The study of complex variables is important for students in engineering and the physical sciences and is a central subject in mathematics. In addition to being mathematically elegant, complex variables provide a powerful tool for solving problems that are either very difficult or virtually impossible to solve in any other way.

Part I of this text provides an introduction to the subject, including analytic functions, integration, series, and residue calculus. It also includes transform methods, ordinary differential equations in the complex plane, numerical methods, and more. Part II contains conformal mappings, asymptotic expansions, and the study of Riemann–Hilbert problems. The authors also provide an extensive array of applications, illustrative examples, and homework exercises.

This new edition has been improved throughout and is ideal for use in introductory undergraduate and graduate level courses in complex variables.
Contents

Sections denoted with an asterisk (*) can be either omitted or read independently.

Preface

Part I Fundamentals and Techniques of Complex Function Theory

1 Complex Numbers and Elementary Functions 3
1.1 Complex Numbers and Their Properties 3
1.2 Elementary Functions and Stereographic Projections 8
 1.2.1 Elementary Functions 8
 1.2.2 Stereographic Projections 15
1.3 Limits, Continuity, and Complex Differentiation 20
1.4 Elementary Applications to Ordinary Differential Equations 26

2 Analytic Functions and Integration 32
2.1 Analytic Functions 32
 2.1.1 The Cauchy–Riemann Equations 32
 2.1.2 Ideal Fluid Flow 40
2.2 Multivalued Functions 46
 *2.3 More Complicated Multivalued Functions and Riemann Surfaces 61
2.4 Complex Integration 70
2.5 Cauchy’s Theorem 81
2.6 Cauchy’s Integral Formula, Its Generalization and Consequences 91
Contents

2.6.1 Cauchy's Integral Formula and Its Derivatives 91

2.6.2 Liouville, Morera, and Maximum-Modulus Theorems 95

2.6.3 Generalized Cauchy Formula and \(\overline{f} \) Derivatives 98

2.7 Theoretical Developments 105

3 Sequences, Series, and Singularities of Complex Functions 109

3.1 Definitions and Basic Properties of Complex Sequences, Series 109

3.2 Taylor Series 114

3.3 Laurent Series 127

3.4 Theoretical Results for Sequences and Series 137

3.5 Singularities of Complex Functions 144

3.5.1 Analytic Continuation and Natural Barriers 152

3.6 Infinite Products and Mittag–Leffler Expansions 158

3.7 Differential Equations in the Complex Plane: Painlevé Equations 174

3.8 Computational Methods 196

3.8.1 Laurent Series 196

3.8.2 Differential Equations 198

4 Residue Calculus and Applications of Contour Integration 206

4.1 Cauchy Residue Theorem 206

4.2 Evaluation of Certain Definite Integrals 217

4.3 Principal Value Integrals and Integrals with Branch Points 237

4.3.1 Principal Value Integrals 237

4.3.2 Integrals with Branch Points 245

4.4 The Argument Principle, Rouché's Theorem 259

4.5 Fourier and Laplace Transforms 267

4.6 Applications of Transforms to Differential Equations 285

Part II Applications of Complex Function Theory 309

5 Conformal Mappings and Applications 311

5.1 Introduction 311

5.2 Conformal Transformations 312

5.3 Critical Points and Inverse Mappings 317

5.4 Physical Applications 322

5.5 Theoretical Considerations – Mapping Theorems 341
Contents

5.6 The Schwarz–Christoffel Transformation 345
5.7 Bilinear Transformations 366
*5.8 Mappings Involving Circular Arcs 382
5.9 Other Considerations 400
 5.9.1 Rational Functions of the Second Degree 400
 5.9.2 The Modulus of a Quadrilateral 405
*5.9.3 Computational Issues 408

6 Asymptotic Evaluation of Integrals 411
 6.1 Introduction 411
 6.1.1 Fundamental Concepts 412
 6.1.2 Elementary Examples 418
 6.2 Laplace Type Integrals 422
 6.2.1 Integration by Parts 423
 6.2.2 Watson’s Lemma 426
 6.2.3 Laplace’s Method 430
 6.3 Fourier Type Integrals 439
 6.3.1 Integration by Parts 440
 6.3.2 Analog of Watson’s Lemma 441
 6.3.3 The Stationary Phase Method 443
 6.4 The Method of Steepest Descent 448
 6.4.1 Laplace’s Method for Complex Contours 453
 6.5 Applications 474
 6.6 The Stokes Phenomenon 488
 *6.6.1 Smoothing of Stokes Discontinuities 494
 6.7 Related Techniques 500
 *6.7.1 WKB Method 500
 *6.7.2 The Mellin Transform Method 504

7 Riemann–Hilbert Problems 514
 7.1 Introduction 514
 7.2 Cauchy Type Integrals 518
 7.3 Scalar Riemann–Hilbert Problems 527
 7.3.1 Closed Contours 529
 7.3.2 Open Contours 533
 7.3.3 Singular Integral Equations 538
 7.4 Applications of Scalar Riemann–Hilbert Problems 546
 7.4.1 Riemann–Hilbert Problems on the Real Axis 558
 7.4.2 The Fourier Transform 566
 7.4.3 The Radon Transform 567
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>Matrix Riemann–Hilbert Problems</td>
<td>579</td>
</tr>
<tr>
<td>7.5.1</td>
<td>The Riemann–Hilbert Problem for Rational Matrices</td>
<td>584</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Inhomogeneous Riemann–Hilbert Problems and Singular Equations</td>
<td>586</td>
</tr>
<tr>
<td>7.5.3</td>
<td>The Riemann–Hilbert Problem for Triangular Matrices</td>
<td>587</td>
</tr>
<tr>
<td>7.5.4</td>
<td>Some Results on Zero Indices</td>
<td>589</td>
</tr>
<tr>
<td>7.6</td>
<td>The DBAR Problem</td>
<td>598</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Generalized Analytic Functions</td>
<td>601</td>
</tr>
<tr>
<td>7.7</td>
<td>Applications of Matrix Riemann–Hilbert Problems and $\bar{\partial}$ Problems</td>
<td>604</td>
</tr>
</tbody>
</table>

Appendix A Answers to Odd-Numbered Exercises 627

Bibliography 637

Index 640
The study of complex variables is beautiful from a purely mathematical point of view and provides a powerful tool for solving a wide array of problems arising in applications. It is perhaps surprising that to explain real phenomena, mathematicians, scientists, and engineers often resort to the “complex plane.” In fact, using complex variables one can solve many problems that are either very difficult or virtually impossible to solve by other means. The text provides a broad treatment of both the fundamentals and the applications of this subject.

This text can be used in an introductory one- or two-semester undergraduate course. Alternatively, it can be used in a beginning graduate level course and as a reference. Indeed, Part I provides an introduction to the study of complex variables. It also contains a number of applications, which include evaluation of integrals, methods of solution to certain ordinary and partial differential equations, and the study of ideal fluid flow. In addition, Part I develops a suitable foundation for the more advanced material in Part II. Part II contains the study of conformal mappings, asymptotic evaluation of integrals, the so-called Riemann–Hilbert and DBAR problems, and many of their applications. In fact, applications are discussed throughout the book. Our point of view is that students are motivated and enjoy learning the material when they can relate it to applications.

To aid the instructor, we have denoted with an asterisk certain sections that are more advanced. These sections can be read independently or can be skipped. We also note that each of the chapters in Part II can be read independently. Every effort has been made to make this book self-contained. Thus advanced students using this text will have the basic material at their disposal without dependence on other references.

We realize that many of the topics presented in this book are not usually covered in complex variables texts. This includes the study of ordinary
Preface

differential equations in the complex plane, the solution of linear partial differential equations by integral transforms, asymptotic evaluation of integrals, and Riemann–Hilbert problems. Actually some of these topics, when studied at all, are only included in advanced graduate level courses. However, we believe that these topics arise so frequently in applications that early exposure is vital. It is fortunate that it is indeed possible to present this material in such a way that it can be understood with only the foundation presented in the introductory chapters of this book.

We are indebted to our families, who have endured all too many hours of our absence. We are thankful to B. Fast and C. Smith for an outstanding job of word processing the manuscript and to B. Fast, who has so capably used mathematical software to verify many formulae and produce figures.

Several colleagues helped us with the preparation of this book. B. Herbst made many suggestions and was instrumental in the development of the computational section. C. Schober, L. Luo, and L. Glasser worked with us on many of the exercises. J. Meiss and C. Schober taught from early versions of the manuscript and made valuable suggestions.

David Benney encouraged us to write this book and we extend our deep appreciation to him. We would like to take this opportunity to thank those agencies who have, over the years, consistently supported our research efforts. Actually, this research led us to several of the applications presented in this book. We thank the Air Force Office of Scientific Research, the National Science Foundation, and the Office of Naval Research. In particular we thank Arje Nachman, Program Director, Air Force Office of Scientific Research (AFOSR), for his continual support.

Since the first edition appeared we are pleased with the many positive and useful comments made to us by colleagues and students. All necessary changes, small additions, and modifications have been made in this second edition. Additional information can be found from www.cup.org/titles/catalogue.