
1 Number theory

This chapter is concerned with the properties of the set of integers
{. . . , −2, −1, 0, 1, 2, . . .} under the arithmetic operations of addition and mul-
tiplication. We shall usually denote the set of integers by Z. We shall assume
that you are acquainted with the elementary arithmetical properties of the in-
tegers. By the end of this chapter you should be able to solve the following
problems.

1. What are the last two digits of 31000?
2. Can every integer be written as an integral linear combination of 197 and

63?
3. Show that there are no integers x such that x5 − 3x2 + 2x − 1 = 0.
4. Find the smallest number which when divided by 3 leaves 2, by 5 leaves 3

and by 7 leaves 2. (This problem appears in Sūn tzĭ suàn jīng (Master Sun’s
Arithmetical Manual ) which was written around the fourth century.)

5. How may a code be constructed which allows anyone to encode messages
and send them over public channels, yet only the intended recipient is able
to decode the messages?

1.1 The division algorithm and greatest
common divisors

We will assume that the reader is acquainted with the elementary properties
of the order relation ‘≤’ on the set Z. This is the relation ‘less than or equal
to’ which allows us to compare any two integers. Recall that, for example,
−100 ≤ 2 and 3 ≤ 3. The following property of the set P = {1, 2, . . .} of
positive integers is important enough to warrant a special name.
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2 Number theory

Well-ordering principle Any non-empty set, X , of positive integers has a
smallest element (meaning an element which is less than or equal to every
member of the set X ).

You are no doubt already aware of this principle. Indeed you may wonder why
we feel it necessary to state the principle at all, since it is so ‘obvious’. It is,
however, as you will see, a key ingredient in many proofs in this chapter. An
equivalent statement is that one cannot have an unending, strictly decreasing,
sequence of positive integers.

Note that the principle remains valid if we replace the set of positive integers
by the set N = {0, 1, 2, . . .} of natural numbers. But the principle fails if we
replace P by the set, Z, of all integers or, for a different kind of reason, if we
replace P by the set of positive rational numbers (you should stop to think why).
We use Q to denote the set of all rational numbers (fractions).

A typical use of the well-ordering principle has the following shape. We have
a set X of positive integers which, for some reason, we know is non-empty (that
is, contains at least one element). The principle allows us to say ‘Let k be the least
element of X ’. You will see the well-ordering principle in action in this section.

The well-ordering principle is essentially equivalent to the method of proof
by mathematical induction. That method of proof may take some time to get
used to if it is unfamiliar to you, so we postpone mathematical induction until
the next section.

The proof of the first result, Theorem 1.1.1, in this section is a good example
of an application of the well-ordering principle. Look at the statement of the re-
sult now. It may or may not be obvious to you what the theorem is ‘really saying’.
Mathematical statements, such as the statement of 1.1.1, are typically both gen-
eral and concise. That makes for efficient communication but a statement which
is concise needs thought and time to draw out its meaning and, when faced with
a statement which is general, one should always make the effort (in this context,
by plugging in particular values) to see what it means in particular cases.

In this instance we will lead you through this process but it is something
that you should learn to do for yourself (you will find many opportunities for
practice as you work through the book).

The first sentence, ‘Let a and b be natural numbers with a > 0’, invites you to
choose two natural numbers, call one of them a and the other b, but make sure
that the first is strictly positive. We might choose a = 175, b = 11.

The second sentence says that there are natural numbers, which we will write
as q and r , such that 0 ≤ r < a and b = aq + r . The first statement, 0 ≤ r < a,
says that r is strictly smaller than a (the ‘0 ≤ r ’ is redundant since any natural
number has to be greater than or equal to 0, it is just there for emphasis).

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-54050-6 - Numbers, Groups and Codes: Second Edition
J . F. Humphreys and M. Y. Prest
Excerpt
More information

http://www.cambridge.org/9780521540506
http://www.cambridge.org
http://www.cambridge.org


1.1 The division algorithm and greatest common divisors 3

The second statement says that b is an integer multiple of a, plus r .
With our choice of numbers the second statement becomes: ‘There are natural

numbers q , r such that 0 ≤ r < 175 and 11 = 175q + r ’. In other words, we
can write 11 as a non-negative multiple of 175, plus a non-negative number
which is strictly smaller than 175. But that is obvious: take q = 0 and r = 11
to get 11 = 175 · 0 + 11.

You would be correct in thinking that there is more to 1.1.1 than is indicated
by this example! You might notice that 1.1.1 says more if we take b > a. So let
us try with the values reversed, a = 11, b = 175. Then 1.1.1 says that there are
natural numbers q , r with r < 11 such that 175 = 11q + r . How can we find
such numbers q , r? Simply divide 175 by 11 to get a quotient (q) and remainder
(r ): 175 = 11 · 15 + 10, that is q = 15, r = 10.

So the statement of 1.1.1 is simply an expression of the fact that, given a pair
of positive integers, one may divide the first into the second to get a quotient
and a remainder (where we insist that the remainder is as small as possible, that
is, strictly less than the first number).

Now you should read through the proof to see if it makes sense. As with the
statement of the result we will discuss (after the proof ) how you can approach
such a proof in order to understand it: in order to see ‘what is going on’ in the
proof.

Theorem 1.1.1 (Division Theorem) Let a and b be natural numbers with
a > 0. Then there are natural numbers q, r with 0 ≤ r < a such that:

b = aq + r

(r is the remainder, q the quotient of b by a).

Proof If a > b then just take q = 0 and r = b. So we may as well suppose
that a ≤ b.

Consider the set of non-negative differences between b and integer multiples
of a:

D = {b − ak : b − ak ≥ 0 and k is a natural number}.
(If this set-theoretic notation is unfamilar to you then look at the beginning

of Section 2.1.)
This set, D, is non-empty since it contains b = b − a · 0. So, by the well-

ordering principle, D contains a least element r = b − aq (say). If r were not
strictly less than a then we would have r − a ≥ 0, and therefore

r − a = (b − aq) − a = b − a(q + 1).

So r − a would be a member of D strictly less than r , contradicting the mini-
mality of r .
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4 Number theory

Hence r does satisfy 0 ≤ r < a; and so r and q are as in the statement of
the theorem. �

For example, if a = 3 and b = 7 we obtain q = 2 and r = 1: we have 7 =
3 · 2 + 1. If a = 4 and b = 12 we have q = 3 and r = 0: that is 12 = 4 · 3 + 0.

The symbol ‘�’ above marks the end of a proof.

Comments on the proof Let us pull the above proof apart in order to see how
it works.

You might recognise the content of the first sentence from the discussion
before 1.1.1: it is saying that if a > b then there is nothing (much) to do – we
saw an example of that when we made the choice a = 175, b = 11. The next
sentence says that we can concentrate on the main case where a ≤ b.

The next stage, the introduction of the set D, certainly needs explanation.
Before you read a proof of any statement you should (make sure you understand
the statement! and) think how you might try to prove the statement yourself. In
this case it is not so obvious how to proceed: you know how to divide any one
number into another in order to get a quotient and a remainder, but trying to
express this formally so that you can prove that it always works could be quite
messy (though it is possible). The proof above is actually a very clever one:
by focussing on a well chosen set it cuts through any messy complications and
gives a short, elegant path to the end. So to understand the proof we need to
understand what is in the set D.

Now, one way of finding q and r is to subtract integer multiples of a from b
until we reach the smallest possible non-negative value. The definition of the
set D is based on that idea. That definition says that the typical element of D is a
number of the form b − ak, that is, b minus an integer multiple of a (well, in the
definition k is supposed to be non-negative but that is not essential: we are after
the smallest member of D and allowing k to be negative will not affect that).
In other words, D is the set of non-negative integers which may be obtained by
subtracting a non-negative multiple of a from b (so, in our example, D would
contain numbers including 175 and 98 = 175 − 7 · 11).

What we then want to do is choose the least element of D, because that will
be a number of the form b − ak which is the smallest possible (without dropping
to a negative number). The well-ordering principle guarantees that D, a set of
natural numbers, has a smallest element, but only if we first check that D has
at least one element. But that is obvious: b itself is in D.

So now we have our least element in D and, in anticipation of the last line
of the proof, we write it as r. Of course, being a member of D it has the form
r = b − aq for some q (again, in anticipation of how the remainder of the
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1.1 The division algorithm and greatest common divisors 5

proof will go, we write q for this particular value of what we wrote as ‘k’ in the
definition of D).

Rearranging the equation r = b − aq we certainly have b = aq + r so all
that is left is to show that 0 ≤ r < a. We chose r to be in D and it is part of
the definition of D that all its elements should be non-negative so we do have
0 ≤ r . All that remains is to show r < a.

The last part of the proof is an example of what is called ‘proof by contra-
diction’ (we discuss this technique below). We want to prove r < a so we say,
suppose not – then r ≥ a – but in that case we could subtract a at least once
more from r and still have a number of the form b − ak which is non-negative.
Such a number would be an element of D but strictly smaller than r and that
contradicts our choice of r as the smallest element of D. The conclusion is that
we do, indeed, have r < a and, with that, the proof is finished.

Proof by contradiction Suppose that we want to prove a statement. Either it is
true or it is false. What we can do is suppose that it is false and then see where that
leads us: if it leads us to something that is wrong then we must have started out
by supposing something that is wrong. In other words, the supposition that the
statement is false must be wrong. Therefore the original statement must be true.

For instance, suppose that we want to prove that there is no largest integer.
Well, either that is correct or else there is a largest integer. So let us suppose for
a moment that there is a largest integer n say. But then n + 1 is an integer which
is larger than n, a contradiction (to n being the largest integer). So supposing
that there is a largest integer leads to a contradiction and must, therefore, be
false. In other words, there is no largest integer.

Definition Given two integers a and b, we say that a divides b (written ‘a | b’)
if there is an integer k such that ak = b.

For example, 7 | 42 but 7 does not divide 40, we write 7 |� 40 (it is true that 40/7
makes sense as a rational number but here we are working in the integers and
insist that k in the definition should be an integer: positive, negative or 0).

Thus a divides b exactly if, with notation as in Theorem 1.1.1, r = 0.
Note that this definition has the consequence (take k = 0) that every integer

divides 0.
Another idea with which you are probably familiar is that of the greatest com-

mon divisor (also called highest common factor) of two integers a and b. Usually
this is described as being ‘the largest integer which divides both a and b’. In fact,
it is not only ‘the largest’ in the sense that every other common divisor of a and b
is less than it: it is even the case that every common divisor of a and b divides it.
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6 Number theory

This is essentially what the next theorem says. The proof should be surprising:
it proves an important property of greatest common divisor that you may not
have come across before, a property which we extract in Corollary 1.1.3.

Theorem 1.1.2 Given positive integers a and b, there is a positive integer d
such that

(i) d divides a and d divides b, and
(ii) if c is a positive integer which divides both a and b then c divides d (that

is, any common divisor of a and b must divide d ).

Proof Let D be the set of all positive integers of the form as + bt where s and
t vary over the set of all integers:

D = {as + bt : s and t are integers and as + bt > 0}.
Since a(a = a · 1 + b · 0) is in D, we know that D is not empty and so, by the
well-ordering principle, D has a least element d, say. Since d is in D there are
integers s and t such that

d = as + bt.

We have to show that any common divisor c of a and b is a divisor of d. So
suppose that c divides a, say a = cg, and that c divides b, say b = ch. Then c
divides the right-hand side (cgs + cht) of the above equation and so c divides
d. This checks condition (ii).

We also have to check that d does divide both a and b, that is we have to
check condition (i). We will show that d divides a since the proof that d divides
b is similar (a and b are interchangable throughout the statement and proof so
‘by symmetry’ it is enough to check this for one of them). Applying Theorem
1.1.1 to ‘divide d into a’, we may write

a = dq + r with 0 ≤ r < d.

We must show that r = 0. We have

r = a − dq

= a − (as + bt)q

= a(1 − sq) + b(−tq).

Therefore, if r were positive it would be in D. But d was chosen to be minimal
in D and r is strictly less than d. Hence r cannot be in D, and so r cannot be
positive. Therefore r is zero, and hence d does, indeed, divide a. �
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1.1 The division algorithm and greatest common divisors 7

Comment Note the structure of the last part of the proof above. We chose
d to be minimal in the set D and then essentially said, ‘The remainder r is an
integer combination of a and b so, if it is not zero, it must be in the set D. But
d was supposed to be the least member of D and r < d . So the only possibility
is that r = 0.’ There is a definite similarity to the end of the proof of 1.1.1.

Given any a and b as in 1.1.2, we claim that there is just one positive integer
d which satisfies the conditions (i) and (ii) of the theorem. For, suppose that
a positive integer e also satisfies these conditions. Applying condition (i) to e
we have that e divides both a and b; so, by condition (ii) applied to d and with
e in place of ‘c’ there, we deduce that e divides d. Similarly (the situation is
symmetric in d and e) we may deduce that d divides e. So we have two integers,
d and e, and each divides the other: that can only happen if each is ± the other.
But both d and e are positive, so the only possibility is that e = d , as claimed.

Note the strategy of the argument in the paragraph above. We want to show
that there is just one thing satisfying certain conditions. What we do is to take
two such things (but allowing the possibility that they are equal) and then show
(using the conditions they satisfy) that they must be equal.

Definition The integer d satisfying conditions (i) and (ii) of the theorem is
called the greatest common divisor or gcd of a and b and is denoted (a, b) or
gcd(a, b). Some prefer to call (a, b) the highest common factor or hcf of a
and b. Note that, just from the definition, (a, b) = (b, a).

For example, (8, 12) = 4, (3, 21) = 3, (4, 15) = 1, (250, 486) = 2.

Note It follows easily from the definition that if a divides b then the gcd of a
and b is a. For instance gcd(6, 30) = 6.

The proof of 1.1.2 actually showed the following very important property (you
should go back and check this).

Corollary 1.1.3 Let a and b be positive integers. Then the greatest common
divisor, d, of a and b is the smallest positive integral linear combination of a
and b. (By an integral linear combination of a and b we mean an integer of
the form as + bt where s and t are integers.) That is, d = as + bt for some
integers s and t.

For instance, the gcd of 12 and 30 is 6: we have 6 = 30 · 1 − 12 · 2. In Section
1.5 we give a method for calculating the gcd of any two positive integers.
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8 Number theory

We make some comment on what might be unfamiliar terminology. A
‘Corollary’ is supposed to be a statement that follows from another. So often,
after a Theorem or a Proposition (a statement which, for whatever reason, is
judged by the authors to be not quite as noteworthy as a Theorem) there might be
one or more Corollaries. In the case above it was really a corollary of the proof,
rather than the statement, of 1.1.2. The term ‘Lemma’, used below, indicates a
result which we prove on the way to establishing something more notable (a
Proposition or even a Theorem).

Before stating the next main theorem we give a preliminary result.

Lemma 1.1.4 Let a and b be natural numbers and suppose that a is non-zero.
Suppose that

b = aq + r with q and r positive integers.
Then the gcd of b and a is equal to the gcd of a and r.

Proof Let d be the gcd of a and b. Since d divides both a and b, d divides
the (term on the) right-hand side of the equation r = b − aq: hence d divides
the left-hand side, that is, d divides r. So d is a common divisor of a and r.
Therefore, by definition of (a, r ), d divides (a, r ).

Similarly, since the gcd (a, r ) divides a and r and since b = aq + r , (a, r )
must divide b. So (a, r ) is a common divisor of a and b and hence, by definition
of d = (a, b), it must be that (a, r ) divides d.

It has been shown that d and (a, r ) are positive integers which divide each
other. Hence they are equal, as required. �

Discussion of proof of 1.1.4 Sometimes, if the structure of a proof is not clear
to you, it can help to go through it with some or all ‘x’s and ‘y’s (or in this case,
a and b) replaced by particular values. We illustrate this by going through the
proof above with particular values for a and b.

Let us take a = 30, b = 171. In the statement of 1.1.4 we write b in the form
aq + r , that is, we write 171 in the form 30q + r . Let us take q = 5 so r = 21
and the equation in the statement of the lemma is 171 = 30 · 5 + 21 (but we do
not have to take the form with smallest remainder r, we could have taken say q =
3 and r = 81, the conclusion of the lemma will still be true with those choices).

The proof begins by assigning d to be (30, 171). Then (says the proof ) d
divides both 30 and 171 so it divides the right-hand side of the rearranged
equation 21 = 171 − 30 · 5 hence d divides the left-hand side, that is d divides
21. So d is a common divisor of 30 and 21. Therefore, by definition of the gcd
(30, 21) it must be that d divides (30, 21).
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1.1 The division algorithm and greatest common divisors 9

Similarly, since (30, 21) divides both 30 and 21 and since 171 = 30 · 5 + 21
it must be that (30, 21) divides 171 and so is a common divisor of 30 and 171.
Therefore, by definition of d = (30, 171) we must have that (30, 21) divides d.

Therefore d and (30, 21) are positive integers which divide each other. The
conclusion is that they must be equal: (30, 171) = (30, 21). (Of course, you can
compute the actual values of the gcd to check this but the point is that you do not
need to do the computation to know that they are equal. In fact, the lemma that
we have just proved is the basis of the practical method for computing greatest
common divisors, so to say that we do not need this lemma because we can
always compute the values completely misses the point!)

The next result appears in Euclid’s Elements (Book VII Propositions 1 and 2)
and so goes back as far as 300 bc. The proof here is essentially that given in
Euclid (it also appears in the Chinese Jiŭ zhāng sùan shù (Nine Chapters on
the Mathematical Art) which was written no later than the first century ad).
Observe that the proof uses 1.1.1, and hence depends on the well-ordering
principle (which was used in the proof of 1.1.1). Indeed it also uses the well-
ordering principle directly. The (very useful) 1.1.3 is not explicit in Euclid.

Theorem 1.1.5 (Euclidean algorithm) Let a and b be positive integers. If a
divides b then a is the greatest common divisor of a and b. Otherwise, applying
1.1.1 repeatedly, define a sequence of positive integers r1, r2, . . . , rn by

b = aq1 + r1 (0 < r1 < a),

a = r1q2 + r2 (0 < r2 < r1),
...

rn−2 = rn−1qn + rn (0 < rn < rn−1),

rn−1 = rnqn+1.

Then rn is the greatest common divisor of a and b.

Proof Apply Theorem 1.1.1, writing r1, r2, . . . , rn for the successive non-zero
remainders. Since a, r1, r2, . . . is a decreasing sequence of positive integers, it
must eventually stop, terminating with an integer rn which, because no non-
zero remainder ‘rn+1’ is produced must, therefore, divide rn−1. Then, apply-
ing 1.1.4 to the second-to-last equation gives (rn−2, rn−1) = (rn−1, rn) which,
we have just observed, is rn . Repeated application of Lemma 1.1.4, working
back through the equations, shows that rn is the greatest common divisor of a
and b. �
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10 Number theory

Example Take a = 30, b = 171.

171 = 5 · 30 + 21 so r1 = 21 and (171, 30) = (30, 21);

30 = 21 + 9 so r2 = 9 and (30, 21) = (21, 9);

21 = 2 · 9 + 3 so r3 = 3 and (21, 9) = (9, 3);

9 = 3 · 3.

Hence

(171, 30) = (30, 21) = (21, 9) = (9, 3) = 3.

If we wish to write the gcd in the form 171s + 30t , we can use the above
equations to ‘solve’ for the remainders as follows.

3 = 21 − 2 · 9

= 21 − 2(30 − 21)

= 3 · 21 − 2 · 30

= 3(171 − 5 · 30) − 2 · 30

= 3 · 171 − 17 · 30.

The calculation may be conveniently arranged in a matrix format.
To find (a, b) as a linear combination of a and b, set up the partitioned matrix(

1 0 b
0 1 a

)

(this may be thought of as representing the equations: ‘x = b’ and ‘y = a’). Set
b = aq1 + r1 with 0 ≤ r1 < a. If r1 = 0 then we may stop since then a = (a, b).
If r1 is non-zero, subtract q1 times the bottom row from the top row to get (noting
that b − aq1 = r1) (

1 −q1 r1

0 1 a

)
.

Now write a = r1q2 + r2 with 0 ≤ r2 < r1. We may stop if r2 = 0 since r1 is
then the gcd of a and r1, and hence by 1.1.4 is the gcd of a and b. Furthermore,
the row of the matrix which contains r1 allows us to read off r1 as a combination
of a and b: namely 1 · b + (−q1) · a = r1.

If r2 is non-zero then we continue. Thus, if at some stage one of the rows is

ni mi | ri (∗)

representing the equation

bni + ami = ri ,
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