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1 Introduction

As participants in the MASIE-project, we attended the summer school Me-
chanics and Symmetry in Peyresq, France, during the first two weeks of Septem-
ber 2000. These lecture notes are based on the notes we took there from Pro-
fessor Meyer’s lecture series “N-Body Problems”.

The N-body problem is a famous classical problem. It consists in describing
the motion of N planets that interact with a gravitational force. Already in
1772, Euler described the three-body problem in his effort to study the motion
of the moon. In 1836 Jacobi brought forward an even more specific part of
the three body problem, namely that in which one of the planets has a very
small mass. This system is the topic of this paper and is nowadays called the
restricted three-body problem. It is a conservative system with two degrees of
freedom, which gained extensive study in mechanics.
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2 I Stability in Hamiltonian Systems

The N-body problem has always been a major topic in mathematics and
physics. In 1858, Dirichlet claimed to have found a general method to treat
any problem in mechanics. In particular, he said to have proven the stability
of the planetary system. This statement is still questionable because he passed
away without leaving any proof. Nevertheless, it initiated Weierstrass and his
students Kovalevski and Mittag-Leffler to try and rediscover the method men-
tioned by Dirichlet. Mittag-Leffler even managed to convince the King of
Sweden and Norway to establish a prize for finding a series expansion for co-
ordinates of the N-body problem valid for all time, as indicated by Dirichlet’s
statement. In 1889, this prize was awarded to Poincaré, although he did not
solve the problem. His essay, however, produced a lot of original ideas which
later turned out to be very important for mechanics. Moreover, some of them
even stimulated other branches of mathematics, for instance topology, to be
born and later on gain extensive study. Despite of all this effort, the N-body
problem is still unsolved for N> 21.

This paper focuses on the relatively simple restricted three-body problem.
This describes the motion of a test particle in the combined gravitational field
of two planets and it could serve for instance as a model for the motion of a
satellite in the Earth-Moon system or a comet in the Sun-Jupiter system. The
restricted three-body problem has a number of relative equilibria, which we
compute. The remaining text will mainly be concerned with general Hamilto-
nian equilibria. Stability criteria for these equilibria will be derived, as well as
detection methods for bifurcations of periodic solutions. Classical and more
advanced mathematical techniques are used, such as spectral analysis, Lia-
punov functions, Birkhoff-Gustavson normal forms, Poincaré sections, and
Kolmogorov twist stability. All help to study the motion of the test particle
near the relative equilibria of the restricted problem.

2 The restricted three-body problem

Before introducing the restricted three-body problem, let us study the two-
body problem, the motion of two planets interacting via gravitation. Denote
by X1,X2 ∈ R3 the positions of the planets 1 and 2 respectively. Let us
assume that planet 1 has mass 0 < µ < 1, planet 2 has mass 1 − µ and the
gravitational constant is equal to 1. These assumptions are not very restrictive,
because they can always be arranged by a rescaling of time. The equations of

1 Summarized from [10], [11] and [8]
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I. 2 The restricted three-body problem 3

motion for the two-body problem then read:

d2X1

dt2
= − (1−µ)

||X1−X2||3 (X1 − X2)

d2X2

dt2
= − µ

||X1−X2||3 (X2 − X1) .

(2.1)

Let us denote the center of mass

Z := µX1 + (1 − µ)X2 . (2.2)

Then we derive from (2.1) and (2.2) that d2Z
dt2 = 0, expressing that the center

of mass moves with constant speed. Now we transform to co-moving coordi-
nates

Yi = Xi − Z for i = 1, 2, (2.3)

and we write down the equations of motions in these new variables:

d2Y1

dt2
= − (1 − µ)3

||Y1||3 Y1 ,
d2Y2

dt2
= − µ3

||Y2||3 Y2 . (2.4)

Let us analyze these equations a bit more. First of all, we see from the defini-
tions (2.2) and (2.3) that µY1 + (1 − µ)Y2 = 0, so Y1 and Y2 lie on a line
through the origin of R3, both at another side of the origin, and their length ra-
tio ||Y1||

||Y2|| is fixed to the value 1−µ
µ . The line connecting Y1,Y2 and the origin

is called the line of syzygy. Because Y 2 = − µ
1−µY 1, we in fact only need to

study the first equation of (2.4). The motion of the second planet then follows
automatically.

Secondly, by differentiation one finds that the angular momentum Y1× dY1

dt

is independent of time. Indeed, d
dt (Y1× dY1

dt ) = dY1

dt × dY1

dt +Y1× d2Y1

dt2 = 0,
because both terms are the cross-products of collinear vectors.

In the case that Y1 × dY1

dt = 0, and assuming that Y1(0) �= 0, we have
that dY1

dt has the same direction as Y1, so the motion takes place in a one-
dimensional subspace: Y1, dY1

dt ,Y2, dY2

dt ∈ Y1(0)R = Y2(0)R. It is not dif-
ficult to derive the following scalar second order differential equation for the
motion in this subspace: d2

dt2 ||Y1|| = −(1 − µ)3/||Y1||2. It turns out that in
this case Y1 and Y2 fall into the origin in a finite time.

In the case that Y1 × dY1

dt �= 0, the motion takes place in the plane per-
pendicular to Y1 × dY1

dt , because both Y1 and dY1

dt are perpendicular to the
constant vector Y1 × dY1

dt . By rotating our coordinate frame, we can arrange
that Y1 × dY1

dt is some multiple of the third basis vector. Thus we can consider
the equations (2.4) as two second order planar equations. It is well-known that

the planar solutions of d2Y1

dt2 = − (1−µ)3

||Y1||3 Y1 with Y1 × dY1

dt �= 0 describe one
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4 I Stability in Hamiltonian Systems

of the conic sections: a circle, an ellipse, a parabola or a hyperbola. Y2 clearly
describes a similar conic section.

Let us now assume that a certain solution of the two-body problem is given
to us. We want to study the motion of a test particle in the gravitational field of
the two main bodies, which we call primaries. The test particle is assumed to
have zero mass. Therefore it does not affect the primaries, but it does feel the
gravitational force of the primaries acting on it. The resulting problem is called
the restricted three-body problem. It could serve as a model for a satellite in
the Earth-Moon system or a comet in the Sun-Jupiter system. Let X ∈ R3

denote the position of the test particle. Then the restricted three-body problem
is given by

d2X

dt2
= − µ

||X − X1||3 (X − X1) − (1 − µ)
||X − X2||3 (X − X2) , (2.5)

in which (X1,X2) is the given solution of the two-body problem. One can
again transform to co-moving coordinates, setting Y = X −Z, which results
in the system

d2Y

dt2
= − µ

||Y − Y1||3 (Y − Y1) − (1 − µ)
||Y − Y2||3 (Y − Y2) . (2.6)

At this point we start making assumptions. Let us assume that the primaries
move in a circular orbit around their center of mass with constant angular ve-
locity . This is approximately true for the Earth-Moon system and the Sun-
Jupiter system. We set the angular velocity equal to 1. Without loss of gener-
ality, we can assume that the motion of the primaries takes place in the plane
perpendicular to the third basis-vector. Thus, after translating time if neces-
sary,

Y1 = R(t)

⎛
⎝ 1 − µ

0
0

⎞
⎠ , Y2 = R(t)

⎛
⎝ −µ

0
0

⎞
⎠ , (2.7)

in which R(t) is the rotation matrix:

R(t) :=

⎛
⎝ cos t − sin t 0

sin t cos t 0
0 0 1

⎞
⎠ . (2.8)

Note that we have introduced a rotating coordinate frame in which the motion
of the primaries has become stationary. At this point we put in our test particle
and again we make an assumption, namely that it moves in the same plane as
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I. 3 Relative equilibria 5

the primaries do. So we set

Y = R(t)

⎛
⎝ x1

x2

0

⎞
⎠ . (2.9)

Let (x, 0)T = (x1, x2, 0)T be the coordinates of the test particle in the rotating
coordinate frame. By inserting (2.7), (2.8) and (2.9) into (2.6), multiplying the
resulting equation from the left by R(t)−1 and using two following identities

d2

dt2

(
cos t − sin t

sin t cos t

)
= −

(
cos t − sin t

sin t cos t

)
,

(
cos t − sin t

sin t cos t

)−1
d

dt

(
cos t − sin t

sin t cos t

)
=

(
0 −1
1 0

)
,

we deduce the planar equations of motion for x ∈ R2:

d2x

dt2
− x +

(
0 −2
2 0

)
dx

dt
=

− µ

‖x − (1−µ
0 )‖3

(
x − (1−µ

0 )
)
− 1 − µ

||x − (−µ
0 )||3 (x − (−µ

0 )).

Finally, setting y = dx
dt +(0 −1

1 0 )x, we find that these are Hamiltonian equations
of motion on R4\{x = (1−µ

0 ), (−µ
0 )} with Hamiltonian

H =
1
2
(y2

1 + y2
2) − (x1y2 − x2y1) − µ

||x − (1−µ
0 )|| −

1 − µ

||x − (−µ
0 )|| , (2.10)

where we have equipped R4 with the canonical symplectic form dx1 ∧ dy1 +
dx2 ∧ dy2, i.e. the equations of motion are given by dxi

dt = ∂H
∂yi

, dyi

dt = − ∂H
∂xi

.

3 Relative equilibria

Let us look for equilibrium solutions of the Hamiltonian vector field induced
by (2.10). These correspond to stationary motion of the test particle relative
to the rotating coordinate frame and are therefore called relative equilibria. In
the original coordinates they correspond to the test particle rotating around the
center of mass of the primaries with angular velocity 1.

First of all, to facilitate notation, we introduce the potential energy function

V (x) := − µ

||x − (1−µ
0 )|| −

1 − µ

||x − (−µ
0 )|| .
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6 I Stability in Hamiltonian Systems

To find the equilibrium solutions of (2.10) we set all the partial derivatives of
H equal to zero and find

y1 + x2 = 0 , y2 − x1 = 0 , −y2 +
∂V

∂x1
(x) = 0 , y1 +

∂V

∂x2
(x) = 0 ,

or equivalently,

∂V

∂x1
(x) = x1 ,

∂V

∂x2
(x) = x2 , (3.1)

where y at the equilibrium point can easily be found once we solved (3.1) for x

at the equilibrium point. Note that x solves (3.1) if and only if x is a stationary
point of the function

U(x) :=
1
2
(x2

1 + x2
2) − V (x) ,

called the amended potential.
Let us first look for equilibrium points of the amended potential that lie on

the line of syzygy, i.e. for which x2 = 0. Note that ∂U
∂x2

(x) = 0 is automati-

cally satisfied in this case since ∂V
∂x2

|x2=0 ≡ 0. ∂U
∂x1

(x) = 0 reduces to

d

dx1
U(x1, 0) =

d

dx1

(
1
2
x2

1 +
µ

|x1 + µ − 1| +
1 − µ

|x1 + µ|
)

= 0 . (3.2)

Clearly, U(x1, 0) goes to infinity if x1 approaches −∞,−µ, 1 − µ or ∞, so
U(x1, 0) has at least one critical point on each of the intervals (−∞,−µ),
(−µ, 1 − µ) and (1 − µ,∞). But we also calculate that d2

dx2
1
U(x1, 0) =

1 + 2 µ
|x1+µ−1|3 + 2 1−µ

|x1+µ|3 > 0. So U(x1, 0) is convex on each of these
intervals and we conclude that there is exactly one critical point in each of
the intervals. The three relative equilibria on the line of syzygy are called
the Eulerian equilibria. They are denoted by L1, L2 and L3, where L1 ∈
(−∞,−µ) × {0}, L2 ∈ (−µ, 1 − µ) × {0} and L3 ∈ (1 − µ,∞) × {0}.

Now we shall look for equilibrium points that do not lie on the line of
syzygy. Let us use d1 = ||x − (1−µ

0 )|| =
√

(x1 + µ − 1)2 + x2
2 and d2 =

||x − (−µ
0 )|| =

√
(x1 + µ)2 + x2

2 as coordinates in each of the half-planes
{x2 > 0} and {x2 < 0}. Then U can be written as U = µ

2 d2
1 + 1−µ

2 d2
2 −

µ(1−µ)
2 + µ

d1
+ 1−µ

d2
. So the critical points of U are given by di = d−2

i i.e.
d1 = d2 = 1. This gives us the two Lagrangean equilibria which lie at the
third vertex of the equilateral triangle with the primaries at its base-points:
L4 = ( 1

2 − µ, 1
2

√
3)T and L5 = ( 1

2 − µ,− 1
2

√
3)T .

This paper discusses some useful tools for the study of the flow of Hamil-
tonian vector fields near equilibrium points. We will for instance establish
stability criteria for Hamiltonian equilibria and study bifurcations of periodic
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I. 4 Linear Hamiltonian systems 7

solutions near Hamiltonian equilibria. The Eulerian and Lagrangean equilibria
of the restricted three-body problem will serve as an instructive and inspiring
example.

4 Linear Hamiltonian systems

One of the techniques to prove stability for an equilibrium of a system of dif-
ferential equations, is to analyze the linearized system around that equilibrium.
Stability or instability then may follow from the eigenvalues of the matrix of
the linearized system. In Hamiltonian systems, these eigenvalues have a spe-
cial structure which implies that the linear theory can only be used to prove
instability, not stability. We will start by giving a brief introduction to lin-
ear Hamiltonian systems. We then conclude this section with a lemma which
shows why one can not conclude stability from the linear analysis.

Consider a symplectic vector space R2n with coordinates z = (x,y)T and
the symplectic form is dx∧ dy :=

∑n
j=1 dxj ∧ dyj . Then every continuously

differentiable function H : R2n → R induces the Hamiltonian vector field XH

on R2n defined by XH(z) = J(∇H(z))T , in which the 2n × 2n matrix

J =
(

0 In

−In 0

)

is called the standard symplectic matrix. Note that XH gives rise to the Hamil-
tonian system of differential equations dxi

dt = ∂H
∂yi

, dyi

dt = − ∂H
∂xi

. The function
H is called the Hamiltonian function of the vector field XH .

Suppose that for z◦ ∈ R2n we have ∇H(z◦) = 0, then z◦ is called a
rest point, equilibrium point, fixed point, or critical point of H . Note that
XH(z◦) = 0 so z◦ is fixed by the flow of XH . By translating our coordinate
frame, we can arrange that z◦ = 0. We will assume that H is a sufficiently
smooth function in a neighborhood of its equilibrium 0, so that we can write
H(z) = H2(z) + O(||z||3) as z → 0, where H2 is a quadratic form on
R2n. The linearized vector field of XH at 0 is the Hamiltonian vector field
XH2 induced by the quadratic Hamiltonian H2. This encourages us to study
quadratic Hamiltonians and their induced linear Hamiltonian vector fields.

Let H2 : R2n → R be a quadratic form, determined by the symmetric
2n× 2n matrix Q, i.e. H2(z) = 1

2zT Qz with QT = Q. H2 generates a linear
Hamiltonian vector field:

XH2(z) = J(∇H2(z))T = JQz . (4.1)

Matrices S of the form S = JQ for some symmetric matrix Q are called
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8 I Stability in Hamiltonian Systems

infinitesimally symplectic or Hamiltonian. The set of all infinitesimally sym-
plectic matrices is denoted by

sp(n) := {S ∈ R2n×2n | S = JQ for some Q = QT}
= {S ∈ R2n×2n | STJ + JS = 0} .

Note that the standard symplectic matrix J satisfies J−1 = JT = −J . Now
take any infinitesimally symplectic matrix S of the form S = JQ, with Q

symmetric. Then the simple calculation

J−1(−ST )J = J−1(−JQ)T J = −J−1(QJT )J = −J−1Q = JQ = S,

shows that S and −ST are similar. But similar matrices have equal eigenval-
ues. And because S has real coefficients, this observation leads to the follow-
ing lemma:

Lemma 4.1 If S ∈ sp(n) and λ is an eigenvalue of S, then also −λ, λ and
−λ are eigenvalues of S.

Now let us consider the exponential of an infinitesimally symplectic matrix,
exp(S) = exp(JQ), which is the fundamental matrix for the time-1 flow of the
linear Hamiltonian vector field z 
→ Sz = JQz. It is a nice exercise to show
that it satisfies (exp(S))T J exp(S) = J . In general, a matrix P ∈ R2n×2n

satisfying P T JP = J is called symplectic. The set of symplectic matrices is
denoted

Sp(n) := {P ∈ R2n×2n | P T JP = J}.
For a symplectic matrix P one easily derives that J−1P−T J = P , so P−T

and P are similar. This leads to:

Lemma 4.2 If P ∈ Sp(n) and λ is an eigenvalue of P , then so too are λ−1, λ

and λ
−1

.

We remark here that Sp(n) is a Lie group with matrix multiplication. Its Lie
algebra is exactly sp(n).

Remember that we studied linear Hamiltonian systems to determine stability
or instability of an equilibrium from the spectrum of its linearized vector field.
From lemma 4.1 we see if one eigenvalue has a nonzero real part, then there
must be an eigenvalue with positive real part. In this case the equilibrium is
unstable. The other possibility is that all eigenvalues are purely imaginary. In
this case, adding nonlinear terms could destabilize the equilibrium. So lemma
4.1 states that for Hamiltonian systems, the linear theory can only be useful to
prove instability of an equilibrium.
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I. 5 Liapunov’s and Chetaev’s theorems 9

Lemma 4.2 states a similar thing for symplectic maps: if Ψ : R2n → R2n

is a symplectic diffeomorphism with a fixed point, then the linearization of Ψ
at that fixed point can only be used to prove instability of the fixed point, not
stability.

The reader should be convinced now that we need more sophisticated math-
ematical techniques if we want to have stability results. Some of them will be
explained in the following section.

5 Liapunov’s and Chetaev’s theorems

We will now describe a direct method to determine stability of an equilibrium.
We will give references for the proofs and explain the interpretation of the
theory instead. In section 6 we shall apply the obtained results to the relative
equilibria of the restricted three-body problem.

Consider a general system of differential equations,

v̇ = f(v) , (5.1)

where f is a Cr vector field on Rm and f(0) = 0. Let V : U → R be a
positive definite C1 function on a neighborhood U of the origin, i.e. V (0) = 0
and V (z) > 0, ∀z ∈ U\{0}. If u is a solution of (5.1), then the derivative of
V along u is d

dtV (u(t)) = ∇V (u(t)) · u̇(t) = ∇V (u(t)) · f(u(t)). So let us
define the orbital derivative V̇ : U → R of V as

V̇ (v) := ∇V (v) · f(v) .

Theorem 5.1 (Liapunov’s theorem) Given such a function V for the system
of equations (5.1), we have:

(i) If V̇ (v) ≤ 0, ∀v ∈ U\{0} then the origin is stable.
(ii) If V̇ (v) < 0, ∀v ∈ U\{0} then the origin is asymptotically stable.

(iii) If V̇ (v) > 0, ∀v ∈ U\{0} then the origin is unstable.

The function V is called a Liapunov function.
Let us see what this means for m = 2. Since V is a positive definite function,

0 is a local minimum of V. This implies that there exists a small neighborhood
U ′ of 0 such that the level sets of V lying in U ′ are closed curves. Recall that
∇V (uc) is a normal vector to the level set C of V at uc pointing outward. If
an orbit u(t) crosses this level curve C at uc, then the velocity vector of the
orbit and the gradient ∇V (uc) will form an angle θ for which

cos(θ) =
V̇ (uc)

||∇V (uc)||||f(uc)|| .
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10 I Stability in Hamiltonian Systems

V̇ (u) < 0 implies that π/2 < θ < 3π/2. It follows that the orbit is moving
inwards the level curve C in this case. If V̇ (u) = 0, the orbit follows C. If
V̇ (u) > 0 we see the orbit moving outwards of C, that is away from the origin.
See [7] for proof of Liapunov’s theorem.

An immediate implication of Liapunov’s theorem is the following. Consider
a Hamiltonian system

ż = J(∇H(z))T . (5.2)

A good candidate for the Liapunov function in this Hamiltonian system would
be the Hamiltonian function itself, because the orbits of a Hamiltonian system
lie in the level set of the Hamiltonian. So V̇ = Ḣ = 0. Thus, if H is lo-
cally positive definite then Liapunov’s theorem applies. And if H is negative
definite, one can choose −H as a Liapunov function. We have:

Theorem 5.2 (Dirichlet’s Theorem) The origin is a stable equilibrium of (5.2),
if it is an isolated local maximum or local minimum of the Hamiltonian H .

The condition for instability in Liapunov’s theorem is very strong since it
requires the orbital derivative to be positive everywhere in U . The following
theorem is a way to conclude instability under somewhat weaker conditions.

Theorem 5.3 (Chetaev’s theorem) Let U be a small neighborhood of the ori-
gin where the C1 Chetaev function V : U → R is defined. Let Ω be an open
subset of U such that

(i) 0 ∈ ∂Ω,
(ii) V (v) = 0,∀ v ∈ ∂Ω ∩ U ,

(iii) V (v) > 0 and V̇ (v) > 0,∀ v ∈ Ω ∩ U .

Then the origin is an unstable equilibrium of (5.2).

The interpretation of this theorem is the following. An orbit u(t;u◦) start-
ing in Ω ∩ U , will never cross ∂Ω due to the properties (2) and (3) of the
Chetaev function. From the second part of property (3) it now follows that
V (u(t;u◦)) is increasing whenever u(t;u◦) lies in Ω ∩ U . This orbit can not
stay in ∂Ω∩U due to the fact that U is open. Thus, u(t) moves away from the
origin. Hence the origin is unstable.

6 Applications to the restricted problem

In this section we apply the theory of the previous sections to the relative equi-
libria of the restricted three-body problem.
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