CHAPTER 1

THE HOMOTOPY CATEGORY OF (2, 4)-COMPLEXES

A (2,4)-complex is a CW-complex X with cells only in dimension 2 and 4. Hence X is of the form

$$
X = S^2 \vee \dots \vee S^2 \cup e^4 \cup \dots \cup e^4
$$

where we attach 4-cells to a one point union of 2-spheres. It is well known that a simply connected 4-manifold M is homotopy equivalent to a $(2,4)$ complex with only one 4-cell. Moreover if N is a simply connected 6-manifold with torsion free homology and $H_3N = 0$ then the 4-skeleton of N is a (2,4)complex. For example the 4-skeleton of the product $N = S^2 \times S^2 \times S^2$ is the (2,4)-complex

$$
N^4 = S^2 \times S^2 \times * \cup S^2 \times * \times S^2 \cup * \times S^2 \times S^2.
$$

In this chapter we consider the homotopy category $\mathbf{CW}(2,4)$ of $(2,4)$ -complexes and we show that $\text{CW}(2, 4)$ is part of a linear extension of categories. In chapter 5 we will describe an algebraic category which is equivalent to $CW(2, 4)$.

1.1. Quadratic functions and the Hopf map

We recall from the literature some basic facts on low dimensional homotopy groups π_3 and π_4 . J.H.C. Whitehead [W] showed that the Hopf map $\eta: S^3 \to S^2$ has a quadratic distributivity law. Therefore the quadratic functor Γ can be used to describe the homotopy groups π_3 and π_4 of a Moore space $M(A, 2)$ where A is a free abelian group.

1.1. QUADRATIC FUNCTIONS AND THE HOPF MAP 2

A function $f : A \to B$ between abelian groups is called *quadratic* if $f(-a) =$ $f(a)$ and if the function $A \times A \rightarrow B$, given by $(a, b) \mapsto f(a+b) - f(a) - f(b)$, is bilinear. There is the universal quadratic map

$$
(1.1.1)\qquad \qquad \gamma:A\longrightarrow \Gamma(A)
$$

with the property: for all quadratic maps $f : A \rightarrow B$ there is a unique (induced) homomorphism f^{\square} : $\Gamma(A) \to B$ with $f^{\square} \gamma = f$. A homomorphism $\varphi : A' \to A$ yields the quadratic map $\gamma \varphi$ which induces $\Gamma(\varphi) = (\gamma \varphi)^{\square}$: $\Gamma(A') \to \Gamma(A)$.

This shows that $\Gamma : \mathbf{Ab} \to \mathbf{Ab}$ is a well defined functor, where **Ab** denotes the category of abelian groups. We associate with Γ the following natural commutative diagram in which the subdiagram "push" is a push out of abelian groups; moreover $\otimes^2 A = A \otimes A$ denotes the *tensor product* over \mathbb{Z} .

(1.1.2)
\n
$$
A \otimes A
$$
\n
$$
\downarrow [1,1]
$$
\n
$$
\Gamma(A) \xrightarrow{\tau} A \otimes A \xrightarrow{q} A \wedge A
$$
\n
$$
\sigma \qquad \qquad \downarrow \bar{\sigma} \qquad \qquad \downarrow id
$$
\n
$$
A \otimes \mathbb{Z}/2 \xrightarrow{\bar{\tau}} A \hat{\otimes} A \xrightarrow{q} A \wedge A
$$

The column and the rows of the diagram are exact sequences of abelian groups. The homomorphism τ is induced by the quadratic map $A \to A \otimes A$, $A \mapsto a \otimes a$, and σ is induced by $a \mapsto a \otimes 1$. Here $1 \in \mathbb{Z}/2$ ist the generator of $\mathbb{Z}/2 = \mathbb{Z}/2\mathbb{Z}$. We define [1, 1] by

(1)
$$
[1,1](a \otimes b) = [a,b] = \gamma(a+b) - \gamma(a) - \gamma(b).
$$

We clearly have $[a,b]=[b,a], [a,a]=2\gamma(a), \Gamma(\varphi)[a,b]=[\varphi a,\varphi b], \sigma[a,b]=0$ and $\tau[a,b] = a \otimes b + b \otimes a$.

We obtain the *exterior product* $\Lambda^2 A = A \wedge A = A \otimes A / \sim$ by the relation $\tau\gamma(a) = a \otimes a \sim 0$ and we obtain $\hat{\otimes}^2 A = A \hat{\otimes} A = A \otimes A / \sim$ by the relation $\tau[a,b] = a \otimes b + b \otimes a \sim 0$. The quotient map q carries $a \otimes b$ to $a \wedge b$.

1.1. QUADRATIC FUNCTIONS AND THE HOPF MAP 3

If A is free abelian with ordered basis Z, then ΓA and $A \wedge A$ are free abelian with the basis $\{\gamma(m), [m,n] : m < n, m, n \in \mathbb{Z}\}\$ and $\{m \wedge n : m < n, m, n \in \mathbb{Z}\}\$ Z} respectively. In this case the homomorphisms τ ans $\bar{\tau}$ in (1.1.2) are injective. If A is free abelian we define the (integral) matrix $(x_{m,n}: m, n \in \mathbb{Z})$ of an element $x \in \Gamma A$ by the formula

(2)
$$
\tau(x) = \sum_{m,n \in \mathbb{Z}} x_{m,n} m \otimes n.
$$

We say that x is unimodular if Z is a finite set and if the matrix of x satisfies determinant $(x_{m,n}) \in \{1,-1\}$. The matrix $(x_{m,n})$ of x is a symmetric integral matrix since $x_{m,n} = x_{n,m}$ which determines the element x by

$$
x = (\sum_{m < n} x_{m,n}[m,n]) + (\sum_{m} x_{m,m} \gamma(m)).
$$

This way we identify symmetric integral matrices with elements in $\Gamma(A)$.

Recall that a Moore space $M(A, n)$, $n \geq 2$, is a simply connected CW-complex with reduced homology groups $H_iM(A,n) = 0$ for $i \neq n$ and $H_nM(A,n) = A$. For a free abelian group A with basis Z we set

$$
(1.1.3) \t\t M(A,n) = \bigvee_{Z} S^n
$$

where the right hand side is a one point union of n -spheres over the index set Z. The element $m \in Z$ yields the inclusion $m : S^n \subset M(A,n)$ also denoted by m. This is compatible with the natural identification $A =$ $H_nM(A,n) = \pi_nM(A,n)$. Recall that for pointed spaces X, Y we have the set [X, Y] of homotopy classes of basepoint preserving maps $X \to Y$, for example $[S^n, Y] = \pi_n Y$ is the *n*th homotopy group of Y. For a free abelian group A we identify

$$
[M(A,n),Y] = Hom(A,\pi_n Y),
$$

so that

$$
[M(A,n),M(B,n)] = Hom(A,B)
$$

Here $Hom(A, B)$ is the abelian group of homomorphisms from A to B. The

1.1. QUADRATIC FUNCTIONS AND THE HOPF MAP 4

isomorphism (1) carries a map f to the induced homomorphism $\pi_n(f)$.

The *Hopf map* $\eta: S^3 \to S^2$ induces a quadratric map $\eta^* : \pi_2 Y \to \pi_3 Y$ satisfying the formula

(1.1.4)
$$
\eta^*(a+b) = \eta^*(a) + \eta^*(b) + [a,b]
$$

where [a, b] is the Whitehead product. The quadratic map η^* induces a homomorphism

$$
i = (\eta^*)^\square : \Gamma(\pi_2 Y) \to \pi_3 Y
$$

between abelian groups. This homomorphism is part of Whitehead's certain exact sequence below.

Let Y be a connected CW-complex with skeletons Y^n and basepoint $* \in Y^0$ and let \hat{Y} be the universal covering of Y. Then the Hurewicz homomorphism $(n \geq 2)$

$$
h = h_Y : \pi_n Y \cong \pi_n \hat{Y} \to H_n \hat{Y}
$$

is part of the long exact sequence

$$
H_{n+1}\hat{Y} \xrightarrow{b} \Gamma_n Y \xrightarrow{i} \pi_n Y \xrightarrow{h} H_n \hat{Y} \xrightarrow{b} \Gamma_{n-1} Y
$$

where the groups $\Gamma_n Y$ are defined by $\Gamma_n Y = im(\pi_n Y^{n-1} \xrightarrow{i_*} \pi_n Y^n)$ with i_* induced by the inclusion $i: Y^{n-1} \hookrightarrow Y^n$. One has a quadratic map $\eta^* : \pi_2 Y \to \Gamma_3 Y$ which carries $\alpha : S^2 \to Y^2 \subset Y^3$ to $\alpha \eta$ and the induced map

$$
\Gamma(\pi_2 Y) \xrightarrow{\cong} \Gamma_3 Y
$$

is an isomorphism for all connected spaces Y . Hence one has the exact sequence

(1.1.5)
$$
H_5 \hat{Y} \xrightarrow{b} \Gamma_4 Y \xrightarrow{i} \pi_4 Y \xrightarrow{h} H_4 \hat{Y} \xrightarrow{b} \Gamma(\pi_2 Y) \xrightarrow{i} \pi_3 Y \xrightarrow{h} H_3 \hat{Y} \longrightarrow 0.
$$

The operator $b = b_Y$ is the secondary boundary operator of Whitehead, see

1.1. QUADRATIC FUNCTIONS AND THE HOPF MAP 5

[W], [BAH], [BCH], [BHH]. As an application of (1.1.5) one gets the natural isomorphism

$$
(1.1.6) \qquad \qquad i:\Gamma(A) = \pi_3 M(A,2)
$$

which we use as an identification. This way the map γ in (1.1.1) corresponds to η^* and [1, 1] in (1.1.2) corresponds to the Whitehead product $\pi_2 \otimes \pi_2 \to \pi_3$. Moreover σ in (1.1.2) corresponds to the suspension homomorphism Σ ,

(1.1.7)
$$
\sigma: \Gamma(A) = \pi_3 M(A, 2) \xrightarrow{\Sigma} \pi_4 M(A, 3) = A \otimes \mathbb{Z}/2.
$$

We now consider the next homotopy group $\pi_4 M(A, 2)$. For this we need the following definition.

1.1.8. DEFINITION: Let $T(A, 1)$ be the free graded tensor algebra generated by the abelian group A where A is concentated in degree 1, that is $T(A, 1)_n =$ $\otimes^n A$ is the *n*-fold tensor product of A. We define the structure of a graded Lie algebra on $T(A, 1)$ by

(1)
$$
[x, y] = xy - (-1)^{|x||y|} yx
$$

for $x, y \in T(A, 1)$. As usual we set $|x| = n$ if $x \in T(A, 1)_n$. Let $L(A, 1)$ be the sub Lie algebra generated by A in $T(A, 1)$ and let $L(A, 1)_n = L(A, 1) \cap \otimes^n A$. Clearly $L($, 1)_n is a functor $\mathbf{Ab} \to \mathbf{Ab}$. We obtain

(2)
$$
L(A, 1)_3 = image[[1, 1], 1] : \otimes^3 A \to \otimes^3 A
$$

where $[[1,1],1]$ carries $a\otimes b\otimes c$ to $[[a,b],c]=(a\otimes b+b\otimes a)\otimes c-c\otimes(a\otimes b+b\otimes a).$ Hence we have the quotient map

(3) ⊗ ³A ։ L(A, 1)³

which carries $a \otimes b \otimes c$ to $[[a, b], c]$ The kernel of this map is generated by the following elements:

(a) $a \otimes b \otimes c + c \otimes a \otimes b + b \otimes c \otimes a$, (b) $a \otimes b \otimes c - b \otimes a \otimes c$, (c) $a \otimes a \otimes a$.

Compare 11.1.5 in [BHH]

1.1. QUADRATIC FUNCTIONS AND THE HOPF MAP 6

1.1.9. PROPOSITION: Let A be a free abelian group. Then one has natural isomorphisms

$$
\pi_4 M(A,2) \cong \Gamma_2^2 A = \Gamma(A) \otimes \mathbb{Z}/2 \oplus L(A,1)_3
$$

\n
$$
\cong (\Gamma(A) \otimes \mathbb{Z}/2 \oplus \Gamma(A) \otimes A)/R(A).
$$

Here the natural subgroup $R(A)$ is generated by the following elements (x,y,z) A).

(i) $[x,y] \otimes z + [z,x] \otimes y + [y,z] \otimes x$, (ii) $(\gamma x) \otimes x$, (iii) $[x,y] \otimes 1 + (\gamma x) \otimes y + [y,x] \otimes x.$

Proof: For $\pi_i = \pi_i M(A, 2)$ we have the natural homomorphisms

(1)
$$
(\Sigma \eta)^* : \Gamma(A) \otimes \mathbb{Z}/2 = \pi_3 \otimes \mathbb{Z}/2 \longrightarrow \pi_4,
$$

(2)
$$
w: \Gamma(A) \otimes A = \pi_3 \otimes \pi_2 \longrightarrow \pi_4
$$

which are defined by $\Sigma \eta : S^4 \to S^3$ and by the Whitehead product $w = [-,-]$ respectively. Moreover we define

(3)
$$
[[1,1],1]:\otimes^3 A \xrightarrow{w'} \Gamma(A) \otimes A \longrightarrow \pi_4
$$

by the triple Whitehead product, that is $w' = [1, 1] \otimes 1$. This map induces the inclusion $[[1,1],1] : L(A,1)_3 \subset \pi_4$ which together with (1) yields the first isomorphism in $(1.1.9)$. The second isomorphism is induced by (1) and (2) ; this shows that (i) corresponds to the Jacobi identity for Whitehead products, (ii) corresponds to the identity $[\eta, i_2] = 0$ for generators $\eta \in \pi_3(S^2)$, $i_2 \in \pi_2(S^2)$ and (iii) corresponds to a special case of the Barcus-Barratt formula

(4)
$$
[x\eta, y] = [x, y]\Sigma\eta - [[y, x], x].
$$

Using the Hilton Milnor theorem one can check that the maps in (1.1.9) are actually isomorphisms, compare [BCC]. The splitting for $L(A, 1)$ ₃ is obtained

1.2. SIMPLY CONNECTED 4-MANIFOLDS AND $(2, 4)$ -COMPLEXES 7

by the James-Hopf invariant γ_3 for which the composition

(5)
$$
L(A,1)_3 \xrightarrow{\quad [[1,1],1] \quad} \pi_4 M(A,2) \xrightarrow{\gamma_3} \otimes^3 A
$$

is the inclusion in $(1.1.8)(2)$. Compare also 11.1.9 of [BHH] and [BG].

We now consider the double suspension

(1.1.10)
$$
\Sigma^2 : \pi_4 M(A,2) \longrightarrow \pi_6 M(A,4) = A \otimes \mathbb{Z}/2
$$

which is trivial on $L(A, 1)$ ₃ and $\Gamma A \otimes A$ and which is given by $\sigma \otimes \mathbb{Z}/2$: $\Gamma(A) \otimes \mathbb{Z}/2 \to A \otimes \mathbb{Z}/2 \otimes \mathbb{Z}/2$ on $\Gamma(A) \otimes \mathbb{Z}/2$, see (1.1.7). As usual we use the notation $f \otimes A = f \otimes 1_A$ where $1_A = 1$ is the identity of A and where f is a homomorphism.

1.2. Simply connected 4-manifolds and (2, 4)-complexes

We say that a CW-complex X is a (2,4)-complex if $X^0 = *$ and if $X - *$ consists only of 2-cells and 4-cells. Then X is the mapping cone $X = C_q$ of an attaching map

$$
(1.2.1) \t\t g: M(B,3) \longrightarrow M(A,2)
$$

where $A = H_2 X$ and $B = H_4 X$ are free abelian groups, see (1.1.3). The homotopy class of q is a homomorphism

(1)
$$
b_X = g : B = H_4 X \longrightarrow \Gamma(A) = \Gamma(H_2 X)
$$

via $(1.1.3)(1)$ and $(1.1.6)$. Here g coincides with the secondary boundary b_X in Whitehead's exact sequence (1.1.5). The *cup product* pairing \cup for the cohomology $H^*(X)$ is obtained by the commutative diagram

(2)
$$
H^{2}(X) \otimes H^{2}(X) \longrightarrow Hom(A, \mathbb{Z}) \otimes Hom(A, \mathbb{Z})
$$

$$
\cup \qquad \qquad \downarrow \qquad \
$$

where $(\tau g)^*(\alpha \otimes \beta) = (\alpha \otimes \beta)\tau g$, see (1.1.2). This shows that the homotopy

 \Box

1.2. SIMPLY CONNECTED 4-MANIFOLDS AND $(2, 4)$ -COMPLEXES 8

class of g in (1.2.1) is also determined by the cohomology ring $H^*(X)$.

We say that a (2,4)-complex X as above is a (2,4)-Poincaré complex if $H_4X =$ $B = \mathbb{Z}$, with the *fundamental class* $[X] \in H_4X$ as a generator, and if the element

(3)
$$
b_X[X] = g(1) \in \Gamma(A) = \Gamma(H_2X)
$$

is unimodular, see $(1.1.2)(2)$. Here we assume A to be a finitely generated free abelian group with basis Z. We call $b_X[X]$ the quadratic form of X.

Let Z be a basis of A and Z^* be the dual basis of $H^2X = Hom(A, \mathbb{Z})$. Then the matrix $(g_{m,n})$ of $g(1) \in \Gamma(A)$ with respect to Z is also the matrix of the cup product pairing with respect to the dual basis Z^* , that is for $m^* \in Z^*$ corresponding to $m \in Z$ one gets

(4)
$$
(m^* \cup n^*)([X]) = g_{m,n}.
$$

We have the *Poincaré duality isomorphism*

(5)
$$
\psi = \psi_g : H_2 X \cong H^2 X
$$

which carries $z \in H_2X = A$ to the unique element $x \in H^2X = Hom(A, \mathbb{Z})$ with $(x \otimes A)\tau g(1) = z$. Here we use the composite

$$
\Gamma(A) \xrightarrow{\tau} A \otimes A \xrightarrow{x \otimes A} \mathbb{Z} \otimes A = A.
$$

The *intersection form* of X is the bilinear form

(6)
$$
\cap: H_2 X \otimes H_2 X \to \mathbb{Z}
$$

which carries $a \otimes b$ to $(\psi a) \cup (\psi b)$. Then $\psi^{-1}Z^*$ is the *Poincaré dual basis* of Z in $A = H_2 X$. The matrix of the intersecion form with respect to $\psi^{-1} Z^*$ is $(g_{m,n})$ by (4) .

We consider the full inclusion of homotopy categories

(1.2.2) P(2, 4) ⊂ CW(2, 4) ⊂ Top[∗] / � .

1.2. SIMPLY CONNECTED 4-MANIFOLDS AND $(2, 4)$ -COMPLEXES 9

Here **Top**^{*} is the category of pointed topological spaces; the morphisms $X \rightarrow$ Y in the homotopy category Top^*/\simeq are the elements of the homotopy set $[X, Y]$. The categories $CW(2, 4)$ and $P(2, 4)$ are the full subcategories of $\text{Top}^*/\simeq \text{consisting of } (2,4)$ -complexes and of $(2,4)$ -Poincaré complexes respectively. By a result of Freedman $[F]$ any $(2,4)$ -Poincaré complex has the homotopy type of a 1-connected 4-dimensional closed topological manifold so that $P(2, 4)$ is equivalent to the homotopy category of such manifolds.

We now compare the maps in $CW(2, 4)$ with the induced maps in homology. For this we introduce the category $H(2, 4)$. The objects of this category are homomorphisms $g : B \to \Gamma(A)$ where A and B are free abelian groups. The morphisms $(\xi, \eta) : f \to g$ are given by commutative diagrams

(1)
$$
B' \xrightarrow{f} B
$$

$$
f \downarrow g
$$

$$
\Gamma(A') \xrightarrow{\Gamma(\eta)} \Gamma(A)
$$

There is the homology functor

(2)
$$
H_*: \mathbf{CW}(2,4) \to \mathbf{H}(2,4)
$$

which carries a $(2, 4)$ -complex X to the homotopy class $g = b_X$ of its attaching map, that is

(3)
$$
H_*(X) = \{b_X : H_4X \to \Gamma(H_2X)\}
$$

is given by Whitehead's exact sequence. The naturality of this sequence shows that H_* is a well defined functor. The restriction of this functor to $(2,4)$ -Poincaré complexes yields the functor

(4)
$$
H_*: \mathbf{P}(2,4) \longrightarrow \mathbf{UF}
$$

where UF is the full *subcategory of unimodular forms* in $H(2, 4)$. The objects of UF are homomorphisms $g : B = \mathbb{Z} \to \Gamma(A)$ for which $g(1)$ is unimodular, see (1.2.1)(3). A morphism $(\xi, \eta) : f \to g$ in UF yields an integer $\xi \in \mathbb{Z}$ which we call the *degree*. For a map $F: Y \to X$ between (2,4)-Poincaré complexes

1.2. SIMPLY CONNECTED 4-MANIFOLDS AND $(2, 4)$ -COMPLEXES 10

with $H_*(F)=(\xi,\eta)$ we have $(H_4F)[Y] = \xi[X]$ and $H_2F = \eta$. We point out that for a morphism (ξ, η) in UF the map η determines ξ . In fact, in the commutative diagram

the maps f and g are injective so that there is a unique element $\xi \in \mathbb{Z}$ with

(5)
$$
\Gamma(\eta)(f(1)) = \xi \cdot g(1).
$$

Recall that a functor $F : \mathbf{C} \to \mathbf{K}$ is full if F is surjective on morphism sets. Moreover F is *faithful* if F is injective on morphism sets. The functor F is representative if for each object K in K there exists an object X in C together with an isomorphism $F(X) \cong K$ in **K**. The functor F reflects isomorphisms if a map $f: X \to Y$ in C is an isomorphism in C if and only if the induced map $F(f): F(X) \to F(Y)$ is an isomorphism in **K**.

1.2.3. Proposition: The homology functor

$$
H_*: \mathbf{CW}(2,4) \to \mathbf{H}(2,4)
$$

is full and representative and H_* reflects isomorphisms. The functor H_* is not faithfull.

The proposition implies that H_* induces a bijection between homotopy types of $(2,4)$ -complexes and isomorphism classes of objects in $\mathbf{H}(2,4)$.

We now consider the homotopy groups π_3, π_4 which are functors

$$
(1.2.4) \qquad \qquad \pi_3, \pi_4: \mathbf{CW}(2,4) \to \mathbf{Ab}
$$

For a $(2,4)$ -complex X these groups are part of the exact sequence

$$
0 \longrightarrow \Gamma_4 X \longrightarrow \pi_4 X \longrightarrow H_4 X \longrightarrow^g \Gamma(H_2 X) \longrightarrow \pi_3 X \longrightarrow 0.
$$