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All groups considered in this report will be finite.

1 Notation and terminology

A group G is said to be a T -group if every subnormal subgroup of G is normal
in G, that is, if normality is a transitive relation. These groups have been widely
studied (see [10], [11], or [14]).

A subgroup H of a group G is said to be permutable (or quasinormal) in G if
HK = KH for all subgroups K of G. Permutability can be considered thus as a
weak form of normality. The study of groups G in which permutability is tran-
sitive, that is, H permutable in K and K permutable in G always imply that H
is permutable in G, has been a successful field of research in recent years. Such
groups are called PT -groups. According to a theorem of Kegel [12, Satz 1], every
permutable subgroup of G is subnormal in G. Consequently, PT -groups are ex-
actly those groups in which subnormality and permutability coincide; that is, those
groups in which every subnormal subgroup permutes with every other subgroup.
Therefore, every T -group is clearly a PT -group.

One could wonder what would happen if we did not require that every subnormal
subgroup of a group G permutes with any other subgroup of G, but only with a
certain family of its subgroups. In this direction, those groups in which every
subnormal subgroup of G permutes with every Sylow p-subgroup of G for each
prime p have sometimes been called T ∗-groups (see [3]) or also (π− q)-groups (see
[1]). Nevertheless, in recent years the expression PST -groups has become more
popular for them. It was first used in [15]. Again, by a result of Kegel, each
subgroup of a group G permuting with every Sylow subgroup of G is subnormal.
Therefore, PST -groups are exactly those groups in which permutability with Sylow
subgroups is a transitive relation; that is, G is a PST -group when givenH ≤ K ≤ G
such that H permutes with every Sylow subgroup of K and K permutes with every
Sylow subgroup of G, then H permutes with every Sylow subgroup of G. It is clear
that

{T -groups} ⊂ {PT -groups} ⊂ {PST -groups}
1The work of the second and last authors is supported by Proyecto PB97-0674-C02-02 of

DGICYT, MEC, Spain
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2 ALEJANDRE et al.

and the above three classes are distinct.
The study of these classes of groups has undoubtedly constituted a fruitful topic

of research in group theory, due to the efforts of many leading mathematicians.
There are in essence three different ways of approaching the question of character-
izing T -groups, PT -groups and PST -groups. The aim of this survey is to provide
a general perspective of these three lines. Note that every simple group belongs
to these classes. Hence most of the papers on this topic frame their work in the
soluble universe. In fact, as we shall see below, in some cases the solubility of the
group appears in a spontaneous way.

2 Characterizations based on the normal structure

This is possibly the most classical way of studying these groups. The structure
of soluble T -groups was determined by Gaschütz ([11]) in 1957. They are exactly
the soluble groups G with an abelian normal Hall subgroup L of odd order such
that G/L is a Dedekind group and such that the elements of G induce power
automorphisms in L.

Some years later, in 1964, Zacher gave in [16] the corresponding theorem for
soluble PT -groups: one just has to replace “Dedekind” by “nilpotent modular” in
Gaschütz’s theorem.

Finally, the structure of soluble PST -groups was obtained by Agrawal (see [1]),
in a way similar to the Gaschütz and Zacher characterizations: G is a soluble PST -
group if and only if G has an abelian normal Hall subgroup L of odd order such
that G/L is nilpotent and the elements of G induce power automorphisms in L.

As straightforward consequences of these theorems, one can state that the classes
of soluble T -groups, soluble PT -groups and soluble PST -groups are subgroup-
closed. Recently, the second and third authors provided in [6, Theorem A] local
versions of the above theorems.

3 Characterizations based on the Sylow structure

Several papers have explored the influence of the Sylow structure of a group on the
condition of being a PST -group, PT -group or T -group. The natural outcome of
these investigations is the fact that in the soluble universe, the difference between
these three classes is quite simply their Sylow structure. Therefore several unifying
points of view for these classes have been obtained in the soluble universe.

These ideas were firstly used by Bryce and Cossey in [10]. With p a prime, they
defined the class U∗

p of p-supersoluble groups G such that all the p-chief factors of
G form a single isomorphism class of G-modules. They proved that a soluble group
G is a T -group if and only if G satisfies U∗

p for every prime p and all its Sylow
subgroups are T -groups. The first, second and fourth authors introduced in [2] the
use of the class U∗

p for a single prime p and the class ∩p∈P U∗
p to describe the classes

of soluble PT -groups and PST -groups. Many other relevant local definitions were
introduced in [10] and in [2].
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PERMUTABILITY AND SUBNORMALITY IN FINITE GROUPS 3

This procedure of defining local versions in order to simplify the study of the
global properties has shown itself to be very useful. The following three definitions
are the main keys which allow us to describe the three classes we are working with
in a natural way.

Definition 1 Let G be a group and p a prime. We say that G:
1. Enjoys property Cp (see [14]) if each subgroup of a Sylow p-subgroup P of G

is normal in the normalizer NG(P ).
2. Satisfies property Xp (as in [7]) if each subgroup of a Sylow p-subgroup P of
G is permutable in the normalizer NG(P ).

3. Enjoys property Yp (see [5]) if for all p-subgroups H and S of G such that
H ≤ S, H permutes with every Sylow subgroup of NG(S).

Note that the property Cp is inherited by subgroups. This fact follows from
the abnormality of the Sylow normalizers in the group. By its definition, the
class of Yp-groups is subgroup-closed as well. Nevertheless, proving that Xp is
inherited by subgroups is of extreme difficulty. This fact was first observed by
Beidleman, Brewster and Robinson in [7], but only as a consequence of a much
stronger theorem.

The following theorem, obtained by the second and third authors in [5], sum-
marizes the relationship between the three properties listed above and is crucial to
having a global knowledge of their behaviour.

Theorem 1 [5, Theorem 3] A group G satisfies Xp (respectively, Cp) if and only
if G satisfies Yp and its Sylow p-subgroups are modular (respectively, Dedekind).

This theorem is a consequence of the following p-nilpotence criterion, which was
proved in the same paper:

Theorem 2 [5, Theorem 1] Let p be a prime and let G be a group with a modular
Sylow p-subgroup P . Then G is p-nilpotent if and only if NG(P ) is p-nilpotent.

As a natural consequence of the above statements, the property Xp is inherited
by subgroups. Not surprisingly, this fact, whose direct proof has been obtained
only very recently, simplifies in a dramatic way the proofs of many of the existing
theorems.

Robinson had proved in [14] that a group G is a soluble T -group if and only if
it satisfies property Cp for all primes p. Years later, Beidleman et al. proved in [7]
that a group G is a soluble PT -group if and only if it enjoys property Xp for every
prime p. Finally, the second and third authors proved in [5] that a group G is a
soluble PT -group if and only if it satisfies Yp for every prime p. One can see that in
the theorem by Beidleman et al., a lot of effort is put into proving that every group
satisfying Xp for every prime p must be soluble. However, this assertion follows
directly from the fact that Xp is closed under subgroups and factor groups.

Therefore, one can travel easily among the classes of soluble PST -groups, soluble
PT -groups and soluble T -groups (or among their local versions) just by changing
the requirements on their Sylow p-subgroups.
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4 ALEJANDRE et al.

Moreover, any hope of creating a similar landscape which could be valid also
outside the soluble universe is soon dispelled. For instance, as soon as we have
a local property Jp which is subgroup-closed and such that a finite group G is a
PST -group if and only if G satisfies Jp for every prime p, then it is possible to
prove that ∩p∈P Jp is contained in the class of soluble groups. Hence we had better
desist from our expectations.

Finally, the situation would be excellent if we could describe in a precise way the
class of Yp-groups for a prime p, which is the central point which our description
relies on. This wish was achieved in [5]:

Theorem 3 [5] A group G is a Yp-group if and only if G is either p-nilpotent or
G has abelian Sylow p-subgroups and G satisfies Cp.

4 Characterizations based on embedding properties

A strong connection between the classes described above and some embedding
properties has recently been shown in several papers. Peng proved in [13] that a
soluble group G is a T -group if and only if every p-subgroup of G, for every prime
p, is pronormal in G. In addition, Bianchi et al. presented in [9] the following
embedding property: A subgroup H of a group G is said to be an H-subgroup of
G if for all g ∈ G, NG(H) ∩ Hg ≤ H. They proved that a group G is a soluble
T -group if and only if every subgroup of G is an H-subgroup of G. With a similar
philosophy in mind, the second and third authors proved the following theorem.

Theorem 4 [4] Let G be a group. The following statements are equivalent:
1. G is a soluble T -group.
2. Every subgroup of G is weakly normal in G.
3. Every subgroup of G satisfies the subnormalizer condition.

A subgroup H of G is said to be weakly normal in G if Hg ≤ NG(H) implies that
g ∈ NG(H) and is said to satisfy the subnormalizer condition if for every subgroup
K of G such that H is normal in K, it follows that NG(K) ≤ NG(H).

It is said that a subgroup H of G is hypercentrally embedded in G if

H/CoreG(H) ≤ Z∞(G/CoreG(H)).

Beidleman and Heineken [8] proved that a soluble group G is a PST -group if and
only if every subnormal subgroup permutes with every Carter subgroup of G and
the subnormal subgroups of G are hypercentrally embedded in G. The second
and third authors showed in [6] that permutability with Carter subgroups could be
removed, that is, a soluble group G is a PST -group if and only if every subnormal
subgroup of G is hypercentrally embedded in G.
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(PRO)-FINITE AND (TOPOLOGICALLY) LOCALLY FINITE
GROUPS WITH A CC-SUBGROUP

Z. ARAD∗ and W. HERFORT†1

∗ Department of Mathematics, Bar–Ilan University, Ramat–Gan, Israel and
Department of Computer Science and Mathematics,
Netanya Academic College, Netanya, Israel
† Institut für Angewandte und Numerische Mathematik,
Technische Universität Vienna, Austria

Abstract

A proper subgroup H of a group G is called a CC-subgroup of G if the centralizer
CG(h) of h ∈ H# = H \ {1} is contained in H. Such finite groups were partially
classified by G.Frobenius , W.Feit , K.W.Gruenberg and O. H.Kegel ,
J.S.Williams , A. S.Kondrat’iev , N. Iiyori and H.Yamaki , M.Suzuki ,
M.Herzog , Z.Arad , D.Chillag , Ch.Praeger and others.

In this report2, using the classification of finite simple groups, we give a complete
list of all finite groups containing a CC-subgroup. As a corollary we classify infi-
nite profinite groups, locally finite groups and certain classes of topological groups
containing a CC-subgroup under certain conditions.

1 Introduction

Let G denote a finite group. According to M.Herzog [18] a subgroup M ≤ G is
a CC-subgroup (”centralizers contained“), if CG(m) ≤ M for every m ∈ M \ {1}.
The example with smallest cardinality is G := S3 with either M := 〈(123)〉 or
M := 〈(12)〉 being a CC-subgroup. More generally, by the well known result of
G.Frobenius , every Frobenius group has CC-subgroups either the kernel or any
complement.

1.1 Sketching the thread

One finds the concept of a CC-subgroup (without calling it that) in work ofW.Feit
describing doubly transitive groups which fix 3 letters (e.g. in [13]). He considered
the situation of a group containing a CC-subgroup of order divisible by 3 and
conjectured that G is either Frobenius with kernel M or G = PSL(2, 3n) with
n ≥ 1, provided certain extra conditions hold.

In [25] M.Suzuki classified all groups containing a CC-subgroup of even order
and in the proof of his Theorem 1 in [25] he said a group G with a CC-subgroup to
satisfying condition (c). M.Suzuki found that such a group is either Frobenius,

1The second author would like to thank for greatful hospitality at the Bar-Ilan University, the
Netanya Academic College and the Tel-Aviv University in February 2000

2The results of this report and their complete proofs are contained in [10]
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FINITE AND LOCALLY FINITE GROUPS WITH A CC-SUBGROUP 7

PSL(2, q) for q a power of 2, or in today’s terminology, G is a Suzuki group over
a field of characteristic 2. In [14] W.Feit and J.G.Thompson showed that if
M ∼= C3 then G is either an extension of a nilpotent group by either A3 or S3, or
G is an extension of a 2-group by A5 or, third possibility, G ∼= PSL(2, 7) and in [1]
Z.Arad generalized their result to classifying all groups containing a CC Sylow 3-
subgroup. M.Herzog in [18] proved the aforementioned conjecture of Feit under
additional assumptions. Z.Arad in [2] and Z.Arad together with M.Herzog
in [7, 8], using results ofW.B. Stewart [26], succeeded in determining a complete
list of finite groups containing a CC-subgroup of order divisible by 3.

Apparently, in an unpublished note of K.W.Gruenberg and O. H.Kegel
and later by K.W.Gruenberg and K.W.Roggenkamp in [17] the notion
of the prime graph of a finite group G has been introduced to have vertices the
primes dividing |G| and edges (p, q) whenever exist commuting elements x, y ∈ G
of respective orders p �= q. Its connected components are denoted by sets of primes
such that 2 ∈ π1 provided G has even order. J.S.Williams ’s Theorem 3 in [27]
shows that to every odd component πi (only odd primes, i > 1) there exists a
πi-Hall subgroup M ≤ G, which is a an odd order CC-subgroup. The existence of
such M together with results in [17] show that the prime graph is disconnected if
and only if the augmentation ideal decomposes as a G-module. The same authors
introduce the notion of a 2-Frobenius group for a group G containing a normal
Frobenius group H = KL, K � G with G/K again Frobenius group.

In Williams’s Theorem 3 each such M turns out to be nilpotent. Therefore
it is desirable to give a complete description of groups containing a CC-subgroup
including structural information on the groupM as well. Z.Arad and D.Chillag
in [4, 5, 6] continued classifying groups with a CC-subgroup. As a final result we
present Theorem A below.

In [21] O. H.Kegel and B.A. F.Wehrfritz describe the situation of locally
finite Frobenius groups and, answering a question originally posed byO. H.Kegel,
D.Gildenhuys , L.Ribes and W.Herfort provide a description of profinite
Frobenius groups. Since in the profinite completion of the infinite dihedral group
C2 ∗ C2 each of it’s factors is a CC-subgroup and no normal complement to any
of them exists, the extra condition of M being a Hall-subgroup, has been included
in the definition (see section 4.6 on profinite Frobenius groups in [24]). In [15]
Yu.M.Gorčakov gives a unifying result on algebraic and finite Frobenius groups.
In [23]Yu.N.Mukhin deals with certain topological Frobenius groups. We present
results for profinite groups (Theorem B), locally finite groups (Theorem C) and
topologically locally finite groups (every compact subset is contained in a compact
subgroup – we denote this fact by G ∈ [LF]−) in Theorem D.

2 Announcement of the results

Following P.Hall [19] we say that G satisfies Eπ if G has a Hall π-subgroup denoted
by Gπ. G satisfies Cπ if it satisfies Eπ and any two Sπ-subgroups of G are conjugate.
G satisfies Dπ if it satisfies Cπ and every π-subgroup of G is contained in some
Sπ-subgroup of G.
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8 ARAD, HERFORT

The following result contains a complete classification of finite groups containing
a CC-subgroup.

Theorem A Let G be a finite group containing a CC-subgroupM . Let π := π(M).
Then G satisfies Dπ. Furthermore we have one of the following four cases:

(1) M is non-nilpotent and of even order and one of the following holds:

(a) G is a Frobenius group with complement M ;

(b) G ∼= PSL(2, 2n), n ≥ 2 and M is solvable;

(c) G ∼= Sz (q), q = 22n+1, n ≥ 1 and M is solvable.

(2) M is nilpotent of even order and one of the following holds:

(a) G is a solvable Frobenius group with complement M ;

(b) G is a solvable Frobenius group with kernel M ;

(c) G ∼= PSL(2, 2n), n ≥ 2 and M is a 2-Sylow subgroup;

(d) G ∼= Sz (q), q = 22n+1, n ≥ 1 and M is a 2-Sylow subgroup.

(3) M is non-nilpotent of odd order and one of the following holds

(a) G is a solvable Frobenius group with complement M ;

(b) G ∼= PSL(2, q), q ≡ 3 (mod 4) and M is solvable of odd order |M | =
q q−1
2 ;

(4) M is nilpotent of odd order and one of the following holds:

(a) G is a Frobenius group with M either kernel or complement;

(b) G is simple non-abelian and G and M are classified in [27] and [28]
([29]) (see as well A. S.Kondrat’iev in [22]);

(c) G is not simple. With H := (M)G and S := H/F (H), one finds S to be
simple containing the CC-subgroup MF (H)/F (H) ∼= M (S and M are
classified in (4)(b)), and F (H) and G/H are π1–groups.

(d) G is a 2-Frobenius group, i.e., exists F � G such that FM � G is a
Frobenius group with kernel F and cyclic complement M , and exists
cyclic R ≤ G with MR Frobenius group (having kernel M and cyclic
complement R) and G = FMR.

Proof IfM ≤ G is a CC-subgroup, then certainly the prime graph is disconnected.
If G is nilpotent then, using the classification of finite simple groups, the aforemen-
tioned result of Gruenberg and Kegel yields part of (b) and (d). If M has even
order then Suzuki’s result yields (a) and the other part of (b). From now on M is
supposed to be of odd order and not nilpotent. Then NG(M) = M (else NG(M)
is Frobenius and hence M nilpotent) and [6] shows that M = KL is a π := π(M)
Hall subgroup, and at the same time is Frobenius with kernel K and cyclic kernel
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FINITE AND LOCALLY FINITE GROUPS WITH A CC-SUBGROUP 9

L. By the same paper G satisfies Dπ. From all this conclude that the prime graph
of G has at least 3 components and that π contains at least two primes p, q with
p dividing q − 1. The list in (c) is found combining information on the order of
G from [12] and checking the tables in [27] and [28] for divisibility. Sporadic and
alternating groups are excluded by using the fact that Hall subgroups involving
precisely two primes p, q (with p < q ≤ n if G = An) do not exist in neither An

[11] or any sporadic group [19]. ✷

Theorem B Let a profinite group G contain a CC-Hall subgroup M . One of the
following holds.

(i) G is finite and contained in the list of Theorem A;

(ii) G is infinite, M is finite and one of the following holds:

(a) G is a profinite Frobenius group with M the Frobenius complement;

(b) With H := (M)G the quotient S := H/F (H) is a finite simple group,
MF (H)/F (H) ∼= M is a CC-subgroup of S, F (H) is a nilpotent π1-
group, and G/H is a finite π1-group;

(c) G is a profinite 2-Frobenius group, i.e., exists F � G open, such that
FM � G is a profinite Frobenius group with kernel F and finite cyclic
complement M and exists a finite R ≤ G with MR a finite Frobenius
group (kernel M , finite cyclic complement R) and G = FMR;

in (b) an isomorphic copy of M is an odd order CC-subgroup of S; the group
S is as in Theorem A (4)(c);

(iii) G and M are both infinite and G is a profinite Frobenius group with M
the Frobenius kernel.

Theorem C Let a locally finite group G contain a CC-Hall subgroup M . One of
the following holds.

(i) G is finite and contained in the list of Theorem A;

(ii) G is infinite, M either contains an involution or is not locally nilpotent
and one of the following holds:

(a) G is a Frobenius group with M either kernel or complement;

(b) G ∼= PSL(2, F ), with F a locally finite field;

(c) G ∼= Sz (F ), F a locally finite field of even characteristics and M locally
solvable;

(iii) G is infinite, M does not contain any involution and is locally nilpotent
and one of the following holds:

(a) G is a Frobenius group with M either kernel or complement;
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10 ARAD, HERFORT

(b) G is a locally finite 2-Frobenius group, i.e., exists F � G with FM �
G a locally finite Frobenius group (having kernel F and locally cyclic
complement M) and exists R ≤ G with MR a locally finite Frobenius
group (kernel H and finite cyclic complement R) and G = FMR;

(c) For H := (M)G the quotient S := H/F (H) is a locally finite simple
group with MF (H)/F (H) a CC-subgroup of S, F (H) a nilpotent π1
normal subgroup of G, and G/H is a locally finite π1 group. S is a
direct limit of groups each of them an extensions of a π1-group by a
simple group from (4)(b) in Theorem A.

With the help of Theorems B and C we establish a classification result for the
class [LF]− of topologically locally finite groups (as introduced in [20]).

Theorem D Let G ∈[LF]− be totally disconnected and neither be locally finite,
nor compact. One of the following holds:

(i) G is a topologically locally finite Frobenius group. M is locally finite, iso-
lated and complement and F :=

(
G \ ⋃

g∈GH
g
)
∪ {1} is a CC-normal sub-

group of G (the kernel);

(ii) G is a topologically locally finite 2-Frobenius group, i.e., exists F �G open
such that FM � G is topological Frobenius group (F the kernel and M finite
complement) and exists finite cyclic R ≤ G such thatMR is a finite Frobenius
group with kernel M and complement R (G is topologically 2-Frobenius) and
G = FMR;

(iii) G is a topological Frobenius group with M � G an open CC-normal sub-
group (the kernel) and it possesses a locally finite Frobenius-complement H,
which is an isolated Hall subgroup of G;

(iv) M is locally finite; for H := (M)G the quotient S := H/F (H) is a locally
finite simple group with MF (H)/F (H) ∼= M a CC-subgroup (as classified in
Theorem C), F (H) is a nilpotent normal π1 subgroup of G, and G/H is a
locally finite π1-group.

It should be desirable to extend our classification theorems to classes of groups
containing algebraic groups as well as ours. The results of Yu.M.Gorčakov and
Yu.N.Mukhin indicate such a possibility.
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