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A variant of K -theory: K

MICHAEL ATIYAH and MICHAEL HOPKINS
University of Edinburgh and MIT.

1 Introduction

TopologicalK -theory [2] has many variants which have been developed and
exploited for geometric purposes. There are real or quaternionic versions,
‘Real’ K-theory in the sense of [1], equivarialt-theory [14] and combina-
tions of all these.

In recent year& -theory has found unexpected application in the physics of
string theories [6] [12] [13] [16] and all variants &f-theory that had previ-
ously been developed appear to be needed. There are even variants, needed for
the physics, which had previously escaped attention, and it is one such variant
that is the subject of this paper.

This variant, denoted bi{ . (X), was introduced by Witten [16] in relation
to ‘orientifolds’. The geometric situation concerns a maniféldvith an in-
volution T having a fixed sub-manifoltY. On X one wants to study a pair
of complex vector bundlesE™*, E™) with the property that interchanges
them. If we think of the virtual vector bundlE* — E~, thent takes this
into its negative, andk . (X) is meant to be the appropriake-theory of this
situation.

In physics,X is a 10-dimensional Lorentzian manifold and maps—> X
of a surfaceX describe the world-sheet of strings. The symmetry require-
ments for the appropriate Feynman integral impose conditions that the putative
K-theoryK . (X) has to satisfy.

The second author proposed a precise topological definitioK_ofX)
which appears to meet the physics requirements, but it was not entirely clear
how to link the physics with the geometry.

In this paper we elaborate on this definition and also a second (but equiva-
lent) definition ofK 1 (X). Hopefully this will bring the geometry and physics
closer together, and in particular link it up with the analysis of Dirac operators.
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6 Atiyah and Hopkins

Although K. (X) is defined in the context of spaces with involution it is
rather different from ReaK -theory or equivarianK -theory (forG = Z5),
although it has superficial resemblances to both. The differences will become
clear as we proceed, but at this stage it may be helpful to consider the analogy
with cohomology. Equivariant cohomology can be defined (for any compact
Lie group G), and this has relations with equivarialttheory. But there is
also ‘cohomology with local coefficients’, where the fundamental grou(X)
acts on the abelian coefficient group. In particular for integer coefficietie
only such action is via a homomorphism(X) — Zp, i.e. by an element of
H1(X; Z,) or equivalently a double-covering of X.

This is familiar for an unoriented manifold witK its oriented double-cover.

In this situation, if sayX is a compach-dimensional manifold, then we do not
have a fundamental class H"(X: Z) but in H"(X; Z) whereZ is the local
coefficient system defined by. This is also called ‘twisted cohomology’.

HereX has a fixed-point-free involutionand, in such a situation, our group
K+ (X) is the preciseK -theory analogue of twisted cohomology. This will
become clear later.

In fact K-theory has more sophisticated twisted versions. In [8] Donovan
and Karoubi use Wall's graded Brauer group [15] to construct twistings from
elements oH1(X; Z5) x H3(X; Z)torsion More general twistings df -theory
arise from automorphisms of its classifying space, as do twistings of equiv-
ariant K -theory. Among these are twistings involving a general element of
H3(X; Z) (i.e., one which is not necessarily of finite order). These are also
of interest in physics, and have recently been the subject of much attention
[3] [5] [9]. Our K is a twisted version of equivarian€-theory! and this
paper can be seen as a preliminary step towards these other more elaborate
versions.

2 Thefirst definition

Given a spaceX with involution we have two naturaK -theories, namely
K (X) andKz,(X) — the ordinary and equivariant theories respectively. More-
over we have the obvious homomorphism

¢ Kz,(X) = K(X) (2.1)

1 It is the twisting of equivarianK -theory by the non-trivial element dﬂ%z(pt) = Zp. From

the point of view of the equivariant graded Brauer grokig,(X) is theK -theory of the graded
cross product algebi@(X) ® M x Zp, whereC(X) is the algebra of continuous functions on
X, andM is the graded algebra of 2 2-matrices over the complex numbers, graded in such
a way that(i, j) entry has degree+ j. The action ofZ; is the combination of the geometric
action given onX and conjugation by the permutation matrix bh
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which ‘forgets’ about thez,-action. We can reformulate this by introducing
the spacé€X x Z») with the involution(x, 0) — (z(x), 1). Since this action is
free we have

Kz, (X x Z3) = K(X)

and (2.1) can then be viewed as the natural homomorphisri fgrinduced
by the projection

XX Zy—> X (2.2)

Now, whenever we have such a homomorphism, it is part of a long exact
sequence (of period 2) which we can write as an exact triangle

K3, 0 5 KHX)
N /8 (2.3)
K3, (0)

whereK* = K% @ K1, § has degree 1 mod 2 and the relative gréup ()

is just the relative group for a pair, when we replacby a Z,-homotopically
equivalent inclusion. In this case a natural way to do this is to replacX the
factor on the right of (2.2) bX x | wherel = [0, 1] is the unit interval with

7 being reflection about the mid-poiét Thus, explicitly

K3, (1) = K3, (X x I, X x 8l) (2.4)

wheredl is the (2-point) boundary df.

We now take the group in (2.4) (with the degree shifted by one) as our def-
inition of KX (X). It is then convenient to follow the notation of [1] where
RP9 = RP ¢ RY with the involution changing the sign of the first factor,
and we use& -theory with compact supports (so as to avoid always writing the
boundary). Then our definition ¢ becomes

K2(X) = K3,(X x RM) = K9 (X x RM) (2.5)

(and similarly fork1).

Let us now explain why this definition fits the geometric situation we began
with (and which comes from the physics). Given a vector burktliee can
form the pair(E, t*E) or the virtual bundle

E - *E.

Under the involution E andz*E switch and the virtual bundle goes into its
negative. Clearly, iff came from an equivariant bundle, then= *E and
the virtual bundle is zero. Hence the virtual bundle depends only the element
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defined byE in the cokernel ofp, and hence by the image & in the next
term of the exact sequence (2.3), i.e. by

8(E) € K¥(X).

This explains the link with our starting point and it also shows that one
cannot always definK_ (X) in terms of such virtual bundles oX. In general
the exact sequeng@.3) does not break up into short exact sequencesiasd
not surjective.

At this point a physicist might wonder whether the definitionkof (X)
that we have given is the right one. Perhaps there is another group which is
represented by virtual bundles. We will give two pieces of evidence in favour
of our definition, the first pragmatic and the second more philosophical.

First let us consider the case when the involutioon X is trivial. Then
K;Z (X) = R(Z2) ® K*(X) andR(Z2) = Z @ Z is the representation ring of
Z, and is generated by the two representations:

1 (trivial representation)
o (sign representation).

The homomorphisnp is surjective with kerne{l — p)K*(X) so§ = 0 and
KQ(X) = KL(X). (2.6)

This fits with the requirements of the physics, which involves a switch from
type 1A to type 1IB string theory. Note also that it gives an extreme example
whena is not surjective.

Our second argument is concerned with the general passage from physi-
cal (quantum) theories to topology. If we have a theory with some symmetry
then we can consider the quotient theory, on factoring out the symmetry. In-
variant states of the original theory become states of the quotient theory but
there may also be new states that have to be added. For example if we have a
group G of geometric symmetries, then closed strings in the quotient theory
include strings that begin at a poirtand end ag(x) for g € G. All this is
similar to what happens in topology with (generalized) cohomology theories,
such asK -theory. If we have a morphism of theories, suchyas (2.1) then
the third theory we get fits into a long-exact sequence. The part coming from
K (X) is only part of the answer — other elements have to be added. In ordinary
cohomology where we start with cochain complexes the process of forming a
quotient theory involves an ordinary quotient (or short exact sequence) at the
level of cochains. But this becomes a long exact sequence at the cohomology
level. ForK-theory the analogue is to start with bundles over small open sets
and at this level we can form theiwa quotients, but th& -groups arise when
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we impose the matching conditions to get bundles, and then we end up with
long exact sequences.

It is also instructive to consider the special case when the involution is free
so that we have a double coverig— X and the exact triangle (2.3), witk
for X, becomes the exact triangle

K*X) 3 K*X)
bN /8 (2.7)
K3, (L)

Here L is the real line bundle oveX associated to the double coveritig
(or to the corresponding element Bift(X, Z,)), and we again use compact
supports. Thus (fog = 0,1 mod 2

KI(X) = KI+L(L). (2.8)

If we had repeated this argument using equivariant conomology instead of
equivariantK -theory we would have ended up with the twisted cohomology
mentioned earlier, via a twisted suspension isomorphism

HA(X, Z) = HIL(L). (2.9)

This shows that, for free involution& . is precisely the analogue of twisted
cohomology, so that, for example, the Chern character of the former takes
values in the rational extension of the latter.

3 Relation to Fredholm operators
In this section we shall give another definition K¥f. which ties in naturally
with the analysis of Fredholm operators, and we shall show that this definition
is equivalent to the one given in Section 2.

We begin by recalling a few basic facts about Fredholm operatorsHLet
be complex Hilbert space3 the space of bounded operators with the norm
topology and¥ ¢ B the open subspace of Fredholm operators, i.e. operators
A so that kerA and cokerA are both finite-dimensional. The index defined by

index A = dim ker A — dim cokerA

is then constant on connected component$.df we introduce the adjoin&\*
of Athen

cokerA = ker A*
so that
index A = dim ker A — dim ker A*.
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More generally if we have a continuous map
f: X—>7F
(i.e. a family of Fredholm operators, parametrizedy then one can define
index f € K(X)
and one can show [2] that we have an isomorphism
index : [X, F] = K(X) (3.1)

where [, ] denotes homotopy classes of maps. TRU) has a natural defi-
nition as the ‘home’ of indices of Fredholm operators (parametrized oyt
gives the complete homotopy invariant.

Different variants ofK -theory can be defined by different variants of (3.1).
For example reaK -theory uses real Hilbert space and equivarigrtheory
for G-spaces uses a suitalitespace module o6, namelyL>(G) ® H. Itis
natural to look for a similar story for our new groufis. (X). A first candidate
might be to consideZ,-equivariant maps

f:X—=>9F

where we endovl# with the involution A — A* given by taking the adjoint
operator. Since this switches the role of kernel and cokernel it actsl amn
the index, and so is in keeping with our starting point.

As a check we can considet with a trivial involution, thenf becomes a
map

f:X>7

where7 is the space of self-adjoint Fredholm operators. Now in [4] it is shown
thatF has three components

-~ o~

7.7, 7.

where the first consists & which are essentially positive (only finitely many
negative eigenvalues), the second is given by essentially negative operators.
These two components are trivial, in the sense that they are contractible, but
the third one is interesting and in fact [4]

F, ~QF (3.2)
where2 denotes the loop space. Since

[X, QF] = KL(X)
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this is in agreement with (2.6) — though to get this we have to discard the two
trivial components off, a technicality to which we now turn.

Lying behind the isomorphism (3.1) is Kuiper's Theorem [11] on the con-
tractibility of the unitary group of Hilbert spaces. Hence to establish that our
putative definition ofK .. coincides with the definition given in Section 2 we
should expect to need a generalization of Kuiper’s Theorem incorporating the
involution A — A* on operators. The obvious extension turns out to be false,
precisely becaus, the fixed-point set of on ¥, has the additional con-
tractible components. There are various ways we can get round this but the
simplest and most natural is to use ‘stabilization’. Sikté& H & H we can
always stabilize by adding an additional factot®fin fact Kuiper's Theorem
has two parts in its proof:

(1) The inclusionlJ (H) — U(H & H) defined byu — u & 1 is homotopic
to the constant map.

(2) This inclusion is homotopic to the identity map given by the isomorphism
HZ=HgH.

The proof of (1) is an older argument (sometimes called the ‘Eilenberg
swindle’), based on a correct use of the fallacious formula

1=1+C1+D)+(-1+1)...
=1+-HD+A+-D+...
=0.
The trickier part, and Kuiper’s contribution, is the proof of (2).

For many purposes, as K-theory, the stronger version is a luxury and one
can get by with the weaker version (1), which applies rather more generally. In
particular (1) is consistent with taking adjoints (i.e. inversed {iH)), which
is the case we need.

With this background explanation we now introduce formally our second
definition, and to distinguish it temporarily frol. as defined in Section 2,
we put

Ke(X) = [X. TS (3.3)

wherex means we us&,;-maps compatible witk ands means that we use
stable homotopy equivalence. More precisely thg-maps

f:X—>FH) g:X—FH)
are called stably homotopic if the ‘stabilized’ maps

fS:X>JFHeH) ¢:X=>TFHaH)
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given by fS = f @ J, g° = g& J are homotopic, wherd is a fixed (essen-
tially unique) automorphism afl with

J=J% J2=1, +1and-1 both of infinite multiplicity. ~ (3.4)

Note that under such stabilization the two contractible comporﬁ%ptand
F_ of ?(H) both end up in the interesting compon@htof ?(H @® H).

The first thing we need to observe abdki (X) is that it is an abelian
group. The addition can be defined in the usual way by using direct sums of
Hilbert spaces. Moreover we can define the negative degree g#Gupex)

(for n > 1) by suspension (with trivial involution on the extra coordinates), so
that

Ki"(X) = KL (X x S, X x 00).

However, at this stage we do not have the periodicity theorei®{aiX). This
will follow in due course after we establish the equivalence With(X). As
we shall see our construction of (4.2) is itself closely tied to the periodicity
theorem.

Our aim in the subsequent sections will be to show that there is a natural
isomorphism

Ky (X) = Ko (X). (3.5)

This isomorphism will connect us up naturally with Dirac operators and so
should tie in nicely with the physics.

4 Construction of the map
Our first task is to define a natural map

Ki(X) = K(X). (4.1)
We recall from (2.5) that
K(X) = Kz,(X x R
= Kz,(X x $2, X x o0)

whereS? is the 2-sphere obtained by compactifyiRg?, andoo is the added
point. Note thaiZ, now acts orS? by areflection, so that it reverses its orien-
tation.

Thus to define a map (4.1) it is sufficient to define a map

Kz,(X x ) = K+ (X). (4.2)
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This is where the Dirac operator enters. Recall first that, if we ignore involu-
tions, there is a basic map

K(X x $%) = [X, F] = K(X) (4.3)

which is the key to the Bott periodicity theorem. It is given as follows. Let
D be the Dirac operator of? from positive to negative spinors and Mt

be a complex vector bundle a§ x S?, then we can extend, or couplB,

to V to get a familyDy of elliptic operators along th&2-fibres. Converting
this, in the usual way, to a family of (bounded) Fredholm operators we get the
map (4.3).

We now apply the same construction but keeping track of the involutions.
The new essential feature is thas reverses the orientation & and hence
takes the Dirac operatd® into its adjointD*. This is precisely what we need
to end up inK 4 (X) so defining (4.2).

Remark 4.1. Strictly speaking the familypy of Fredholm operators does not
act in a fixed Hilbert space, but in a bundle of Hilbert spaces. The problem can
be dealt with by adding a trivial operator acting on a complementary biidle
(so thatW + V is trivial).

5 Equivalence of definition
Let us sum up what we have so far. We have defined a natural homomorphism

K (X) = K+(X)

and we know that this is an isomorphism for spa¥esith trivial involution —
both groups coinciding with 1(X). Moreover, if for generak, we ignore the
involutions, or equivalently replac¥ by X x {0, 1}, we also get an isomor-
phism, both groups now coinciding with®(X).

General theory then implies that we have an isomorphism fot.ale shall
review this general argument.

Let A, B be representable theories, defined on the categafy-spaces, so
that

AX) = [X, A]

B(X) = [X, B]
where [, ] denotes homotopy classes @5-maps into the classifying spaces
of A, B of the theories. A natural maf(X) — B(X) then corresponds to a

Zy-mapA — B. Showing thatA and B are isomorphic theories is equivalent
to showing thatd andB are Z,-homotopy equivalent.
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If we forget about the involutions then isomorphism of theories is the same
as ordinary homotopy equivalence. Restricting to spacegth trivial invo-
lution corresponds to restricting to the fixed-point sets of the involutior on
andB.

Now there is a general theorem in homotopy theory [10] which asserts (for
reasonable spaces including Banach manifolds such)abat, if a Zo-map
A — B is both a homotopy equivalence ignoring the involution and for the
fixed-point sets, then it is Z,-homotopy equivalence. Translated back into the
theoriesA, B it says that the map\(X) — B(X) is an isomorphism provided
it holds for spacesX with the trivial Z,-action, and forZ;-spacesX of the
formY x {0, 1}.

This is essentially the situation we have here with

A=Ky B=%X..
Both are representable. The representability of the first
Ki(X) = Kz,(X x RLY)

arises from the general representability f,, the classifying space being
essentially the double loop spacedafH ® C?) with an appropriate&,-action.
The second is representable because

K (X) =[X, FI5 = [X, Fs]« (5.1)
whereJs is obtained by stabilizing. More precisely

n—o00

whereF, = F(H ® C") and the limit is taken with respect to the natural

inclusions, using] of (3.4) as a base point. The assertion in (5.1) is easily

checked and it simply gives two ways of looking at the stabilization process.
We have thus established the equivalence of our two definifgnandX ...

6 Freeinvolutions

We shall now look in more detail at the case of free involutions and, follow-
ing the notation of Section 1, we shall denote the ffeespace byX and its
quotient byX.

The reason for introducing the stabilization process in Section 3 concerned
fixed points. We shall now show that, for free involutions, we can dispense
with stabilization. Let

F > F5
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be the natural inclusion of in the direct limit space. This inclusion is a
Zy-map and a homotopy equivalence, thoungh a Z,-homotopy equivalence
(because of the fixed points). Now given the double coveXng- X we can
form the associated fibre bundléx and 35, over X with fibres J and F.
Thus

ffxz)N(Xzzgj 3’~§<=)~(X225FS
and we have an inclusion
Fx — Fx

which is fibre preserving. This map is a homotopy equivalence on the fibres
and hence, by a general theorem [7] (valid in particular for Banach manifolds)
a fibre homotopy equivalence. It follows that the homotopy classes of sections
of these two fibrations are isomorphic. But these are the same as

[)2, 3"]* and [x ?]i = K (X).

This show that, for a free involution, we can uBénstead ofFS. Moreover it
gives the following simple description &f..(X)

K+ (X) = Homotopy classes of sections ®¥. (6.1)

This is theK -theory analogue of twisted cohomology described in Section 1.
A corresponding approach to the higher twiskotheory given by an element
of H3(X; Z) will be developed in [3].

7 Thereal case

Everything we have done so far extends, with appropriate modifications, to
real K-theory. The important difference is that the periodicity is now 8 rather
than 2 and that, correspondingly, we have to distinguish carefully between
self-adjoint and skew-adjoint Fredholm operators. Over the complex num-
bers multiplication by converts one into the other, but over the real numbers
there are substantial differences.

We denote byF1(R) the interesting component of the space of real self-
adjoint Fredholm operator@(R) on a real Hilbert space (discarding two
contractible components as before). We also denotg th(R) the space of
skew-adjoint Fredholm operators. Then in [4] it is proved that

[X, FL(R)] = KOY(X) (7.1)
[X, 5 YR]= KO LX) = KO'(X) (7.2)

showing that these are essentially different groups.
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Using (7.1), stabilizing, and arguing precisely as before, we define

KOx(X) = KO3, (X x RY?) = KOz,(X x RY)
KOL(X) = [X, F(RIS

where (in (2.5)) the mod 2 periodicity of K has been replaced by the mod
8 periodicity of K O. But we cannot now just use the Dirac operator$n
because this is not real. Instead we have to use the Dirac opera®r which

then gives us our map

KO+(X) — [X, F(RIS. (7.3)
The same proof as before establishes the isomorphism of (7.3), so that
KOL(X) ZX0O0L(X)
and more generally fa modulo 8
Ko (x) = K0l (X). (7.4)

In [4] there is a more systematic analysis of Fredholm operators in relation to
Clifford algebras and using this it is possible to give more explicit descriptions
of KOi(X), for all g, in terms of Zo-mappings into appropriate spaces of
Fredholm operators. This would fit in with the different behaviour of the Dirac
operator in different dimensions (modulo 8).
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