on G/v2(G). Then « induces the identity on v;(G)/vi+1(G)
for every i.

Proof There is an (a)-module epimorphism from

G/%(G) ® vi-1(G) /7:(G)
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4 Prelude
onto v;(G)/¥i+1(G), given by
z72(G) ® y1:(GQ) = [z, Y]y (G).

The result follows by induction on <.

0.3 Stability group theory

Suppose that H is a group acting faithfully by automorphisms on a
group G.

0.6. If N < G and H induces the trivial action on both N and G/N,
then H can be embedded in a Cartesian product of copies of Z(N).

Proof Let X be a set of generators for G. The embedding is given by

the map H — [],cx Z(N),

b (z7 ") e x;

though not obvious, it is easily verified that z=1z" does indeed lie in
Z(N)forallz € G.

If, in 0.6, the centre of N is torsion-free, or has a given finite exponent,
etc., it follows that H has the same property.

0.7. Let G =Gy > Gy > --- > G = 1 be a series of normal subgroups
of G, and suppose that H fizes each G, and induces the trivial action
on each factor G;/Giyr1. Then

@) w(H) =1;

(i1} if each G;/G11 has exponent dividing m (respectively: is torsion-
free), then H has exponent dividing mF~1 (respectively: is torsion-free).

Proof Induction on k. Put K = Cy(G1)NCy(G/Gk_1). By the induc-
tive hypothesis, H/Cy(G1) and H/Cy(G/Gk_1) satisfy (i) and (ii),
with k& — 1 replacing k. Therefore so does H/K. Takinga € K, be H
and ¢ € G in the Hall-Witt identity (%), we see that K is contained in
the centre of H (apply (%) to the semidirect product G x H). Therefore

Y(H) = [ye-1(H), H < [K,H] = 1.

Also, 0.6 shows that in case (ii), K has exponent dividing m (respec-
tively, K is torsion-free); hence (ii} follows.
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0.4 Unipotent groups 5
Applying 0.7 to the conjugation action of G on v;(G), we deduce that

['Y‘L(G)v Tk (G)] < ’7i+k(G)’

for any group G and all ¢ and k (take H = G/Cq(7:(G)/vi+r(G)) and
replace G by v(G)/¥i+£(G))-

0.4 Unipotent groups

Let £ be a finite field of characteristic p and V = k™. The group GL, (k)
of all invertible n x n matrices over k may be identified with the group
GL(V) of all k-linear automorphisms of V. We denote by U,(k) the
subgroup consisting of upper uni-triangular matrices. An automorphism
g of V is unipotent if (¢ —1)™ is the zero endomorphism. A subgroup H
of GL,(K) is said to be unipotent if each of its elements is unipotent.

0.8. Let H < GL, (k). The following are equivalent:
(i) H is unipotent.
(ii) The semidirect product V x H is a nilpotent group.
(ii1) There is a chain of H-invariant k-subspaces

V=V,>V,.1>--->Vi>V=0

such that H induces the trivial action on each factor V;/V;_1.
(iv) (h1 = 1)(hg = 1)---(hp — 1) =0 for all hy,... ,h, € H.
(v) There exists g € GLy(k) such that g71Hg < Uy, (k).

(vi) H is a finite p-group.

Proof If h is unipotent then
R —1=(h—1" =0

whenever p® > n. Therefore (i) implies (vi). If H is a finite p-group then
sois V x H, so (vi) implies (ii). It is easy to see that (ii)=-(iii)=(iv)=(i)
and that (iii)<(v).

0.5 Frattini subgroup

In this section, G denotes a finite p-group. The Frattini subgroup of G,
denoted ®(G), is the intersection of all maximal proper subgroups of G.

0.9. (i) ®(G) = |G, G|GP.
(i) If X C G and X®(G) generates G/®(G) then X generates G.
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6 Prelude

(iii) G/ ®(G) = ]Fg where d is the minimal cardinality of any generating
set for G.

Proof (i) G/[G,G|G? is an elementary abelian p-group, so its maximal
proper subgroups intersect in the identity. Therefore ®(G) < [G, G]|GP.
The reverse inclusion follows from 0.4 (iii).

(ii) is clear, since if (X) < G then (X) ®(G) lies inside some maximal
proper subgroup of G.

(iii) This now follows from (i) and (ii).

0.10. Let H be the set of all automorphisms of G which induce the
identity on G/®(G). Then H is a finite p-group.

Proof 1t is enough to show that if @ € H has prime order ¢, then ¢ = p.
Let {z1,...,z4} be a generating set for G, and put

Q= {(vaz1,... ,udzq) | u1,... ,ug € ®(G)},

a subset of G x --+ x G (with d factors). Then « permutes 2, and has
no fixed points, in view of 0.9 (ii). Therefore each orbit has length ¢ and
so q | |Q] = |®(G)]¢. Tt follows that ¢ = p.

0.6 Group algebras
Let G be a group and K a commutative ring. The group algebra of G
over K, denoted K[G], is defined to be the free K-module on the basis
G, endowed with a product which extends simultaneously the group
operation on G and the ring multiplication in K. Thus the elements of
K|G] are sums of the form 3~ agg, with each a, € K and ay = 0 for
all but finitely many g € G, and
(Z agg)(z beg) = Z Cq9
g€eCG geG geG
where
cg = Z azbz-1g.
z€G
It is easily verified that K[G] is a ring. One usually identifies K with
the subring K -1 of K[G], and G with the subgroup 1k - G of the group
of units of K[G]. There is a homomorphism ¢ : K[G] — K given by

ZaggH Zag;

e geG
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this is called the augmentation. Its kernel I is the augmentation ideal of
K|[G); it is easy to see that

I={>a9|> a;=0}= > (g-DK[Gl= P K(g-1).
geG\1 geG\1

More generally, for any normal subgroup N of G there is a natural
epimorphism K[G] — K[G/N], whose kernel is the right (or equivalently
left) ideal generated by the set {g —1|g € N}.

0.7 Topology

A topological space X is Hausdorff if distinct points of X have disjoint
neighbourhoods; by a neighbourhood of x we mean any subset of X
which contains an open set U with z € U. A topological space X is
compact if for any covering of X by open sets

X=|JVa
acA

there is a finite subset {1, ... ,a,} of A such that

0.11. A space X is compact if and only if for each family (Y, )aeca of
closed subsets of X with
ﬂ Yo = a,

acA

there ezists a finite subset {aa,... ,a.} of A such that

=1

0.12. If f: X — Y is continuous and X is compact then f(X) is
compact.

0.13.Let X be a Hausdorff space.

(i) Every compact subspace of X is closed in X.

(i) If X is compact, then every closed subset of X is compact (with
the subspace topology).
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(iii) If X is compact, then every infinite subset of X has a limit point
in X.

The proofs of 0.11-0.13 are simple exercises.

0.14. If A and B are disjoint compact subsets of a Hausdorff space X,
then there exist disjoint open subsets U and V of X with A C U and
BCV.

Proof For each a € A and b € B there exist open sets U{a, b), V(a,b)
with @ € U(a,b), b € V(a,b) and U(a,b)NV(a,b) = @. Fixa € A. Since
B is compact, there exist by, ... ,b, € B such that B C |J._, V(a,b;) =
V(a), say. Put U(a) = (;—; U(a,b;). Then the compactness of A gives
ai,...,as € A such that A C | J]_; U(a;). Now let U = |J;_, U(a;),
V =N Viay).

0.15. Let f: X — Y be a continuous bijection, where X is compact
and Y is Hausdorff. Then f is a homeomorphism.

Proof We have to show that f~' : ¥ — X is continuous, i.e. that
(f~1)"Y(U) is open in Y for all U open in X. Now

(fH7HU) = FU) =Y\ f(X\D)

and X \ U is compact. Therefore f(X \ U) is compact, hence closed in
Y, giving the result.

0.16. (Tychonoff’s Theorem) The product of any family of compact
spaces is compact.

For the proof see for example Higgins (1974), Chapter 1 (or any intro-
ductory topology textbook).

A topological group is a group G which is also a topological space, such
that the maps

g—g1:G-G
(g,h) — gh:GxG — G

are both continuous. Some less trivial results about topological groups
are given in Appendix B; for most purposes, the following will suffice:

0.17. Let G be a topological group.

(i) For each g € G, the maps x — xg, T — gz, and T — =~ ' are
homeomorphisms of G.

(ii) If H is a subgroup of G and H is open (respectively, closed), then
every coset of H is open (respectively, closed).
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0.8 Lie algebras 9

(iii) Every open subgroup of G 1is closed.

(iv) G is Hausdorff if and only if {1} is a closed subset of G.

(v} If N is a closed normal subgroup of G and G is Hausdorff, then
G/N is Hausdorff (with the quotient topology).

(vi) If H is a subgroup of G and H contains a non-empty open subset
U of G then H is open in G.

Proof (i), (ii}, (iii) are easy exercises. (iv): In a Hausdorfl space, single-
ton subsets are closed (easy). Conversely, suppose {1} is closed. Then
every singleton is closed, by (i). Let z # y be elements of G. Then
U = G\ {zy~'} is open. Since the map (a,b) — a~'b is continuous,
and 1 € U, there exist open neighbourhoods V; and V5 of 1 such that
Vl_1 - Vo C U. Then Viz and Voy are disjoint neighbourhoods of z, y.
(v) follows from (iv). (vi): note that H = (J, .y Uh.

0.8 Lie algebras

Let k be a commutative ring. A Lie algebra over k is a k-module L with
a binary operation, (occasionally called the Lie bracket)

(w):LxL—L
that is k-bilinear and satisfies
a,a)=10
((a,0),¢) + ((b;¢),a) + ((¢, a),b) = 0
for all a,b,c € L. The first condition implies
(a,b) = —(b,a)

for all ¢ and b, and is equivalent to it unless 2 is a zero-divisor on L.
The second condition is known as the Jacobi identity.

If A is any associative algebra over k, we may define a new binary
operation on A, called commutation, as follows:

(a,b) = ab - ba.

It is easy to verify that with this operation A becomes a Lie algebra, the
commutation Lie algebra on A.

A Lie algebra over Z is sometimes called a Lie ring.

Lie algebras over R appeared originally in the guise of ‘infinitesimal
Lie groups’; that is, as a sort of linearised approximation to a (real) Lie
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group. As we shall see, Lie algebras over the p-adic numbers play the
same role relative to p-adic Lie groups.

0.9 p-adic numbers

p will denote an arbitrary, but fixed, prime number. Each rational num-

ber z # 0 can be written uniquely as

b
with n,a,b € Z, b > 0, ged(a,b) = 1 and pt ab. We put

vp(z) =m, |z, =p™"

here ||, is the p-adic absolute value on Q. This absolute value induces
a metric on Q, and the completion of @ with respect to this metric is
the p-adic field Q,. Each element o of @, is thus the limit of a Cauchy
sequence

a= lim z;
100

with z; € Q for each ¢, and the absolute value is extended to @, by
setting
jol, = Jim |z

11— 00 p

The ‘valuation ring’ in @, is the subring of p-adic integers

sz{ae(@p [ (alpgl}.

Each element of Z,, is the limit of a Cauchy sequence in Q whose terms
all lie in Z. It follows that each p-adic integer is the sum of a series

> anp” (1)

with each a, € Z; moreover, each a, may be chosen to lie in the set
{0,1,...,p—1}, in which case the expression (}) is uniquely determined.

An alternative, equivalent, definition of Z, is as the inverse limit of
the system of rings

(Z/P"Z) e s

this construction is discussed in detail in Chapter 1.
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