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Introduction

A history of the D(2)-problem

The problem with which this book is concerned arose from the attempt, during
the 1960s, to classify compact manifolds by means of ‘surgery’ [7], [48], [71],
[73]. Developing further the techniques of Thom [64], Wallace [75], [76], [77],
Milnor [43], and Smale [52], a movement led notably by W. Browder, S.P.
Novikov, and C.T.C. Wall made a systematic effort to understand compact
manifolds in terms of homotopy theory which, by that time, was already a
mature subject, with its own highly developed literature and was considered, in
practice, at least under the simplifying restriction of simple connectivity, to be
effectively computable [8].

Wall’s particular contribution to manifold theory was to consider surgery
problems in which the fundamental group is non-trivial. Perhaps one should
point out that by allowing a// finitely presented fundamental groups, one au-
tomatically turns a computable theory into a noncomputable one [6], [47].
However, even if we restrict our attention to fundamental groups which are fa-
miliar, the extent to which the resulting theory is computable is problematic. It
really depends upon what is meant by ‘familiar’, and how well one understands
the group under consideration. When describing groups by means of genera-
tors and relations, there are easily stated questions which one can ask of very
familiar and otherwise tractable finite groups which at present seem completely
beyond our ability to answer.

In connection with this general attack, Wall wrote two papers which merit
special attention. The first of these, ‘Poincaré Complexes I' [72], gives general
homotopical conditions which must be satisfied by any space before it can be
transformed, by surgery, into a manifold.

The second, ‘Finiteness conditions for CW complexes’ [68] (and despite the
earlier publication date, it does seem to come later in historical development),

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521537495
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521537495 - Stable Modules and the D(2)-Problem
F. E. A. Johnson

Excerpt

More information

2 Stable Modules and the D(2)-Problem

straddles the boundary between surgery and a more general attempt to describe
all homotopy theory in terms of pure algebra, namely ‘algebraic’ or ‘combinato-
rial’ homotopy theory [80]. Wall’s aim in this paper is to formulate general con-
ditions which guarantee that a given space will be homotopically equivalent to
one with certain properties. In particular, he asks what conditions it is necessary
to impose before a space can be homotopy equivalent to one of dimension < n.

The obvious first condition that one looks for is that homology groups should
vanish in dimensions > n. This is clearly a necessary condition. However, ho-
mology alone is a notoriously bad indicator of dimension as the following
‘Moore space’ example shows.

Let m be a positive integer; the Moore space M(m, n) is formed from the
n-sphere by attaching an (n + 1)-cell by an attaching map S" — S" of degree
m. Then M(m, n) has dimension n + 1. However, computing integral homology
gives

Z/mZ k=n
Hi(M@n,n),Z) =
0 n<k
which falsely indicates the dimension as dim = n. In fact, the accurate indicator
of dimension is integral cohomology, and in this case we get

M m ), Z) {Z/mZ k=n+1
0 n+1<k
giving the correct answer dim(M(m,n)) =n + 1.

If X denotes the universal covering of X, the assumption that Hy(X;Z) = 0
forall n < k is enough to guarantee that X is equivalent to a space of dimension
< n 4+ 1, but not necessarily of dimension < n. Therefore, we may pose the
problem in the following form:

D(n)-problem: Let X be a complex of geometrical dimension # 4+ 1. What
further conditions are necessary and sufficient for X to be homotopy equivalent
to a complex of dimension n?

In the simply connected case, Milnor (unpublished) had previously shown that
the necessary condition H n+1(X:Z)=0, abstracted from the Moore space ex-
ample, was already sufficient. In the non-simply connected case, clearly, one still
requires H,,(X;Z) = 0. That being assumed, Wall showed that in dimensions
n > 3, the additional condition, both necessary and sufficient, is the obvious
generalization from the simply connected case, namely that H"+t'(X;B) =0
should hold for all coefficient bundles B.
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Introduction 3

Wall also gave a ‘formal’ solution to the D(1)-problem, at the cost of us-
ing nonabelian sheaves B. To an extent this was unsatisfactory, and the one-
dimensional case was not cleared up completely until the Stallings—Swan proof
that groups of cohomological dimension one are free [54], [61]. This left only
the two-dimensional case, which we state in the following form:

D(2)-problem: Let X be a finite connected cell complex of geometrical di-
mension 3, and suppose that

Hy(X;Z)= H*(X;B) =0

for all coefficient systems 5 on X. Is it true that X is homotopy equivalent to a
finite complex of dimension 27

We shall say that a 3-complex X is cohomologically two-dimensional when
these two conditions are satisfied. We note, and shall do so again in detail
at the appropriate point, that for finite fundamental groups G, the condition
Hy(X;Z) = 0 is redundant, since it is implied, using the Eckmann—Shapiro
Lemma, by the condition H 3(X;F) = 0 where F is the standard coefficient
bundle on X with fibre Z[G].

We have chosen to ask the question with the restriction that X be a finite
complex. One can, of course, relax this condition; one can also ask a similar
question phrased in terms of collapses and expansions [70]. Neither, however,
will be pursued here.

The first thing to observe is that the D(2)-problem is parametrized by the
fundamental group. Each finitely presented group G has its own D(2)-problem;
we say that the D(2)-property holds for G when the above question is answered
in the affirmative, and likewise fails for G when there is a finite 3-complex X¢
with (X ) = G which answers the above question in the negative.

The D(2)-problem arises in a completely natural way once one attempts, as
Wall did in [72], to find a normal form for Poincaré complexes. To see how,
consider a smooth closed connected n-manifold M"”, and let M be the bounded
manifold obtained by removing an open disc; by Morse Theory, it is easy to see
that M, contracts on to a subcomplex of dimension < n — 1; in particular, M
admits a cellular decomposition with a single-top dimensional cell. In [72] Wall
attempted to mimic this construction in the context of Poincaré complexes. He
showed that, as a consequence of Poincaré Duality, a finite Poincaré complex
M of dimension n + 1 > 4 has, up to homotopy, a representation in the form

(%) M= XU, ™!

where X is finite complex satisfying Hn+1(X :Z) = H"'(X;B) = 0 for all
coefficient systems . Wall showed, in [68], that the case n > 3 sucessfully
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4 Stable Modules and the D(2)-Problem

mimics the situation for manifolds in that X is equivalent to an n-complex.
When n = 1, it follows from the Stallings—Swan Theorem [54], [61] that X
is homotopy equivalent to a one-dimensional complex. It is only in the case
n = 2, corresponding to a Poincaré 3-complex, that we still do not know the
general answer.

The two-dimensional realization problem

In the world of low-dimensional topology, there is another, older, problem which
can be posed independently. If K is a finite 2-complex with 7;(K) = G one
obtains an exact sequence of Z[G]-modules of the form

0 — m(K) = Co(K) 3 CLK) B Co(K) S Z - 0

where m,(K) is the second homotopy group of K, and C,(K) = H,(K®™,
K®=DY is the group of cellular n-chains in the universal cover of K. Since
each C,(K) is a free module over Z[G], this suggests that we take, as algebraic
models for geometric 2-complexes, arbitrary exact sequences of the form

O—>J—>F2—62>F|ﬁ>F0—E>Z—>0

where F; is a finitely generated free (or, more generally, stably free) module
over Z[G]. Such objects are called algebraic 2-complexes over G, and form a
category denoted by Alg,;.

In fact, the correspondence K +— C.(K) gives a faithful representation of
the two-dimensional geometric homotopy relation in the algebraic homotopy
category determined by Alg,;. That is, when K, L are finite geometrical 2-
complexes with 7(K) = m(L) = G, then K ~ L <= C(K) ~ C.(L).
This has been known since the time of Whitehead [80], and perhaps even from
the time of Tietze [66]. Nevertheless, it is still difficult to find explicitly in the
literature in this form, and we prove it directly in Chapter 9. There is now an
obvious question.

Realization Problem: Let G be a finitely presented group. Is every algebraic
2-complex

(0—>J—>F232>F1—12>F0—€>Z~—>0)6Alg0

geometrically realizable; that is, homotopy equivalent in the algebraic sense, to
a complex of the form C,.(K) where K is a finite 2-complex?
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Statement of results

Firstly we show (see [28]) that for finite fundamental groups G, the D(2)-
problem is entirely equivalent to the Realization Problem; that is:

Theorem I: When G is a finite group, the D(2)-property holds for G if and
only if each algebraic 2-complex over G is geometrically realizable.

Theorem I will also be referred to as the Realization Theorem. The proof
given in the text uses techniques which are specific to finite groups and does
not generalize immediately to infinite fundamental groups. In particular, we
make frequent use of the fact that, over a finite group, projective modules are
injective relative to the class of Z[G]-lattices, a statement which is known to
be false for even the most elementary of all infinite groups, namely the infinite
cyclic group. This is not to say that the Realization Theorem, as stated, does not
hold more widely. In Appendix B, we give a proof which is valid for all finitely
presented groups which satisfy an additional homological finiteness condition,
the so-called FL.(3) condition.

Having reduced the D(2)-problem to the Realization Problem, to make pro-
gress we must now pursue the problem of realizing homotopy types of algebraic
2-complexes by geometric 2-complexes. Here we are helped by two specific
technical advances which, considered together, render our task easier, at least
for homotopy types over a finite fundamental group.

The first is Yoneda’s Theory of module extensions [34], [82]. This was in
essence known to Whitehead, as can be seen from [35]. It is rather the modern
version of Yoneda Theory, expressed in terms of stable modules and derived
categories, implicit in the original, but incompletely realized, that the author has
found so useful. Since the systematic use of stable modules is such an obvious
feature of the exposition, some words of explanation are perhaps in order.

For amodule M over aring A, the stable module [M ] is the equivalence class
of M under the equivalence relation generated by the stabilization operation
M +— M & A. We shall also need to consider a more general stability, here
called hyper-stability,* namely M — M & P, where P is an arbitrary finitely
generated projective module.

For much of the time we work, not in the category of modules over Z[ (], but
rather in the ‘derived module category’. This is the quotient category obtained
by equating ‘projective = 0’. The objects in this category can be equated with
hyper-stable classes of modules.

To make a comparison with a simpler case, Carlson’s book [11] considers
modular representation theory systematically from this point of view, and his

* Mac Lane calls this notion ‘projective equivalence’ ([34], p. 101, Exercise 2).
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elegant account was extremely useful in the initial formulation of ideas. There
all projectives are free, and objects in the derived category are indistinguishable
from stable modules.

The derived category gives an objective form to the original Eilenberg—
MacLane conception of homological algebra. Whereas they worked with ‘de-
rived functors’, we work with ‘derived objects’; cohomology as the derived
functor of Hom is obtained simply by applying Hom to the appropriate derived
objects.

Systematic use of derived objects confers some specific advantages. In the
context of the cohomology of finite groups, it is ‘well known and obvious’
when pointed out, but has emerged from the collective subconscious only com-
paratively recently, [22], that cohomology functors are both representable and
co-representable, in the technical sense of Yoneda’s Lemma. Perhaps, given
the minute analysis to which two generations have subjected the foundations of
the subject, this is still less obvious than it should be. This ‘geometrization’ of
cohomology allows a significant degree of control over the D(2)-problem, and
a subsidiary aim of this book, carried out in Chapter 4, is to give an account of
relative homological algebra from this point of view.

The second advance, Swan—Jacobinski cancellation theory, deals with the
extent to which one can reverse the stabilization operation M — M @ Z[G].
It enables us to assemble the set of all possible homotopy groups of two-
dimensional complexes with given fundamental group into a tree, 23(Z), of the
following sort

Q23(Z) o )2

o Jo . .

Here the vertices are modules, and one draws a line (upwards) joining two
modules so J,, — J,, ® Z[G] = J,,41. This idea of tree representation goes
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back to Dyer and Sieradski [16]. Homotopy types with 7, at the bottom level are
called minimal. We say that G has the realization property when all algebraic
2-complexes are geometrically realizable. Our second result (again see {28])
says that it is enough to realize homotopy types at the minimal level:

Theorem II: The finite group G has the realization property if and only if all
minimal algebraic 2-complexes are realizable.

This is a general condition on homotopy types. Our third result gives a
criterion for realization in terms of the second homotopy group rather than
a complete homotopy type. For any such module J, there is an homomorphism
of groups

UJ : AutZ[G](J) — Autpe(J)

from the automorphism group in the module category to the automorphism
group in the derived category. Moreover, Im(v”) is contained in a certain sub-
group of Autp. (J) namely the kernel of the Swan map

S Autper(J) — Ko(Z[G])

where I?O(Z[G]) is the projective class group. J is said to be full when Im(v’) =
Ker(S). The module J is said to be realizable whenever J occurs in the form
J = m(K) for some finite 2-complex K with 71(K) = G. Then we also have:

Theorem III: If each minimal module J € Q3(Z) is both realizable and full,
then G has the realization property.

Describing minimal homotopy types

For a given finite group G, obtaining an affirmative answer to the D(2)-problem
involves two quite distinct steps. The first consists in giving a precise description
of minimal two-dimensional algebraic homotopy types. Although possibly very
difficult to implement in practice, in any particular case this step is amenable
to procedures which are, in theory at least, effective. The second, for which no
general procedure can be expected and which is still unsolved even for some
very familiar and quite small groups, consists in determining enough minimal
presentations of the group G under discussion to realize the minimal chain
homotopy types.

In respect of the classification of the homotopy types of algebraic 2-com-
plexes, the groups we find it easiest to deal with are the the finite groups of
cohomological period 4. Chapter 7 is devoted to a brief exposition of what is
known about them. As we point out in Chapter 11, groups of period 4 arise
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8 Stable Modules and the D(2)-Problem

naturally in any discussion of Poincaré 3-complexes. For these groups, the
general programme becomes much simpler. In particular, the homotopy types
of minimal algebraic 2-complexes can be parametrized by more familiar objects.
In Chapter 9, we prove the following classification result:

Theorem IV: Let G be a finite group of free period 4. Then there is a 1-1
correspondence

Alg, < SF(Z[G))

where A/IEG is the set of two-dimensional algebraic homotopy types over G and
SF(Z[G)) is the set of isomorphism classes of stably free modules over Z[G].

Despite the intractability of the general problem of minimal group presenta-
tions mentioned above, for some groups enough is known to allow a complete
solution of the D(2)-problem.

At present, Theorem IV gives the most hopeful candidate for a counterexam-
ple to the D(2)-property, for when Z[G] admits non-trivial stably free modules
there are ‘exotic’ minimal 2-complexes which are not, as yet, known to be
geometrically realizable. As the author has shown in [29], this occurs in the
case of quaternion groups of high enough order. In fact, it follows from Swan’s
calculations [63] that the smallest example of this type is Q(24), the quaternion
group of order 24.

We point out that a special case of this classification, for the subclass of finite
groups which are fundamental groups of closed 3-manifolds and which also
possess the cancellation property for free modules, has also been obtained by
Beyl, Latiolais and Waller [5] using a rather more geometric approach. In this
case, there are no exotic minimal 2-complexes.

We note that the classification for some dihedral groups, where again there
are no surprises, can be also be done directly by writing down explicit homotopy
equivalences [27]. By contrast with [5], a theorem of Milnor [42] shows that
dihedral groups are nor fundamental groups of closed 3-manifolds.

It is known that if

g=(X1,.,,,Xg; W],...,Wr>

is a presentation of a finite group G then g < r. In the case where g = r, the
presentation is said to be balanced. In terms of the D(2)-problems, finite groups
which possess balanced presentations are ‘smallest possible’. In connection
with the problem of finding Poincaré 3-complexes of standard form, that is,
having a single 3-cell, we obtain:

Theorem V: Let G be a finite group; then G has a standard Poincaré 3-form if
and only if there is a finite presentation G of G for which m,(G) = I*(G), the
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dual module of the augmentation ideal. Moreover, G then necessarily has free
period 4, and the presentation G is automatically balanced.

For certain finite groups of period 4, the connection between the standard
form problem and the D(2)-problem is one of equivalence.

Theorem VI: Let G be afinite group which admits a free resolution of period 4;
if G has the free cancellation property then

G satisfies the D(2)—property < G admits a balanced presentation.

Earlier work on the algebraic classification problem

The first significant classification result of the type considered here is that of
W. H. Cockroft and R. G. Swan [13], which classifies algebraic 2-complexes
over a finite cyclic group. Taken in conjunction with Theorem I this is enough to
answer the D(2)-question for finite cyclic groups in the affirmative. A general
attack upon this question for finite fundamental groups was undertaken in a
series of papers in the 1970s by M. N. Dyer and A. J. Sieradski. Although it does
relate directly to our main concerns, one should also mention the contributions
of Metzler on 2-complexes with finite abelian fundamental group [39].

However, although again we make very little direct appeal to it, without any
doubt the next advance of real significance in the theory of two-dimensional
homotopy was made by W. Browning in the late 1970s and early 1980s. The cir-
cumstances of Browning’s career challenge the self-congratulatory assumptions
on which the modern world is apt to reproach the past. In fact, Browning did
not publish his results, and his work, available only in the form of his thesis [8],
and some ETH pre-prints, languished in semi-obscurity for a number of years,
before being accorded some of the recognition which it deserves. Happily, there
is now a growing literature dealing with various aspects and generalizations of
Browning’s work; see for example, [20], [21], [33].

The principal result of Browning’s thesis is his Stability Theorem which is
a generalization from modules to chain complexes (essentially it is a complete
re-proof) of the Swan-Jacobinski Theorem. Our realization results manage
to avoid the technicalities of Browning’s approach, though we shall review it
briefly at the appropriate point in Chapter 9.

Browning’s later work requires a restriction (the Eichler condition, see
Chapter 3) which prevents it being applicable, except in trivial cases, to fi-
nite groups of period 4. Theorems III and IV by-pass the non-cancellation
phenomena which arise when the Eichler condition fails, and are, in a sense,
complementary to Browning’s approach.
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About this book

This book is essentially in three parts, with two appendices. In Chapters 1-3
we summarize those aspects of module theory and group representation theory
that we shall need. Here the one really substantial piece of mathematics which
we use systematically without any indication of proof is the Swan—Jacobinski
Cancellation Theorem [25], [62]; for a proof we refer the reader to the definitive
account of Curtis and Reiner [14] (vol. 2, Section 51).

Chapters 4-7 concentrate on group cohomology and module extension the-
ory. Chapter 4 gives a systematic treatment of Yoneda Theory for our purposes;
Chapters 5 and 6 specialize the general treatment to modules over group rings;
Chapter 6 is particularly important since it contains the detailed classification
theory by ‘k-invariants’ that we shall use systematically. Chapter 7 is devoted
to the structure and classification of groups of periodic cohomology, which
form the body of examples investigated later.

In Chapters 8-11 we consider algebraic and two-dimensional geometric ho-
motopy theory in relation to the Realization and D(2)-problems.

Finally, in two appendices we consider briefly how the some of the arguments
generalize to infinite fundamental groups. In Appendix A we show that the D(2)-
property holds for finitely generated (non-abelian) free groups. In Appendix B
we show that the Realization Theorem holds for finitely presented groups of
type FL(3).

This work had its origin in a sequence of computations on module extensions
over finite groups, with the general intention of investigating the structure theory
of Poincaré 3-complexes. Begun in the Autumn of 1996, they were undertaken
at first somewhat in the spirit of a diversion, for the sake of seeing what came out.
However unsystematic, they nevertheless led, in short order to a perspective on
the D(2)-problem which encouraged real hope of progress. Proofs of Theorems I
and Il followed shortly, and were announced at the British Topology Conference
at Oxford in April 1997. ,

A number of cases of the D(2)-problem were solved on an ad hoc case-by-
case basis in the spring and early summer of 1997. A more systematic attack
required additional insight. Some of this was immediately forthcoming. At the
Oxford meeting, the author was reminded, by Andrew Casson, of Milgram’s
finiteness obstruction computations [40], [41], and, by Ib Madsen, of the related
computations of Bentzen and Madsen [4], [36]. The earlier paper of Wall [74]
should also be mentioned.

The ad hoc calculations which began this study are no longer evident in
our exposition, although some vestigial remains can be found in [27]. The
key to their systematic treatment was the realization of the fundamental im-
portance of Swan’s Isomorphism Theorem (see Chapter 6). Our development
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