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1 Preliminaries

1.1 The shadow’s cause

The Wayang Kulit is an ancient theatrical art, practised in Malaysia and
throughout much of the Orient. The stories are often about battles between
good and evil, as told in the great Hindu epics. What the audience actually
sees are not actors, nor even puppets, but rather the shadows of puppets pro-
jected onto a canvas screen. Behind the screen is a light. The puppet master
creates the action by manipulating the puppets and props so that they will
intercept the light and cast shadows. As these shadows dance across the
screen the audience must deduce the story from these two-dimensional pro-
jections of the hidden three-dimensional objects. Shadows, however, can be
ambiguous. In order to infer the three-dimensional action, the shadows
must be detailed, with sharp contours, and they must be placed in context.

Biologists are unwitting participants in nature’s Shadow Play. These
shadows are cast when the causal processes in nature are intercepted by our
measurements. Like the audience at the Wayang Kulit, the biologist cannot
simply peek behind the screen and directly observe the actual causal pro-
cesses. All that can be directly observed are the consequences of these pro-
cesses in the form of complicated patterns of association and independence
in the data. As with shadows, these correlational patterns are incomplete –
and potentially ambiguous – projections of the original causal processes. As
with shadows, we can infer much about the underlying causal processes if
we can learn to study their details, sharpen their contours, and especially if
we can study them in context.

Unfortunately, unlike the Puppet Master in a Wayang Kulit, who
takes care to cast informative shadows, nature is indifferent to the correla-
tional shadows that it casts. This is the main reason why researchers go to
such extraordinary lengths to randomise treatment allocations and to control
variables. These methods, when they can be properly done, simplify the
correlational shadows to manageable patterns that can be more easily
mapped to the underlying causal processes.
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It is uncomfortably true, although rarely admitted in statistics texts,
that many important areas of science are stubbornly impervious to experi-
mental designs based on randomisation of treatments to experimental units.
Historically, the response to this embarrassing problem has been to either
ignore it or to banish the very notion of causality from the language and to
claim that the shadows dancing on the screen are all that exists. Ignoring a
problem doesn’t make it go away and defining a problem out of existence
doesn’t make it so. We need to know what we can safely infer about causes
from their observational shadows, what we can’t infer, and the degree of
ambiguity that remains.

I wrote this book to introduce biologists to some very recent, and
intellectually elegant, methods that help in the difficult task of inferring
causes from observational data. Some of these methods, for instance struc-
tural equations modelling (SEM), are well known to researchers in other
fields, although largely unknown to biologists. Other methods, for instance
those based on causal graphs, are unknown to almost everyone but a small
community of researchers. These methods help both to test pre-specified
causal hypotheses and to discover potentially useful hypotheses concerning
causal structures.

This book has three objectives. First, it was written to convince
biologists that inferring causes without randomised experiments is possible.
If you are a typical reader then you are already more than a little sceptical.
For this reason I devote the first two chapters to explaining why these
methods are justified. The second objective is to produce a user’s guide,
devoid of as much jargon as possible, that explains how to use and interpret
these methods. The third objective is to exemplify these methods using bio-
logical examples, taken mostly from my own research and from that of my
students. Since I am an organismal biologist whose research deals primarily
with plant physiological ecology, most of the examples will be from this
area, but the extensions to other fields of biology should be obvious.

I came to these ideas unwillingly. In fact, I find myself in the embar-
rassing position of having publicly claimed that inferring causes without
randomisation and experimental control is probably impossible and, if pos-
sible, is not to be recommended (Shipley and Peters 1990). I had expressed
such an opinion in the context of determining how the different traits of an
organism interact as a causal system. I will return to this theme repeatedly
in this book because it is so basic to biology1 and yet is completely unamen-
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able to the one method that most modern biologists and statisticians would
accept as providing convincing evidence of a causal relationship: the ran-
domised experiment. However, even as I advanced the arguments in Shipley
and Peters (1990), I was dissatisfied with the consequences that such argu-
ments entailed. I was also uncomfortably aware of the logical weakness of
such arguments; the fact that I did not know of any provably correct way of
inferring causation without the randomised experiment does not mean that
such a method can’t exist. In my defence, I could point out that I was saying
nothing original; such an opinion was (and still is) the position of most sta-
tisticians and biologists. This view is summed up in the mantra that is learnt
by almost every student who has ever taken an elementary course in statis-
tics: correlation does not imply causation.

In fact, with few exceptions2, correlation does imply causation. If we
observe a systematic relationship between two variables, and we have ruled
out the likelihood that this is simply due to a random coincidence, then some-
thing must be causing this relationship. When the audience at a Malay shadow
theatre sees a solid round shadow on the screen they know that some three-
dimensional object has cast it, although they may not know whether the
object is a ball or a rice bowl in profile. A more accurate sound bite for intro-
ductory statistics would be that a simple correlation implies an unresolved
causal structure, since we cannot know which is the cause, which is the effect,
or even if both are common effects of some third, unmeasured variable.

Although correlation implies an unresolved causal structure, the
reverse is not true: causation implies a completely resolved correlational
structure. By this I mean that once a causal structure has been proposed, the
complete pattern of correlation and partial correlation is fixed unambigu-
ously. This point is developed more precisely in Chapter 2 but is so central
to this book that it deserves repeating: the causal relationships between
objects or variables determine the correlational relationships between them.
Just as the shape of an object fixes the shape of its shadow, the patterns of
direct and indirect causation fix the correlational ‘shadows’ that we observe
in observational data. The causal processes generating our observed data
impose constraints on the patterns of correlation that such data display.

The term ‘correlation’ evokes the notion of a probabilistic associa-
tion between random variables. One reason why statisticians rarely speak of

1.1 THE SHADOW’S CAUSE
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second: the earth’s rotation about its axis in conjunction with its rotation around the sun.
A more convincing example would be the correlation between the sizes of unrelated chil-
dren, as they age, who are born at the same time.



causation, except to distance themselves from it, is because there did not
exist, until very recently, any rigorous translation between the language of
causality (however defined) and the language of probability distributions
(Pearl 1988). It is therefore necessary to link causation to probability distri-
butions in a very precise way. Such rigorous links are now being forged. It
is now possible to give mathematical proofs that specify the correlational
pattern that must exist given a causal structure. These proofs also allow us
to specify the class of causal structures that must include the causal structure
that generates a given correlational pattern. The methods described in this
book are justified by these proofs. Since my objective is to describe these
methods and show how they can help biologists in practical applications, I
won’t present these proofs but will direct the interested reader to the rele-
vant primary literature as each proof is needed.

Another reason why some prefer to speak of associations rather than
causes is perhaps because causation is seen as a metaphysical notion that is
best left to philosophers. In fact, even philosophers of science can’t agree on
what constitutes a ‘cause’. I have no formal training in the philosophy of
science and am neither able nor inclined to advance such a debate. This is
not to say that philosophers of science have nothing useful to contribute.
Where directly relevant I will outline the development of philosophical
investigations into the notion of ‘causality’ and place these ideas into the
context of the methods that I will describe. However, I won’t insist on any
formal definition of ‘cause’ and will even admit that I have never seen any-
thing in the life sciences that resembles the ‘necessary and sufficient’ condi-
tions for causation that are so beloved of logicians.

You probably already have your own intuitive understanding of the
term ‘cause’. I won’t take it away from you, although, I hope, it will be more
refined after reading this book. When I first came across the idea that one
can study causes without defining them, I almost stopped reading the book
(Spirtes, Glymour and Scheines 1993). I can advance three reasons why you
should not follow through on this same impulse. First, and most important,
the methods described here are not logically dependent on any particular
definition of causality. The most basic assumption that these methods
require is that causal relationships exist in relation to the phenomena that
are studied by biologists3.

The second reason why you should continue reading even if you
are sceptical is more practical and, admittedly, rhetorical: scientists com-
monly deal with notions whose meaning is somewhat ambiguous. Biologists
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are even more promiscuous than most with one notion that can still raise
the blood pressure of philosophers and statisticians. This notion is ‘proba-
bility’, for which there are frequentist, objective Bayesian and subjective
Bayesian definitions. In the 1920s von Mises is reported to have said: ‘today,
probability theory is not a mathematical science’ (Rao 1984). Mayo (1996)
gave the following description of the present degree of consensus concern-
ing the meaning of ‘probability’: ‘Not only was there the controversy raging
between the Bayesians and the error [i.e. frequentist] statisticians, but philos-
ophers of statistics of all stripes were full of criticisms of Neyman–Pearson
error [i.e. frequentist-based] statistics . . .’. Needless to say, the fact that those
best in a position to define ‘probability’ cannot agree on one does not
prevent biologists from effectively using probabilities, significance levels,
confidence intervals, and the other paraphernalia of modern statistics4. In
fact, insisting on such an agreement would mean that modern statistics
could not even have begun.

The third reason why you should continue reading, even if you are
sceptical, is eminently practical. Although the randomised experiment is
inferentially superior to the methods described in this book, when random-
isation can be properly applied, it can’t be properly applied to many (perhaps
most) research questions asked by biologists. Unless you are willing simply
to deny that causality is a meaningful concept then you will need some way
of studying causal relationships when randomised experiments cannot be
performed. Maintain your scepticism if you wish, but grant me the benefit
of your doubt. A healthy scepticism while in a car dealership will keep you
from buying a ‘lemon’. An unhealthy scepticism might prevent you from
obtaining a reliable means of transport.

I said that the methods in this book are not logically dependent on
any particular definition of causality. Rather than defining causality, the
approach is to axiomise causality (Spirtes, Glymour and Scheines 1993). In
other words, one begins by determining those attributes that scientists view
as necessary for a relationship to be considered ‘causal’ and then develop a
formal mathematical language that is based on such attributes. First, these
relationships must be transitive: if A causes B and B causes C, then it must
also be true that A causes C. Second, such relationships must be ‘local’; the
technical term for this is that the relationships must obey the Markov condi-
tion, of which there are local and global versions. This is described in more
detail in Chapter 2 but can be intuitively understood to mean that events
are caused only by their proximate causes. Thus, if event A causes event C
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only through its effect of an intermediate event B (A→B→C ), then the
causal influence of A on C is blocked if event B is prevented from respond-
ing to A. Third, these relationships must be irreflexive: an event cannot cause
itself. This is not to say that every event must be causally explained; to argue
in this way would lead us directly into the paradox of infinite regress. Every
causal explanation in science includes events that are accepted (measured,
observed . . .) without being derived from previous events5. Finally, these
relationships must be asymmetric: if A is a cause of B, then B cannot simul-
taneously be a cause of A6. In my experience, scientists generally accept
these four properties. In fact, so long as I avoid asking for definitions, I find
that there is a large degree of agreement between scientists on whether any
particular relationship should be considered causal or not. It might be of
some comfort to empirically trained biologists that the methods described
in this book are based on an almost empirical approach to causality. This is
because deductive definitions of philosophers are replaced with attributes
that working scientists have historically judged to be necessary for a rela-
tionship to be causal. However, this change of emphasis is, by itself, of little
use.

Next, we require a new mathematical language that is able to
express and manipulate these causal relationships. This mathematical lan-
guage is that of directed graphs7 (Pearl 1988; Spirtes, Glymour and Scheines
1993). Even this new mathematical language is not enough to be of practi-
cal use. Since, in the end, we wish to infer causal relationships from corre-
lational data, we need a logically rigorous way of translating between the
causal relationships encoded in directed graphs and the correlational rela-
tionships encoded in probability theory. Each of these requirements can
now be fulfilled.

PREL IM INAR IES
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that which causes but which has no cause. This trick is hardly convincing because, if we
are allowed to invent such things by fiat, then we can declare them anywhere in the causal
chain. The antiquity of this paradox can been seen in the first sentence of the first verse
of Genesis: ‘In the beginning God created the heavens and the earth.’ According to the
Confraternity Text of the Holy Bible, the Hebrew word that has been translated as
‘created’ was used only with reference to divine creation and meant ‘to create out of
nothing’.

16 This does not exclude feedback loops so long as we understand these to be dynamic in
nature: A causes B at time t, B causes A at time t��t, and so on. This is discussed more
fully in Chapter 2.

17 Biologists will find it ironic that this graphical language was actually proposed by Wright
(1921), one of the most influential evolutionary biologists of the twentieth century, but
his insight was largely ignored. This history is explored in Chapters 3 and 4.



1.2 Fisher’s genius and the randomised experiment

Since this book deals with causal inference from observational data, we
should first look more closely at how biologists infer causes from experi-
mental data. What is it about these experimental methods that allows scien-
tists to comfortably speak about causes? What is it about inferring causality
from non-experimental data that make them squirm in their chairs? I will
distinguish between two basic types of experiment: controlled and random-
ised. Although the controlled experiment takes historical precedence, the
randomised experiment takes precedence in the strength of its causal infer-
ences.

Fisher8 described the principles of the randomised experiment in
his classic The design of experiments (Fisher 1926). Since he developed many
of his statistical methods in the context of agronomy, let’s consider a typical
randomised experiment designed to determine whether the addition of a
nitrogen-based fertiliser can cause an increase in the seed yield of a partic-
ular variety of wheat. A field is divided into 30 plots of soil (50cm�50cm)
and the seed is sown. The treatment variable consists of the fertiliser, which
is applied at either 0 or 20kg/hectare. For each plot we place a small piece
of paper in a hat. One half of the pieces of paper have a ‘0’ and the other
half have a ‘20’ written on them. After thoroughly mixing the pieces of
paper, we randomly draw one for each plot to determine the treatment level
that each plot is to receive. After applying the appropriate level of fertiliser
independently to each plot, we make no further manipulations until harvest
day, at which time we weigh the seed that is harvested from each plot.

The seed weight per plot is normally distributed within each treat-
ment group. Those plots receiving no fertiliser produce 55g of seed with a
standard error of 6. Those plots receiving 20kg/hectare of fertiliser produce
80g of seed with a standard error of 6. Excluding the possibility that a very
rare random event has occurred (with a probability of approximately
5�10�8), we have very good evidence that there is a positive association
between the addition of the fertiliser and the increased yield of the wheat.
Here we see the first advantage of randomisation. By randomising the treat-
ment allocation, we generate a sampling distribution that allows us to cal-
culate the probability of observing a given result by chance if, in reality,
there is no effect of the treatment. This helps us to distinguish between
chance associations and systematic ones. Since one error that a researcher
can make is to confuse a real difference with a difference due to sampling

1.2 F ISHER’S GEN IUS AND THE RANDOMISED EXPER IMENT
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fluctuations, the sampling distribution allows us to calculate the probability
of committing such an error9. Yet Fisher and many other statisticians10 since
(Kempthorpe 1979; Kendall and Stuart 1983) claim further that the process
of randomisation allows us to differentiate between associations due to
causal effects of the treatment and associations due to some variable that is
a common cause both of the treatment and response variables. What allows
us to move so confidently from this conclusion about an association (a ‘co-
relation’) between fertiliser addition and increased seed yield to the claim
that the added fertiliser actually causes the increased yield?

Given that two variables (X and Y ) are associated, there can be only
three elementary, but not mutually exclusive, causal explanations: X causes
Y, Y causes X, or there are some other causes that are common to both X
and Y. Here, I am making no distinctions between ‘direct’ and ‘indirect’
causes; I argue in Chapter 2 that such terms have no meaning except rela-
tive to the other variables in the causal explanation. Remembering that
transitivity is a property of causes, to say that X causes Y does not exclude
the possibility that there are intervening variables (X→Z1→Z2→ . . . →Y )
in the causal chain between them. We can confidently exclude the possibil-
ity that the seed produced by the wheat caused the amount of fertiliser that
was added. First, we already know the only cause of the amount of fertiliser
to be added to any given plot: the number that the experimenter saw
written on the piece of paper attributed to that plot. Second, the fertiliser
was added before the wheat plants began to produce seed11. What allows us
to exclude the possibility that the observed association between fertiliser
addition and seed yield is due to some unrecognised common cause of both?
This was Fisher’s genius; the treatments were randomly assigned to the
experimental units (i.e. the plots with their associated wheat plants). By def-
inition, such a random process ensures that the order in which the pieces of
paper are chosen (and therefore the order in which the plots receive the
treatment) is causally independent of any attributes of the plot, its soil, or
the plant at the moment of randomisation.

PREL IM INAR IES
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probes’.

10 ‘Only when the treatments in the experiment are applied by the experimenter using the
full randomisation procedure is the chain of inductive inference sound; it is only under
these circumstances that the experimenter can attribute whatever effect he observes to the
treatment and to the treatment only’ (Kempthorpe 1979).

11 Unless your meaning of ‘cause’ is very peculiar, you will not have objected to the notion
that causal relationships cannot travel backwards in time. Despite some ambiguity in its
formal definition, scientists would agree on a number of attributes associated with causal
relationships. Like pornography, we have difficulty defining it but we all seem to know it
when we see it.



Let’s retrace the logical steps. We began by asserting that, if there
was a causal relationship between fertiliser addition and seed yield, then
there would also be a systematic relationship between these two variables in
our data: causation implies correlation. When we observe a systematic relation-
ship that can’t reasonably be attributed to sampling fluctuations, we con-
clude that there was some causal mechanism responsible for this association.
Correlation does not necessarily imply a causal relationship from the ferti-
liser addition to the seed yield, but it does imply some causal relationship that
is responsible for this association. There are only three such elementary
causal relationships and the process of randomisation has excluded two of
them. We are left with the overwhelming likelihood that the fertiliser addi-
tion caused the increased seed yield. We cannot categorically exclude the
two alternative causal explanations, since it is always possible that we were
incredibly unlucky. Perhaps the random allocations resulted, by chance, in
those plots that received the 20kg of fertiliser per hectare having soil with
a higher moisture-holding capacity or some other attribute that actually
caused the increased seed yield? In any empirical investigation, experimen-
tal or observational, we can only advance an argument that is beyond rea-
sonable doubt, not a logical certainty.

The key role played by the process of randomisation seems to be to
ensure, up to a probability that can be calculated from the sampling distri-
bution produced by the randomisation, that no uncontrolled common cause
of both the treatment and the response variables could produce a spurious
association. Fisher said as much himself when he stated that randomisation
‘relieves the experimenter from the anxiety of considering and estimating
the magnitude of the innumerable causes by which his data may be dis-
turbed’. Is this strictly true? Consider again the possibility that soil moisture
content affects seed yield. By randomly assigning the fertiliser to plots we
ensure that, on average, the treatment and control plots have soil with the
same moisture content, therefore removing any chance correlation between
the treatment received by the plot and its soil moisture12. But the number
of attributes of the experimental units (i.e. the plots with their attendant soil
and plants) is limited only by our imagination. Let’s say that there are 20
different attributes of the experimental units that could cause a difference
in seed yield. What is the probability that at least one of these was sufficiently
concentrated, by chance, in the treatment plots to produce a significant
difference in seed yield even if the fertiliser had no causal effect? If this prob-
ability is not large enough for you, then I can easily posit 50 or 100 different
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attributes that could cause a difference in seed yield. Since there is a large
number of potential causes of seed yield, then the likelihood that at least
one of them was concentrated, by chance, in the treatment plots is not neg-
ligible, even if we had used many more than the 30 plots.

Randomisation therefore serves two purposes in causal inference.
First, it ensures that there is no causal effect coming from the experimental
units to the treatment variable or from a common cause of both. Second, it
helps to reduce the likelihood in the sample of a chance correlation between
the treatment variable and some other cause of the treatment, but doesn’t
completely remove it. To cite Howson and Urbach (1989):

Whatever the size of the sample, two treatment groups are absolutely certain
to differ in some respect, indeed, in infinitely many respects, any of which
might, unknown to us, be causally implicated in the trial outcome. So ran-
domisation cannot possibly guarantee that the groups will be free from bias
by unknown nuisance factors [i.e. variables correlated with the treatment].
And since one obviously doesn’t know what those unknown factors are,
one is in no position to calculate the probability of such a bias developing
either.

This should not be interpreted as a severe weakness of the randomised
experiment in any practical sense, but does emphasise that even the random-
ised experiment does not provide any automatic assurance of causal infer-
ence, free from subjective assumptions.

Equally important is what is not required by the randomised experi-
ment. The logic of experimentation up to Fisher’s time was that of the con-
trolled experiment, in which it was crucial that all other variables be
experimentally fixed to constant values13 (see, for example, Feiblman 1972,
page 149). R. A. Fisher (1970) explicitly rejected this as an inferior method,
pointing out that it is logically impossible to know whether ‘all other vari-
ables’ have been accounted for. This is not to say that Fisher did not advo-
cate physically controlling for other causes in addition to randomisation. In
fact, he explicitly recommended that the researcher do this whenever pos-
sible. For instance, in discussing the comparison of plant yields of different
varieties, he advised that they be planted in soil ‘that appears to be uniform’.
In the context of pot experiments he recommended that the soil be thor-
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oughly mixed before putting it in the pots, that the watering be equalised,
that they receive the same amount of light and so on. The strength of the
randomised experiment is in the fact that we do not have to physically
control – or even be aware of – other causally relevant variables in order to
reduce (but not logically exclude) the possibility that the observed associa-
tion is due to some unmeasured common cause in our sample.

Yet strength is not the same as omnipotence. Some readers will
have noticed that the logic of the randomised experiment has, hidden
within it, a weakness not yet discussed that severely restricts its usefulness to
biologists; a weakness that is not removed even with an infinite sample size.
In order to work, one must be able to randomly assign values of the hypo-
thesised ‘cause’ to the experimental units independently of any attributes of
these units. This assignment must be direct and not mediated by other
attributes of the experimental units. Yet, a large proportion of biological
studies involves relationships between different attributes of such experi-
mental units.

In the experiment described above, the experimental units are the
plots of ground with their wheat plants. The attributes of these units include
those of the soil, the surrounding environment and the plants. Imagine that
the researcher wants to test the following causal scenario: the added ferti-
liser increases the amount of nitrogen absorbed by the plant. This increases
the amount of nitrogen-based photosynthetic enzymes in the leaves and
therefore the net photosynthetic rate. The increased carbon fixation due to
photosynthesis causes the increased seed yield (Figure 1.1).

The first part of this scenario is perfectly amenable to the random-
ised experiment since the nitrogen absorption is an attribute of the plant
(the experimental unit), while the amount of fertiliser added is controlled
completely by the researcher independently of any attribute of the plot or
its wheat plants. The rest of the hypothesis is impervious to the randomised
experiment. For instance, both the rate of nitrogen absorption and the
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Figure 1.1. An hypothetical causal scenario that is not amenable to a
randomised experiment.



concentration of photosynthetic enzymes are attributes of the plant (the
experimental unit). It is impossible to randomly assign rates of nitrogen
absorption to each plant independently of any of its other attributes. Yet this
is the crucial step in the randomised experiment that allows us to distinguish
correlation from causation. It is true that the researcher can induce a change
both in the rate of nitrogen absorption by the plant and in the concentra-
tion of photosynthetic enzymes in its leaves but in each case these changes
are due to the addition of the fertiliser. After observing an association
between the increased nitrogen absorption and the increased enzyme con-
centration the randomisation of fertiliser addition does not exclude different
causal scenarios, only some of which are shown in Figure 1.2.

While reading books about experimental design one’s eyes often
skim across the words ‘experimental unit’without pausing to consider what
these words mean. The experimental unit is the ‘thing’ to which the treat-
ment levels are randomly assigned. The experimental unit is also an experi-
mental unit. The causal relationships, if they exist, are between the external
treatment variable and each of the attributes of the experimental unit that
show a response. In biology the experimental units (for instance plants,
leaves or cells) are integrated wholes whose parts cannot be disassembled
without affecting the other parts. It is often not possible to randomly ‘assign’
values of one attribute of an experimental unit independently of the beha-
viour of its other attributes14. When such random assignments can’t be done
then one can’t infer causality from a random experiment. Amoment’s reflec-
tion will show that this problem is very common in biology. Organismal,
cell and molecular biology are rife with it. Physiology is hopelessly entan-
gled. Evolution and ecology, dependent as they are on physiology and
morphology, are often beyond its reach. If we accept that one can’t study
causal relationships without the randomised experiment, then a large pro-
portion of biological research will have been gutted of any demonstrable
causal content.

The usefulness of the randomised experiment is also severely
reduced because of practical constraints. Remember that the inference is
from the randomised treatment allocation to the experimental unit. The
experimental unit must be the one that is relevant to the scientific hypoth-
esis of interest. If the hypothesis refers to large-scale units (populations, eco-
systems, landscapes) then the experimental unit must consist of such units.
Someone wishing to know whether increased carbon dioxide (CO2) con-
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14 This is not to say that it is always impossible. For instance, one can randomly add levels of
insulin to the blood because the only cause of these changes (given proper controls) is the
random numbers assigned to the animal. One can’t randomly add different numbers of
functioning chloroplasts to a leaf.



centrations will change the community structure of forests will have to use
entire forests as the experimental units. Such experiments are never done
and there is nothing in the inferential logic of randomised experiments that
allows one to scale up from different (small-scale) experimental units. Even
when proper randomised experiments can be done in principle, they some-
times can’t be done in practice, owing to financial or ethical constraints.

The biologist who wishes to study causal relationships using the
randomised experiment is therefore severely limited in the questions that
can be posed. The philosophically inclined scientist who insists that a posi-
tive response from a randomised experiment is an operational definition of a
causal relationship would have to conclude that causality is irrelevant to
much of science.
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Figure 1.2. Three different causal scenarios that could generate an
association between increased nitrogen absorption and increased
enzyme concentration in the plant following the addition of fertiliser in a
randomised experiment.



1.3 The controlled experiment

The currently prevalent notion that scientists cannot convincingly study
causal relationships without the randomised experiment would seem in-
comprehensible to scientists before the twentieth century. Certainly biolo-
gists thought that they were demonstrating causal relationships long before
the invention of the randomised experiment. A wonderful example of this
can be found in An introduction to the study of experimental medicine by the great
nineteenth century physiologist, Claude Bernard15. I will cite a particularly
interesting passage (Rapport and Wright 1963), and I ask that you pay
special attention to the ways in which he tries to control variables. I will
then develop the connection between the controlled experiment and the
statistical methods described in this book.

In investigating how the blood, leaving the kidney, eliminated substances
that I had injected, I chanced to observe that the blood in the renal vein
was crimson, while the blood in the neighboring veins was dark like ordi-
nary venous blood. This unexpected peculiarity struck me, and I thus
made observation of a fresh fact begotten by the experiment, but foreign
to the experimental aim pursued at the moment. I therefore gave up my
unverified original idea, and directed my attention to the singular color-
ing of the venous renal blood; and when I had noted it well and assured
myself that there was no source of error in my observation, I naturally
asked myself what could be its cause. As I examined the urine flowing
through the urethra and reflected about it, it occurred to me that the red
coloring of the venous blood might well be connected with the secreting
or active state of the kidney. On this hypothesis, if the renal secretion was
stopped, the venous blood should become dark: that is what happened;
when the renal secretion was re-established, the venous blood should
become crimson again; this I also succeeded in verifying whenever I
excited the secretion of urine. I thus secured experimental proof that there
is a connection between the secretion of urine and the coloring of blood
in the renal vein.

Our knowledge of human physiology has progressed far from the
experiments of Claude Bernard (physiologists might find it strange that he
spoke of renal ‘secretions’); yet his use of the controlled experiment would
be immediately recognisable and accepted by modern physiologists. Fisher
was correct in describing the controlled experiment as an inferior way of
obtaining causal inferences, but the truth is that the randomised experi-
ment is unsuited to much of biological research. The controlled experi-
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15 Rapport and Wright (1963) describe Claude Bernard (1813–1878) as an experimental
genius and ‘a master of the controlled experiment’.



ment consists of proposing a hypothetical structure of cause–effect rela-
tionships, deducing what would happen if particular variables are con-
trolled, or ‘fixed’ in a particular state, and then comparing the observed
result with its predicted outcome. In the experiment described by Claude
Bernard, the hypothetical causal structure could be conceptualised as
shown in Figure 1.3.

The key notion in Bernard’s experiment was the realisation that, if
his causal explanation were true, then the type of association between the
colour of the blood in the renal vein as it enters and leaves the kidney would
change, depending on the state of the hypothesised cause, i.e. whether the
kidney was secreting or not. It is worth returning to his words: ‘On this
hypothesis, if the renal secretion was stopped, the venous blood should
become dark: that is what happened; when the renal secretion was re-estab-
lished, the venous blood should become crimson again; this I also succeeded
in verifying whenever I excited the secretion of urine. I thus secured experi-
mental proof that there is a connection between the secretion of urine and
the coloring of blood in the renal vein.’ Since he explicitly stated earlier in
the quote that he was inquiring into the ‘cause’ of the phenomenon, it is
clear that he viewed the result of his experiments as establishing a causal con-
nection between the secretion of urine and the colouring of blood in the
renal vein.

Although the controlled experiment is an inferior method of
making causal inferences relative to the randomised experiment, it is actu-
ally responsible for most of the causal knowledge that science has produced.
The method involves two basic parts. First, one must propose an hypothesis
stating how the measured variables are linked in the causal process. Second,
one must deduce how the associations between the observations must
change once particular combinations of variables are controlled so that they
can no longer vary naturally, i.e. once particular combinations of variables
are ‘blocked’. The final step is to compare the patterns of association, after
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Figure 1.3. The hypothetical causal explanation invoked by Claude
Bernard.



such controls are established, with the deductions. Historically, variables
have been blocked by physically manipulating them. However (this is an
important point that will be more fully developed and justified in Chapter
2), it is the control of variables, not how they are controlled, that is the
crucial step. The weakness of the method, as Fisher pointed out, is that one
can never be sure that all relevant variables have been identified and prop-
erly controlled. One can never be sure that, in manipulating one variable,
one has not also changed some other, unknown variable. In any field of
study, as Bernard documents in his book, the first causal hypotheses are gen-
erally wrong and the process of testing, rejecting, and revising them is what
leads to progress in the field.

1.4 Physical controls and observational controls

It is the control of variables, not how they are controlled, that is the crucial
step in the controlled experiment. What does it mean to ‘control’ a vari-
able? Can such control be obtained in more than one way? In particular, can
one control variables on the basis of observational, rather than experimen-
tal, observations? The link between a physical control through an experi-
mental manipulation and a statistical control through conditioning will be
developed in the next chapter, but it is useful to provide an informal dem-
onstration here using an example that should present no metaphysical prob-
lems to most biologists.

Body size in large mammals seems to be important in determin-
ing much of their ecology. In populations of Bighorn Sheep in the Rocky
Mountains, it has been observed that the probability of survival of an indi-
vidual through the winter is related to the size of the animal in the
autumn. However, this species has a strong sexual dimorphism, males being
up to 60% larger than females. Perhaps the association between body size
and survival is simply due to the fact that males have a better probability
of survival than females and this is unrelated to their body size. In observ-
ing these populations over many years, perhaps the observed association
arises because those years showing better survival also have a larger pro-
portion of males. Figure 1.4 shows these two alternative causal hypothe-
ses. I have included boxes labelled ‘other causes’ to emphasise that we are
not assuming the chosen variables to be the only causes of body size or of
survival.

Notice the similarity to Claude Bernard’s question concerning the
cause of blood colour in the renal vein. The difference between the two
alternative causal explanations in Figure 1.4 is that the second assumes that
the association between spring survival and autumn body size is due only to
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the sex ratio of the population. Thus, if the sex ratio could be held con-
stant, then the association would disappear. Since adult males and females of
this species live in separate groups, it would be possible to physically separ-
ate them in their range and, in this way, physically control the sex ratio of
the population. However, it is much easier to simply sort the data accord-
ing to sex and then look for an association within each homogeneous group.
The act of separating the data into two groups such that the variable in ques-
tion – the sex ratio – is constant within each group represents a statistical
control. We could imagine a situation in which we instruct one set of
researchers to physically separate the original population into two groups
based on sex, after which they test for the association within each of their
experimental groups, and then ask them to combine the data and give them
to a second team of researchers. The second team would analyse the data
using the statistical control. Both groups would come to identical conclu-
sions16. In fact, using statistical controls might even be preferable in this situ-
ation. Simply observing the population over many years and then statistically
controlling for the sex ratio on paper does not introduce any physical
changes in the field population. It is certainly conceivable that the act of
physically separating the sexes in the field might introduce some unwanted,
and potentially uncontrolled, change in the behavioural ecology of the
animals that might bias the survival rates during the winter quite indepen-
dently of body size.

Let’s further extend this example to look at a case in which it is not
as easy to separate the data into groups that are homogeneous with respect
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is discussed in Chapter 2.

Figure 1.4. Two alternative causal explanations for the relationship
between sex, body size of Bighorn Sheep in the autumn and the
probability of survival until the spring.



to the control variable. Perhaps the researchers have also noticed an associ-
ation between the amount and quality of the rangeland vegetation during
the early summer and the probability of sheep survival during the next
winter. They hypothesise that this pattern is caused by the animals being
able to eat more during the summer, which increases their body size in the
autumn, which then increases their chances of survival during the winter
(Figure 1.5).

The logic of the controlled experiment requires that we be able to
compare the relationship between forage quality and winter survival after
physically preventing body weight from changing, which we can’t do17.
Since ‘body weight’ is a continuous variable, we can’t simply sort the data
and then divide it into groups that are homogeneous for this variable. This
is because each animal will have a different body weight. Nonetheless,
there is a way of comparing the relationship between forage quality and
winter survival while controlling for the body weight of the animals during
the comparison. This involves the concept of statistical conditioning,
which will be more rigorously developed in Chapters 2 and 3. An intui-
tive understanding can be had with reference to a simple linear regression
(Figure 1.6).

The formula for a linear regression is: Yi����Xi�N(0,�). Here,
the notation ‘N(0,�)’means ‘a normally distributed random variable with a
population mean of zero and a population standard deviation of �’. As the
formula makes clear, the observed value of Y consists of two parts: one part
that depends on X and one part that doesn’t. If we let ‘E(Y|X )’ represent
the expected value of Y given X, then we can write:

PREL IM INAR IES

18

17 It is actually possible, in principle if not in practice, to conduct a randomised experiment
in this case, so long as we are interested only in knowing whether summer forage quality
causes a change in winter survival. This is because the hypothetical cause (vegetation
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(winter survival). Again, it is impossible to use a randomised experiment to determine
whether body size in the autumn is a cause of increased survival during the winter.

Figure 1.5. A hypothetical causal explanation for the relationship
between the quality and quantity of summer forage, the body weight of
the Bighorn Sheep in the autumn and the probability of survival until the
spring.



E(Y|Xi )����Xi

Yi�E(Y|Xi )�N(0,�)

Yi�E(Y|Xi ))�N(0,�).

Thus, if we subtract the expected value of each Y, given X, from
the value itself, then we get the variation in Y that is independent of X. This
new variable is called the residual of Y given X. These are the values of Y
that exist for a constant value of X. For instance, the vertical arrow in Figure
1.6 shows the values of Y when X�20.

If we want to compare the relationship between forage quality and
winter survival while controlling for the body weight of the animals during
the comparison, then we have to remove the effect of body weight on each
of the other two variables. We do this by taking each variable in turn, sub-
tracting the expected value of its given body weight, and then see whether
there is still a relationship between the two sets of residuals. In this way, we
can hold constant the effect of body weight in a way similar to experimen-
tally holding constant the effect of some variable. The analogy is not exact.
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Figure 1.6. A simple bivariate regression. The solid line shows the
expected value of Yi given the value of Xi (E[Yi |Xi ]). The dotted line
shows the possible values of Yi that are independent of Xi (the
residuals).



There are situations in which statistically holding constant a variable will
produce patterns of association different from those that would occur when
one is physically holding constant the same variable. To understand when
statistical controls cast the same correlational shadows as experimental con-
trols, and when they differ, we need a way of rigorously translating from the
language of causality to the language of probability distributions. This is the
topic of the next chapter.
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