ASTRONOMY METHODS

Astronomy Methods is an introduction to the basic practical tools, methods and phenomena that underlie quantitative astronomy. Taking a technical approach, the author covers a rich diversity of topics across all branches of astronomy, from radio to gamma-ray wavelengths. Topics include the quantitative aspects of the electromagnetic spectrum, atmospheric and interstellar absorption, telescopes in all wavebands, interferometry, adaptive optics, the transport of radiation through matter to form spectral lines, and neutrino and gravitational-wave astronomy. Clear, systematic presentations of the topics are accompanied by diagrams and problem sets. Written for undergraduates and graduate students, this book contains a wealth of information that is required for the practice and study of quantitative and analytical astronomy and astrophysics.

HALE BRADT is Professor Emeritus of Physics at the Massachusetts Institute of Technology. Over his forty years on the faculty, he carried out research in cosmic ray physics and x-ray astronomy, and taught courses in Physics and Astrophysics. Bradt founded the MIT sounding rocket program in x-ray astronomy, and was a senior or principal investigator on three NASA missions for x-ray astronomy. He was awarded the NASA Exceptional Science Medal for his contributions to HEAO-1 (High Energy Astronomical Observatory 1), the 1990 Buechner Teaching Prize of the MIT Physics Department, and shared the 1999 Bruno Rossi prize of the American Astronomical Society for his contributions to the RXTE (Rossi X-ray Timing Explorer) program.

Solutions manual available for instructors by emailing solutions@cambridge.org

Cover illustrations

Views of the entire sky at six wavelengths in galactic coordinates. The equator of the Milky Way system is the central horizontal axis and the galactic center direction is at the center. Except for the x-ray sky, the colors represent intensity with the greatest intensities lying along the equator. In all cases, the radiation shows an association with the galactic equator and/or the general direction of the galactic center. In some, extragalactic sources distributed more uniformly are evident. The captions below are listed in frequency order (low to high). The maps are also in frequency order as follows: top to bottom on the back cover followed on the front cover by top inset, background map, lower inset.

Radio sky at 408 Hz exhibiting a diffuse glow of synchrotron radiation from the entire sky. High energy electrons spiraling in the magnetic fields of the Galaxy emit this radiation. Note the *North Polar Spur* projecting above the equator to left of center. [From three observatories: Jodrell Bank, MPIfR, and Parkes. Glyn Haslam *et al.*, MPIfR, SkyView]

Radio emission at 1420 MHz, the spin-flip (hyperfine) transition in the ground state of hydrogen, which shows the locations of clouds of neutral hydrogen gas. The gas is heavily concentrated in the galactic plane and shows pronounced filamentary structure off the plane. [J. Dickey (UMn), F. Lockman (NRAO), SkyView; *ARAA* 28, 235 (1990)]

Far-infrared $(60-240 \,\mu\text{m})$ sky from the COBE satellite showing primarily emission from small grains of graphite and silicates ("dust") in the interstellar medium of the Galaxy. The faint large S-shaped curve (on its side) is emission from dust and rocks in the solar system. Reflection of solar light from this material gives rise to the zodiacal light at optical wavelengths. [E. L. Wright (UCLA), COBE, DIRBE, NASA]

Optical sky from a mosaic of 51 wide angle photographs showing mostly stars in the (Milky Way) Galaxy with significant extinction by dust along the galactic plane. Galaxies are visible at higher galactic latitudes, the most prominent being the two nearby Magellanic Clouds (lower right). [©Axel Mellinger]

X-ray sky at 1–20 keV from the A1 experiment on the HEAO-1 satellite showing 842 discrete sources. The circle size represents intensity of the source and the color represents the type of object. The most intense sources shown (green, larger, circles) represent accreting binary systems containing a compact star, either a white dwarf, neutron star, or a black hole. Other objects are supernova remnants (blue), clusters of galaxies (pink), active galactic nuclei (orange), and stellar coronae (white) [Kent Wood, NRL; see *ApJ Suppl.* **56**, 507 (1984)]

Gamma-ray sky above 100 MeV from the EGRET experiment on the Compton Gamma Ray Observatory. The diffuse glow from the galactic equator is due to the collisions of cosmic ray protons with the atoms of gas clouds; the nuclear reactions produce the detected gamma rays. Discrete sources include pulsars and jets from distant active galaxies ("blazars"). [The EGRET team, NASA, CGRO]

ASTRONOMY METHODS

A Physical Approach to Astronomical Observations

HALE BRADT

Massachusetts Institute of Technology

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

http://www.cambridge.org Information on this title: www.cambridge.org/9780521364409

© Cambridge University Press 2004

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2004 Third printing 2007

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data Bradt, Hale, 1930– Astronomy methods: a physical approach to astronomical observations / Hale Bradt. p. cm. Includes bibliographical references and index. ISBN 0 521 36440 X – ISBN 0 521 53551 4 (pbk.) 1. Astronomy. I. Title. QB45.2.B73 2003 520–dc21 2002041703

ISBN 978-0-521-36440-9 hardback ISBN 978-0-521-53551-9 paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To Dottie, Elizabeth, Dorothy, (Bart)², Ben, and Rebecca

Contents

	List of figures	<i>page</i> xiv
	List of tables	xviii
	Preface	xix
	Acknowledgments	xxii
1	Astronomy through the centuries	1
1.1	Introduction	1
1.2	Early development of astronomy First astronomers • Renaissance	1
1.3	Technology revolution Telescopes, photography, electronics, and computers • Non-optical astronomy	7
1.4	Interplay of observation and theory Stars and nebulae • Galaxies and the universe • New horizons	10
2	Electromagnetic radiation	22
2.1	Introduction	22
2.2	Photon and non-photon astronomy Photons (electromagnetic waves) • Cosmic rays and meteorites • Neutrino and gravitational-wave astronomy	23
2.3	Electromagnetic frequency bands Wavelength and frequency • Photon energy • Temperature	25
2.4	Photons and the atmosphere Atmospheric absorption • Interstellar absorption	29

Cambridge University Press
978-0-521-53551-9 - Astronomy Methods: A Physical Approach to Astronomical Observations
Hale Bradt
Frontmatter
More information

viii	Contents	
3	Coordinate systems and charts	34
3.1	Introduction	34
3.2	Coordinates on a celestial sphere Mathematical sphere at "infinity" • Celestial coordinate systems – Horizon coordinates – Equatorial coordinates – Why equatorial coordinates? – Galactic coordinates – Ecliptic coordinate system – Reference frames • Transformations	35
3.3	Solid angle on the celestial sphere	45
3.4	Surveys, charts, and catalogs Photographs and charts – Palomar, SRC, and ESO sky surveys – Finding charts – Printed charts • Catalogs of celestial objects • Names of astronomical objects – Constellations – Stars – Modern names ("telephone numbers")	48
4	Gravity, celestial motions, and time	57
4.1	Introduction	58
4.2	Gravity – Newton to Einstein	58
4.3	Apparent motions of stars Horizon coordinate system • Annual motion – Sun and the ecliptic – Sun and dark-sky observations – Parallax of star positions – Stellar aberration • Precession of the earth – Torque due to a ring of mass – Rate of precession – Nutation – Calendar – Zodiac • Proper motion – Motion on celestial sphere – Peculiar motion and local standard of rest – Solar motion	60
4.4	Lunar and planet motions – eclipses Eclipses of the sun and moon – "Orbits" of the moon and sun – Total and partial solar eclipses – The 18-year saros cycle – Wonder and science – Corona in x rays and visible light – Lunar eclipses • Planets	72
4.5	Measures of time Time according to the stars and sun – Sidereal time – Mean solar time • Universal and atomic times – Universal time (UT) and earth spin – Greenwich mean sidereal time (GMST) at 0 h UT – Ephemeris second – Atomic time (TAI) – Universal coordinated time (UTC) and leap seconds – Terrestrial time (TT) – Barycentric times • Julian date (JD) • Epochs for coordinate systems • Signals from pulsars	80

Cambridge University Press	
978-0-521-53551-9 - Astronomy Methods: A Physical Approach to Astronomical Ok	oservations
Hale Bradt	
Frontmatter	
More information	

	Contents	ix
5	Telescopes	98
5.1	Introduction	98
5.2	Information content of radiation	99
5.3	Image formation Focusing systems – Focal length and plate scale – Aperture and deposited energy – Telescope configurations • Non-focusing systems – Tubular and modulation collimators – Multiple pinhole collimator • Some real telescopes	100
5.4	Antenna beams Meaning of a "beam" • Point spread function • Diffraction – Fraunhofer diffraction – Radio resolution – Optical resolution – X-ray resolution	112
5.5	Resolution enhancement Isophase patches and speckles • Speckle interferometry • Adaptive optics – Deformable mirrors – Sensing the wavefront shape – Complete system	119
6	Detectors and statistics	130
6.1	Introduction	130
6.2	Position-insensitive detectors Photomultiplier and photometry • Proportional counter	131
6.3	Position-sensitive detectors Position-sensitive proportional counters • Charge-coupled device – Structure of a CCD – Exposure to light – Readout of the image – Utility in optical astronomy – Adaptive imaging – Utility in x-ray astronomy	137
6.4	Gamma-ray instruments EGRET experiment • Detector subsystems – Plastic scintillator anticoincidence – Spark chamber detection of electron–positron pair – Timing scintillation detectors (up–down discrimination) – Energies and arrival directions • BATSE experiment	145
6.5	Statistics of measurements Instrumental noise • Statistical fluctuations – "noise" – Poisson distribution – Normal distribution – Variance and standard deviation – Measurement significance –Statistical traps • Background – Propagation of errors – Background subtraction – Low and high background limits – Bright and faint source observations • Comparison to theory – Finding parameters and checking hypotheses – Least squares fit – Chi square test	151

х

Cambridge University Press
978-0-521-53551-9 - Astronomy Methods: A Physical Approach to Astronomical Observations
Hale Bradt
Frontmatter
More information

Contents 7 175 Multiple telescope interferometry 7.1 Introduction 176 7.2 **Two-telescope interference** 177 Principle of interferometry • Equatorial observation -Transmission of radiation - Reception - Earth rotation -Position of source • North-Pole observation • All-sky fringe patterns • Point-source response - Wavefront samples -Summed waves - Multiplied waves - Signal processing • Fourier plane – Spatial frequencies – Projected baseline 7.3 Mapping the sky 197 Cross-correlation or "shading" method - Bins on the sky -Cross-correlation – Equal weighting of time intervals • Fourier analysis of sky brightness – Principle of aperture synthesis - Arbitrary sky brightness distribution - Visibility -Phase of visibility function – Sky brightness • Cleaning algorithms 7.4 **Arrays of telescopes** 208 Multiple baselines • Radio arrays • Very long baseline interferometry (VLBI) • Optical and x-ray interferometry 8 Point-like and extended sources 218 8.1 Introduction 219 8.2 220 **Unresolved point-like sources** Spectral flux density • Flux density • Luminosity • Fluence 8.3 Astronomical magnitudes 224 Apparent magnitude – Magnitudes and fluxes – Spectral color bands - Conversion from magnitudes to SI units - Color indices • Absolute magnitudes – luminosity • Bolometric magnitude – Bolometric Correction – Absolute bolometric magnitude and luminosity **Resolved "diffuse" sources** 8.4 234 Specific intensity - Concept of specific intensity - Power received by antenna - Average specific intensity • Spectral flux density revisited - Relation to specific intensity - Specific intensity of pulsars • Surface brightness – Power emitted from a surface – Equality of emitted and received intensity (B = I) – Liouville's theorem • Energy flow – names, symbols, and units • Volume emissivity – Relation to specific intensity - Line-of-sight emissivity (power column density)

Cambridge University Press	
978-0-521-53551-9 - Astronomy Methods: A Physical Approach to Astronomical O	bservations
Hale Bradt	
Frontmatter	
More information	

	Contents	xi
9	Properties and distances of celestial objects	253
9.1	Introduction	254
9.2	Luminosities	254
9.3	Masses Earth and sun • Moon • Spiral galaxies and the Galaxy • Clusters of galaxies and the virial theorem	256
9.4	Temperatures Thermal and non-thermal radiation • Temperature measurements – Kinetic temperature – Color temperature – Effective temperature – Excitation temperature – Ionization temperature – Saha equation	260
9.5	Distances and sizes Distance ladder • Moon, earth, and sun • Trigonometric parallax • Distances to open clusters – Convergence – Distance to a cluster star – Distance to the cluster • Secular and statistical parallaxes – Secular parallax – Statistical parallax • Standard candles • Spectroscopic classification • Galactic center and Crab nebula distances • Cepheid and RR Lyrae variables • Hubble law – Receding galaxies – Expanding universe – Value of Hubble constant – Redshift – Size and age of the universe • Extragalactic "standard candles" – Luminosity functions – Supernovae – Line-broadening in galaxies – Surface brightness fluctuations • Ultimate goals	265
10	Absorption and scattering of photons	298
10.1	Introduction	298
10.2	 Photon interactions Photon-electron interactions – Rayleigh scattering – Thomson scattering – Compton scattering • Photon absorption in the CMB • Photon-atom interactions – Photoelectric absorption and absorption lines – Emission nebulae – Pair production near a nucleus 	300
10.3	Extinction of starlight Grains in the interstellar medium • Extinction parameters – Extinction coefficient – Extragalactic sources – Color excess (reddening) – Frequency dependence • Dust-hydrogen association	306
10.4	Cross sections Cross section as target • Mean propagation distance – Exponential absorption – Mean free path – Mass units and opacity – Optical depth • Cross section and extinction coefficient	314
10.5	Photoelectric absorption in the interstellar medium Photoelectric effect • Cosmic abundances – Abundances by number – Mass fractions • Propagation distances in the interstellar medium – Effective cross section – Survival distances – Astronomy through gases	321

xii

Contents

Cambridge University Press	
978-0-521-53551-9 - Astronomy Methods: A Physical Approach to Astronomical (Observations
Hale Bradt	
Frontmatter	
More information	

11	Spectra of electromagnetic radiation	333
11.1	Introduction	333
11.2	Plots of spectra Energy and number spectra • Spectral reference band – Frequency and wavelength – Frequency and energy • Spectral bin widths	334
11.3	Continuum spectra Free-bound, bound-free and free-free transitions • Optically thin thermal bremsstrahlung – Radiation from a hot plasma – Plasma parameters determined – Shocks in supernova remnants, stellar coronae, H II regions • Synchrotron radiation • Blackbody radiation – Spectrum – Radio spectra and antenna temperature – Cosmic microwave background – Stars	339
11.4	Spectral lines Absorption and emission lines – Origin of spectral lines – Stars and nebulae – Permitted and forbidden lines – Spectral lines at non-optical frequencies • Line strengths and shapes – Equivalent width – Damping and thermal profiles – Turbulent motions and collisional broadening – Saturation and the curve of growth	354
11.5	Formation of spectral lines (radiative transfer) Radiative transfer equation (RTE) – Intensity differentials – Intensity variation with optical depth • Local thermodynamic equilibrium • Solution of the RTE • Limiting cases – Summary	365
12	Astronomy beyond photons	378
12.1	Introduction	379
12.2	Neutrino observatories Neutrinos from the sun • Homestake mine experiment – Neutrino–chlorine conversions – Argon decay – Sweeping for argon atoms – Solar neutrino problem • Second generation experiments – Gallium detectors – Super-Kamiokande – Cerenkov radiation • Neutrino oscillations and more	379
12.3	Cosmic ray observatories Primary and secondary fluxes – Storage in the Galaxy – Nuclear component – Electromagnetic component – Muon component – Cosmic ray astronomy • Extensive air showers – Growth and decay – Cerenkov radiation and fluorescence – Detection of EAS – Fly's Eye – Auger project • Gamma-ray primaries – TeV and EeV astronomy	388
12.4	Gravitational-wave observatories Orbiting neutron stars – Hulse–Taylor pulsar – Energy loss rate • Gravitational waves – Distortion of space – Quadrupole radiation • Merger of neutron-star binary – Variable quadrupole moment – Strain – Detection in Virgo cluster – Final	399

Contents	xiii
Credits, further reading, and references	415
Appendix – Units, symbols, and values	418
Index	422

Figures

1.1	Stonehenge	page 2
1.2	Ptolemaic system	3
1.3	Crab nebula	4
1.4	Brahe, Galileo, Kepler	6
1.5	Trifid nebula	12
1.6	Orion nebula	13
1.7	Pleiades	14
1.8	Ring nebula	15
1.9	Globular cluster M10	16
1.10	Andromeda nebula M31	17
1.11	Hubble redshift	18
2.1	Bands of the electromagnetic spectrum	26
2.2	Atmospheric absorption	30
3.1	Celestial sphere and the earth	36
3.2	Horizon coordinate system	38
3.3	Galaxy: bulge, corona, globular clusters, spiral arms	41
3.4	Galactic coordinates	41
3.5	Celestial sphere, equatorial and galactic coordinates	42
3.6	Discrete radio sources, 1420 MHz	43
3.7	Solid angle element	46
4.1	Star motions in horizon coordinate system	61
4.2	Trigonometric parallax	64
4.3	Stellar aberration	65
4.4	Earth precession	67
4.5	Solar eclipse, tracks of sun and moon	74
4.6	Sun in x rays and visible light during eclipse	78

Cambridge University Press	
978-0-521-53551-9 - Astronomy Methods: A Physical Approach to Astronomical C	Observations
Hale Bradt	
Frontmatter	
More information	

	List of figures	XV
5.1	Thin lens focusing	101
5.2	Telescope focusing systems	105
5.3	Tubular collimator and multiple pinhole mask	107
5.4	Galactic center in x rays, BeppoSAX WFC image	109
5.5	Telescope beam, resolution and FWHM	113
5.6	Fraunhofer diffraction	116
5.7	Diffraction by circular aperture, Airy disk	118
5.8	Adaptive optics, interference of wavefronts	120
5.9	Speckle interferometry imaging	123
5.10	Hartmann wavefront sensor	126
5.11	Adaptive optics system	127
5.12	Galactic center image using adaptive optics	128
6.1	Photometry and the photomultiplier tube	132
6.2	Proportional counter	134
6.3	Charge-coupled device (CCD)	139
6.4	CCD readout	141
6.5	EGRET gamma-ray experiment	146
6.6	BATSE gamma-ray burst experiment	150
6.7	Poisson distribution, three mean values	154
6.8	Poisson and normal distributions, $m = 100$	156
6.9	Least squares fits	167
6.10	Chi square tests	170
6.11	Chi square probabilities	171
7.1	Principle of interferometry	178
7.2	Two equatorial telescopes on spinning earth	180
7.3	Two telescopes at North Pole on spinning earth	184
7.4	Lines of position and source location	185
7.5	Electronic processing and all-sky lines of visibilty	186
7.6	Interference wave forms	190
7.7	Projected baseline b and tangent plane	193
7.8	"Shading" method for creating map	198
7.9	Very Large Array (VLA) and VLBA	210
7.10	Twin quasar 0957+561	210
7.11	Cygnus A with lobes, VLA image	211
7.12	Capella image with optical interferometry	213
8.1	Flux and luminosity from a point source	223
8.2	UBV transmission curves	227
8.3	Antenna beam, source element, spherical coordinates	236
8.4	Specific intensity, surface receiving flux	240

Cambridge University Press	
978-0-521-53551-9 - Astronomy Methods: A Physical Approach to Astronomical Observation	ns
Hale Bradt	
Frontmatter	
More information	

xvi List of figures

8.5	Surface brightness, radiation leaving a surface	242
8.6	Geometry, surface brightness = specific intensity	243
8.7	Specific intensity from shells at r and $2r$	244
8.8	Specific intensity from element of transparent cloud	248
8.9	Emission from a column	249
9.1	Energy levels of two ionization states	264
9.2	Sizes and distances of astronomical objects	267
9.3	Moving cluster method	271
9.4	Upsilon, tau and radial velocity components of a star	275
9.5	Distance to H_2O masers in Sgr B-2	278
9.6	Cepheid intensity variations	280
9.7	Luminosity function of globular clusters	287
9.8	Surface brightness fluctuations on a CCD chip	290
9.9	Distance ladder	293
10.1	Hydrogen atom, energy levels	305
10.2	Interstellar reddening by cloud and in galactic disk	307
10.3	Extinction vs. frequency plot	312
10.4	Dust-hydrogen correlation in Galaxy	313
10.5	Cross section for atom, attenuation in volume element	315
10.6	Cross section vs. frequency in matter, sketches	322
10.7	Effective photoelectric cross sections in ISM	325
10.8	Ultraviolet and x-ray survival distances in Galaxy	328
11.1	Sketches, emission lines, absorption line, continuum	334
11.2	Spectra of Crab nebula and pulsar	336
11.3	Exponential spectra, three plots	342
11.4	Theoretical spectrum, optically thin thermal plasma	344
11.5	X-ray spectra of Puppis A and Capella	345
11.6	Ideal and real radio spectra	346
11.7	Power-law spectrum, sketch	347
11.8	Blackbody spectra, linear and log-log plots	349
11.9	Cosmic microwave background (CMB) spectrum	352
11.10	Optical stellar spectra, Canopus and η Carinae	353
11.11	Origins of spectral lines, light bulb and 3 observers	356
11.12	Spinning star, origin of emission and absorption lines	357
11.13	Radio molecular spectra	360
11.14	Equivalent width and saturation, sketches	361
11.15	Line profiles, thermal and damping	363
11.16	Curve of growth	365
11.17	Radiative transfer, source, cloud and observer	366

Cambridge University Press	
978-0-521-53551-9 - Astronomy Methods: A Physical Approach to Astronomical (Observations
Hale Bradt	
Frontmatter	
More information	

	List of figures	xvii
11.18	Radiative transfer, intensity vs. optical depth	370
11.19	Line formation, optical depth and intensity vs. frequency	372
12.1	Solar neutrino spectrum	381
12.2	Cerenkov light directionality and "smoke ring" in water	386
12.3	Primary and secondary cosmic rays in atmosphere	391
12.4	Extensive air shower and detector array	393
12.5	Auger observatory for ultra high energy primaries	397
12.6	Hulse–Taylor binary pulsar orbital decay	401
12.7	Ring of test masses in gravitational waves, two polarizations	403
12.8	Close binary of two neutron stars, final chirp	405
12.9	Gravitational wave detectors, bar and interferometer	409

Tables

2.1	Frequency-wavelength correspondence	page 27
3.1	Examples of equatorial celestial coordinates	39
4.1	TT and TAI offsets relative to UTC	87
6.1	Sample values of Poisson function P_x	155
6.2	Normal distribution probabilities	157
8.1	Solar apparent magnitudes	228
8.2	Photometry bands: Johnson-Cousins-Glass system	228
8.3	Star types: absolute magnitudes and bolometric corrections	234
9.1	Mass, luminosity, and energy examples	255
9.2	Size (radius) and distance examples	266
9.3	Surface brightness fluctuations, example	292
10.1	Absorption parameters	319
10.2	Solar-system abundances	323
11.1	Prominent emission lines in Orion nebula	359
A1	Base units: Système Internationale (SI)	418
A2	Some SI derived units	418
A3	SI prefixes	419
A4	Energy-related quantities	419
A5	Physical constants	420
A6	General astronomical constants	421
A7	Constants involving time	421

Preface

This volume is the first part of notes that evolved during my teaching of a small class for junior and senior physics students at MIT. The course focused on a physical, analytical approach to astronomy and astrophysics. The material in this volume presents methods, tools and phenomena of astronomy that the science undergraduate should incorporate into his or her knowledge prior to or during the practice and study of quantitative and analytical astronomy and astrophysics.

The content is a diverse set of topics ranging across all branches of astronomy, with an approach that is introductory and based upon physical considerations. It is addressed primarily to advanced undergraduate science students, especially those who are new to astronomy. It should also be a useful introduction for graduate students or postdoctoral researchers who are encountering the practice of astronomy for the first time. Algebra and trigonometry are freely used, and calculus appears frequently. Substantial portions should be accessible to those who remember well their advanced high school mathematics.

Here one learns quantitative aspects of the electromagnetic spectrum, atmospheric absorption, celestial coordinate systems, the motions of celestial objects, eclipses, calendar and time systems, telescopes in all wavebands, speckle interferometry and adaptive optics to overcome atmospheric jitter, astronomical detectors including CCDs, two space gamma-ray experiments, basic statistics, interferometry to improve angular resolution, radiation from point and extended sources, the determination of masses, temperatures, and distances of celestial objects, the processes that absorb and scatter photons in the interstellar medium together with the concept of cross section, broadband and line spectra, the transport of radiation through matter to form spectral lines, and finally the techniques used in neutrino. cosmic-ray and gravitational-wave astronomy.

I choose to use SI units throughout to be consistent with most standard undergraduate science texts. Professional astronomers use cgs units, probably because everyone else in the field does. Unfortunately, this precludes progress in bringing

xx Preface

the various science communities together to one system of units. It is also a significant hindrance to the student exploring astronomy or astrophysics. In this work I vote for ease of student access and encourage my colleagues to do likewise in their publications. I do violate this in at least one respect. In avoiding the historical and highly specialized astronomical unit of distance, the "parsec", I use instead the better understood, but non-SI, unit, the "light year" (LY), the distance light travels in one year. This is a well defined quantity if one specifies the Julian year of exactly 365.25 days, each of exactly 86 400 SI seconds, or a total of 31 557 600 s per year.

Other features to note are. (*i*) problems are provided for each chapter; and approximate answers are given where appropriate; (*ii*) units are often given gratuitously (in parentheses) for algebraic variables to remind the reader of the meaning of the symbol; (*iii*) equation, table, figure, and section numbers in the text do not carry the chapter prefix if they refer to the current chapter, to improve readability; (*iv*) tables of useful units, symbols and constants are given in the Appendix, and (*v*) quantitative information is meant to be up to date and correct, but should not be relied upon for professional research. The goal here is to teach underlying principles.

In teaching this course from my notes, I adopted a seminar, or Socratic, style of teaching that turned out to be extremely successful and personally rewarding. I recommend it to teachers using this text. I sat with the students (up to about 20) around a table, or we would arrange classroom desks and chairs in a circular/rectangular pattern so we were all facing each other, more or less. I would then have the students explain the material to their fellow students ("Don't look at me," I often said). One student would do a bit, and I would move on to another. I tried very hard to make my prompts easy and straightforward, to not disparage incorrect or confusing answers, and to encourage discussion among students. I would synthesize arguments and describe the broader implications of the material interspersed with stories of real-life astronomy, personalities, discoveries, etc.

These sessions would often become quite active. During this discussion, the text is available to all and is freely referenced. To ease such referencing, all equations are numbered, labels are provided for many of them, and important equations are marked with a boldface arrow in the left margin. The students had to work hard to prepare for class, and thus got much out of the class discussion. And it was great fun for the teacher. In good weather, we would move outdoors and have our discussion on the lawn of MIT's Killian Court.

I hope to publish other portions of these notes in future volumes. The second should follow shortly; its working title and current chapter titles are:

Cambridge University Press	
978-0-521-53551-9 - Astronomy Methods: A Physical Approach to Astronomical Obse	rvations
Hale Bradt	
Frontmatter	
More information	

Preface

xxi

Astrophysics Processes – Physical Processes that Underlie Astronomical Phenomena

Kepler's laws and the mass function Special theory of relativity in astronomy Kinetic theory and thermodynamics Radiation from accelerating charges Thermal bremsstrahlung radiation Synchrotron radiation Blackbody radiation Compton scattering Hydrogen spin-flip radiation Propagation in phase space Dispersion and Faraday rotation Gravitational lensing

The author asks his readers forbearance with the inevitable errors in the current text and asks to be notified of them. Comments and suggestions are welcome.

Hale Bradt Belmont MA USA bradt@mit.edu

Acknowledgments

I am indebted to many colleagues at MIT and elsewhere and to many students for their encouragement and assistance in hallway discussions, in class, and as readers of draft chapters, over the course of the two decades that this work has been evolving. It is impossible to fairly list all those who helped in these ways, but I will mention those who particularly come to mind. I apologize for omissions. I do not list those who helped specifically with chapters not included in this volume. Needless to say, those mentioned are not responsible for errors; I assume that role.

Colleagues: Marshall Bautz, Edward Bertschinger, Kenneth Brecher, Roberto Buonanno, Bernard Burke, Claude Canizares, Deepto Chakrabarty, George Clark, Charles Counselman, James Cronin, Alessandra Dicredico, Marco Feroci, Kathy Flanaghan, Peter Ford, Leon Golub, Mark Gorenstein, Marc Grisaru, Jackie Hewitt, Scott Hughes, Gianluca Israel, Garrett Jernigan, Erik Katsavounides, Alan Levine, Alan Lightman, Herman Marshall, Christopher Moore, James Moran, Edward Morgan, Philip Morrison, Stuart Mufson, Stan Olbert, Saul Rappaport, Ronald Remillard, Harvey Richer, Swapan Saha, Peter Saulson, Paul Schechter, Irwin Shapiro, David Shoemaker, Luigi Stella, Victor Teplitz, David Thompson, John Tonry, Jake Waddington, Joel Weisberg.

Graduate and undergraduate students (at the time): Stefan Ballmer, David Baran, James "Gerbs" Bauer, Eugene Chiang, Asantha Cooray, Yildiz Dalkir, Antonios Eleftheriou, James Gelb, Edgar Gonzalez, Karen Ho, Juliana Hsu, Rick Jenet, Jeffrey Jewell, Jasmine Jijina, Vishnja Katalinic, Edward Keyes, Janna Levin, Tito Pena, Jeremy Pitcock, Philipp Podsiadlowski, Antonia Savcheva, Robert Shirey, Donald A. Smith, Svetlin Tassev, Seth Trotz, Keith Vanderlinde, Emily Wang.

I am especially gratefull to colleagues Saul Rappaport and Stu Teplitz for their reading of the entire set of notes some years ago, and to graduate student Edward Keyes and undergraduate Keith Vanderlinde for their very recent reading of this volume in its current form. In the days before personal word precessors, secretaries

Acknowledgments

xxiii

Trish Dobson, Ann Scales, Patricia Shultz, and Diana Valderrama did yeoman duty in typing revisions of the notes for my classes.

Much appreciated allowances have been made for my writing efforts by my family, by the Department of Physics at MIT, by my colleagues at the MIT Center for Space Research and by my associates in the Rossi X-ray Timing Explorer (RXTE) satellite program at MIT, the University of California at San Diego, and NASA's Goddard Space Flight Center. The hospitality of the Institute of Space and Astronautical Science (ISAS) in Japan and the Observatory of Rome (OAR) in Italy provided extended periods of quiet writing for which I am grateful. This volume began at ISAS and was completed at OAR.

Finally, it has been a pleasure to work with the staff and associates of Cambridge University Press, in particular, Miranda Fyfe, Jacqueline Garget, Carol Miller, Simon Mitton, Margaret Patterson and the folks at TechBooks in New Delhi. They have been encouraging, creative, patient and ever helpful.