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Introduction

Lionel Mason

The Mathematical Institute, 24-29 St Giles, Oxford OX1 3LB, UK

1.1 Background

Integrable systems are systems of partial or ordinary differential equa-

tions that combine nontrivial nonlinearity with unexpected tractability.

Often one can find large families of exact solutions, and general methods

for generic solutions. This volume is concerned with the deep links that

integrability has with geometry. There are two rather different ways

that geometry emerges in the study of integrable systems.

1.1.1 Geometrical context for integrable equations

The first is from the context of the differential equations themselves:

even those integrable equations whose origins, perhaps in the theory of

water waves or plasma physics, seem a long way from geometry can

usually be expressed in the context of symplectic geometry as possibly

infinite dimensional Hamiltonian systems with many conserved quanti-

ties and often with much more further structure. But geometry is itself

also a rich source of integrable systems; one of the first examples of

a completely integrable nonlinear partial differential equation, the sine-

Gordon equation first appeared in the 19th century theory of surfaces, as

a formulation of the constant mean curvature condition on a 2-surface

embedded in Euclidean 3-space. Now there are many more examples

from geometry in many dimensions, from the two-dimensional systems

given by harmonic maps from Riemann surfaces to symmetric spaces,

to the anti-self-duality equations in 4-dimensions and more generally

quaternionic structures in 4k-dimensions.

The contributions of Tod, Mason and Woodhouse focus on the anti-

self-duality equations either on a Yang–Mills connection on a vector
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bundle over R
4, or on a 4-dimensional conformal structure. The systems

discussed by Santini also have a geometric origin, in their discrete form as

quadrilateral lattices, and in their continuous limits as conjugate nets.

The reductions and specializations of these systems then form many

more geometrical examples of integrable systems: although the systems

discussed by Donagi are presented as arising from complex algebraic

geometry rather than Riemannian geometry, they have their origin in

reductions of the real anti-self-dual Yang-Mills equations.

1.1.2 Geometrical transforms and solution methods for

differential equations

The second way that geometry appears in the theory of integrable sys-

tems is in the transforms and solution methods that are brought to bear

on integrable systems. There are many different strands here. The sym-

plectic framework for integrable equations leads to the first definition

of an integrable system, that due to Arnol’d and Liouville, in terms

the existence of sufficiently many constants of motion satisfying various

requirements. The Arnol’d–Liouville theorem leads to a transform of

the system to action-angle variables by quadratures in which the action

variables are constant and the motion is linear in the angle variables. In

fact many interesting integrable systems admit further structures that

imply Arnol’d–Liouville integrability. Those considered by Donagi are

algebraically completely integrable so that the structures in question are

complexified and required furthermore to be algebraic. Another struc-

ture that guarantees complete integrability is a bi-Hamiltonian struc-

ture.

These structures in finite dimensions lead, at least in principle, to the

general solution by quadratures. Integrable partial differential equations

can often be expressed as infinite dimensional examples of systems sat-

isfying the Arnol’d–Liouville requirements often by virtue of admitting

a bi-Hamiltonian structure. However, the infinite number of degrees of

freedom mean that one can no longer solve the system in a finite number

of quadratures. Nevertheless, new techniques become available. On the

one hand there are hidden symmetries, both discrete, such as Backlund

transforms, and continuous, such as those generated by flows associated

to the Arnol’d–Liouville constants of motion, and these can help gen-

erate new exact solutions. But also there are transforms that apply to

general solutions; historically, the inverse scattering transform was the

first important example of this and was used to provide the transform to
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action angle variables for solutions subject to rapidly decreasing bound-

ary conditions in precise analogy with the transform provided by the

finite dimensional Arnol’d–Liouville theorem.

There are now a number of such transforms such as the inverse spectral

transform, the Penrose and Ward transforms and so on. A remarkable

feature of many of these transforms is the appearance of sophisticated

complex holomorphic, and often even algebraic geometry. This complex

analysis often plays a deep role in the finite dimensional case also. In

the contribution of Woodhouse we see twistor theory as providing a sim-

ilar transform between solutions to integrable equations and geometric

structures, holomorphic vector bundles, that can be described in terms

of free functions. This construction has the additional benefit that it

applies to the general local analytic solution. A related method is based

on the non-local ∂̄-problem, so called ∂̄-dressing. In the local case this is

often simply an independent formulation of the twistor correspondence,

but in the non-local case, such constructions go beyond standard twistor

theory.

1.2 The contributions

The following is intended to provide some introduction to, and context

for, the various contributions. I should make a disclaimer here that the

context and background I give are perhaps rather one-sided and reflect

my own point of view; there are a number of different points of view

that might be taken on this material that are not presented here!

1.2.1 Notes on reductions of the anti-self-dual Yang-Mills

equations and integrable systems, L. J. Mason;

Curvature and integrability for Bianchi-type IX metrics,

K. P. Tod;

Twistor theory and integrability, N. M. J. Woodhouse

These contributions are connected by an overview on the theory of in-

tegrable systems based on reductions of the anti-self-dual Yang-Mills

(ASDYM) equations and anti-self-dual conformal structures.

The ASDYM equations can be thought of as integrable by virtue of the

existence of the Ward correspondence between solutions to these equa-

tions and holomorphic vector bundles on an auxilliary complex manifold,

twistor space. For ASDYM fields on Minkowski space, twistor space is a

portion of CP
3, complex projective 3-space. If one allows the transform

www.cambridge.org/9780521529990
www.cambridge.org


Cambridge University Press
978-0-521-52999-0 — Geometry and Integrability
Edited by Lionel Mason , Yavuz Nutku 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4

between solutions to the ASDYM equations and twistor data, this con-

struction amounts to providing, in a geometric form, the general solution

to the ASDYM equations. There is a similar construction due to Penrose

giving a correspondence between anti-self-dual conformal structures and

deformations of the complex structure on twistor space.

A key observation of Richard Ward’s is that many of the most famous

integrable equations are symmetry reductions of the ASDYM equations.

The various aspects of the integrability of such reductions of the ASDYM

equations can then be understood by reduction of the corresponding

theory for the full ASDYM equations.

The contribution of Mason concerns the integrability of the ASDYM

equations that can be understood without using twistor theory. Thus

its Lax pair, Backlund transformations, Hamiltonian formulation and

recursion operator and hierarchy are presented. Some of the more sig-

nificant reductions are reviewed also.

Paul Tod’s lectures on spinor calculus and conformal invariance were

taken from his book with Huggett, Introduction to Twistor Theory (sec-

ond edition), published by CUP as LMS Student-Text 5, and so are not

included here. The book gives useful details of space-time geometry that

provide a background for the twistor correspondence and the interested

reader can refer to it for full details.

Nick Woodhouse’s contribution is an introduction to twistor methods

and explains how the Ward transform applies to ASDYM fields and

descends to provide correspondences for reductions of ASDYM fields.

In particular it is shown how twistor methods can give new insight into

the KdV equations and the isomonodromy problem that arises in the

study of Painlevé equations. One aspect of integrability that emerges

particularly clearly is a ‘geometric’ explanation of the Painlevé test for

integrability. The lectures build on those of Tod and Mason.

There is a further contribution from Paul Tod which concerns vari-

ous equations on metrics in 4-dimensions that admit an SU(2) symmetry.

The metric may be required to be Kahler, Einstein or have anti-self-dual

Weyl tensor. The latter equation is usually thought to imply integrabil-

ity because of Penrose’s twistor correspondence. With this symmetry,

the equations reduce to ODE’s. If the metric is Einstein, it is no re-

striction to assume it is diagonal (although it is a nontrivial restriction

for general anti-self-dual conformal structures). When Ricci flat, one

obtains (with a further assumption) the Chazy equation. This is some-

what of a novelty for integrable systems theory as this equation admits
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solutions with movable natural boundaries, contradicting the Painlevé

property. An explanation of this paradox is proposed.

1.2.2 Geometry and integrability, R.Y. Donagi

The contribution of Donagi is concerned with the theorem that the Mod-

uli space of ‘meromorphic Higgs bundles’ over a Riemann surface Σ has

the structure of an algebraically completely integrable system. This

combines the symplectic geometry underlying the Arnol’d–Liouville def-

inition of an integrable system with algebraic geometry. The Arnol’d–

Liouville definition of a completely integrable system as above can be

abstracted by taking an integrable system to mean a Poisson manifold,

M , with sufficiently many commuting Hamiltonians, the collection be-

ing thought of as a map from H : M �→ R
n, satisfying certain technical

requirements to guarantee satisfactory global properties. This definition

can be complexified so that M is a complex manifold and the Pois-

son structure is a complex holomorphic bivector and H : M �→ C
n are

holomorphic. The algebraic condition is then that M be an algebraic

manifold with all the structures being expressible in terms of algebraic

functions of algebraic coordinates on M . Although this definition might

seem somewhat special, there are a remarkable number of interesting

systems that turn out to be integrable in this way.

A Higgs bundle E is a holomorphic vector bundle equipped with a

global holomorphic section, the Higgs field Φ, of the associated bundle

of 1-forms with values in the endomorphisms of E, End(E) ⊗ Ω1(Σ).

These first arose in the context of Hitchin’s study of reductions of the

anti-self-dual Yang-Mills equations on a connection on a bundle over Eu-

clidean R
4 by two translational symmetries. Remarkably, the reduced

sytem acquires 2-dimensional conformal invariance and so makes sense

on an arbitrary Riemann surface. The anti-self-duality condition reduces

to equations on a connection and Higgs field on the Riemann surface; the

Higgs field should be holomorphic and the curvature of the connection

be given in terms of the Higgs fields. According to the philosophy of

the contributions by Woodhouse, Tod and Mason, this Hitchin system

is an integrable system. Since it is a system of elliptic partial differen-

tial equations, it doesn’t naturally fall into a Hamiltonian framework.

However, the space of solutions on a compact Riemann surface is finite

dimensional and one might expect this moduli space to inherit some

vestige of integrability.

Hitchin proves that, for a compact Riemann surface and certain bun-

www.cambridge.org/9780521529990
www.cambridge.org


Cambridge University Press
978-0-521-52999-0 — Geometry and Integrability
Edited by Lionel Mason , Yavuz Nutku 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6

dles, a solution is determined just by the holomorphic data of the holo-

morphic vector bundle and Higgs field. Thus the study of the moduli

space can be reduced to a problem in complex geometry and this is the

approach that is adopted in this article. Naively the moduli space can be

thought of as the cotangent bundle of the moduli space of holomorphic

vector bundles on Σ as the Higgs fields are Serre-dual to deformations of

the complex structure on a holomorphic vector bundle. Thus the Higgs

bundle moduli space is a complex phase space. Furthermore, the coeffi-

cients of the characteristic polynomial of the Higgs field can be thought

of as defining a system of commuting Hamiltonians and so one has a

complex (holomorphic) integrable system which turns out to be alge-

braic. However, there are a number of technicalities concerning stability

and semi-stability that need to be addressed to make these ideas precise,

and render the above discussion heuristic.

In keeping with the expository aim of the lectures, the bulk of these

notes concern not the theorem and its applications, but the many ingre-

dients which go into its proof. Students with a fairly modest background

in geometry should be able to work through these notes, learning a fair

amount of algebraic geometry and symplectic geometry along the way,

and may be motivated to follow some of the leads in the last section

towards open problems and further development of the subject.

1.2.3 The ∂̄ dressing method and integrable geometries,

P. Santini

In the previous contributions, it can be seen that a prominent role is

played by complex structures. One way of formulating a complex struc-

ture is in the form of a ∂̄-operator and, in the case of the Ward transform,

the inverse transform from twistor data to the solution on space-time

requires the solution of a linear ∂̄-equation. Dressing can be understood

as a process by which one takes the transform for a well understood,

perhaps trivial, solution where all the ingredients of the tansform are

known, and then change the ∂̄-data that appears in the ∂̄-equation to

give a more general solution (perhaps the general solution). Over the last

few decades such methods have been developed (independently of twistor

theory) and extended to include a non-local element in the ∂̄-equation,

so that the source term in the ∂̄-equation is given by integrating against

a kernel. These non-local terms seem to be essential for certain systems

in 2+1 dimensions such as the KP equations etc..

In this contribution the ∂̄-dressing method is shown to apply to cer-

www.cambridge.org/9780521529990
www.cambridge.org


Cambridge University Press
978-0-521-52999-0 — Geometry and Integrability
Edited by Lionel Mason , Yavuz Nutku 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction 7

tain integrable geometric structures: quadrilateral lattices, a discrete

system consisting of lattices in which each elementary quadrilateral is

planar, and its continuous limit, the conjugate net, a system studied by

Darboux.

The connection between the ∂̄-dressing method and these integrable

geometries relies upon the following facts:

(1) the simple, linear dependence of the ∂̄ data on the coordinates,

described by the given linear differential and/or difference equations,

defines some basic elementary singularities in the complex plane of the

spectral parameter λ (the complex parameter with respect to which the

∂̄-problem is defined): essential singularities, poles and branch points, in

which the coordinates appear as parameters of the essential singularities,

positions of the poles and strength of the branch points.

(2) These elementary singularities and their defining equations have of-

ten an elementary and basic geometric meaning. For instance, (a) the

matrix equation ψ0x = iλσ3ψ0 and its solution ψ0(x, λ) = exp(iλxσ3)

define the Frenet frame of a straight line in R3, parallel to the third axis

with constant torsion λ and arclength x; (b) the vector difference equa-

tions: ∆iψ0j = 0, i = 1, .., N, j = 1, ..,M define the tangent vectors

ψ0j = (0, .., λθj , .., 0)T of an N - dimensional regular lattice in RM .

(3) Through the ∂̄ dressing method the above basic elementary func-

tions ψ0 get dressed into new functions ψ which satisfy dressed linear

equations in configuration space, whose integrability conditions are the

integrable nonlinear systems. In this dressing procedure, the original

geometric meaning is usually preserved and suitably deformed. For

instance, the linear equation of example (a) is dressed up into ψx =

(iλσ3 + Q)ψ and describes an arbitrary curve in R3; while the lin-

ear equations of example (b) are dressed up into the linear equations

∆iψj = qjiψi, i = 1, .., N, j = 1, ..,M which describe the planarity

of the elementary quadrilaterals of the N -dimensional lattice (what we

call: a quadrilateral, or planar lattice).

(4) The associated ∂̄ problem provides at the same time:

(i) large classes of solutions of the above geometries, which can therefore

be called “integrable”;

(ii) geometrically distinguished symmetry transformations and symme-

try reductions of the above geometries.
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1.2.4 Differential equations featuring many periodic

solutions, F. Calogero

The contribution of Francesco Calogero, who is the originator of mod-

ern super-integrable systems amongst many other things, shows a way to

obtain evolutionary PDEs which possess many periodic solutions. This

development has obvious potential in the context of applications (espe-

cially in the modelling of periodic phenomena), but it also sheds light

(as more fully shown in other papers by Calogero and others) on a rather

fundamental question: the connection between the integrability of evo-

lution equations and the analyticity in complex time of the solutions of

such equations, an issue related to the ‘Painlevé property’.

1.3 Conclusion

There are many areas of interaction between geometry and integrability

that have not been touched on here — the infinite-dimensional grass-

manians of Segal & Wilson, the theory of quaternion-Kahler manifolds,

the various special integrable classes of two-surfaces embedded into sym-

metric spaces and so on, but it is to be hoped that these articles will

stimulate the reader into further study.
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Abstract

A simple trick is reviewed, which yields differential equations (both

ODEs and PDEs) of evolution type featuring lots of periodic solutions.

Several examples (PDEs) are exhibited.

2.1 Introduction

Recently a simple trick has been introduced that allows us to manu-

facture evolution equations (both ODEs and PDEs) which possess lots

of periodic solutions – in particular, completely periodic solutions cor-

responding, in the context of the initial-value problem, to an open set

of initial data of nonvanishing measure in the space of initial data [1]-

[5]. The purpose and scope of this presentation is to review this trick –

most completely introduced and described in [5] – and to display, and

tersely discuss, certain new (classes of) evolution PDEs yielded by it;

the alert reader, after having grasped the main idea, can easily manu-

facture many more examples, possibly also featuring several dependent

and independent variables – here for simplicity we restrict attention to

just one (complex) dependent variable and to just two (real) independent

variables (the standard 1 + 1 case: one ‘time’ and one ‘space’ variables

only).

The trick is described tersely in Section 2.2. Some examples of evo-

lution equations – different from those reported in [5] – are displayed
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in Section 2.3, which should be immediately seen by the browser who

wishes to decide whether to invest time in reading the rest of this paper.

Justification for these examples – namely, arguments that justify the ex-

pectation that these evolution equations indeed feature lots of periodic

solutions – are given in Section 2.4, and in some cases they are backed

by the display there of some periodic solutions.

2.2 The trick

Suppose that the function ϕ of the two complex variables ξ, τ , ϕ ≡

ϕ(ξ, τ), satisfies an evolution equation in the (time-like) variable τ , and

that the structure of this evolution equation guarantees that there exist

a lot of solutions ϕ(ξ, τ) which are holomorphic in τ in an open disk of

radius 1/ω centered at τ = i/ω in the complex τ -plane (where ω is a

positive constant), and that are as well holomorphic in ξ in an open disk

of radius ρ (where ρ is another positive constant, possibly arbitrarily

large) centered at ξ = 0 in the complex ξ-plane. Then introduce a

(complex) function w ≡ w(x, t) of the two real variables x, t by setting

w(x, t) = exp(iλωt)ϕ(ξ, τ) (2.1)

with

τ =
[

exp(iωt)− 1
]

/(iω), (2.2)

so that

τ̇ ≡ dτ/dt = exp(iωt), (2.3)

τ(0) = 0, τ̇(0) = 1, (2.4)

and

ξ = x exp(iµωt). (2.5)

It is then clear that, if λ and µ are two rational numbers, all the nonsingu-

lar functions w(x, t) defined by (2.1) are, at least for |x| < ρ, completely

periodic functions of the real independent variable t, with a period which

is an integer multiple of 2π/ω.

On the other hand, if ϕ ≡ ϕ(ξ, τ) is determined by the requirement

to satisfy an evolution equation of analytic type, say

ϕτ = F (ϕ,ϕξ, ϕξ, xi, . . . , ξ, τ) (a) (2.6)
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