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Dynamic Modeling with Difference Equations

Whether we investigate the growth and interactions of an entire population,

the evolution of DNA sequences, the inheritance of traits, or the spread of

disease, biological systems are marked by change and adaptation. Even when

they appear to be constant and stable, it is often the result of a balance of

tendencies pushing the systems in different directions. A large number of

interactions and competing tendencies can make it difficult to see the full

picture at once.

How can we understand systems as complicated as those arising in the bio-

logical sciences? How can we test whether our supposed understanding of the

key processes is sufficient to describe how a system behaves? Mathematical

language is designed for precise description, and so describing complicated

systems often requires a mathematical model.

In this text, we look at some ways mathematics is used to model dynamic

processes in biology. Simple formulas relate, for instance, the population of a

species in a certain year to that of the following year. We learn to understand

the consequences an equation might have through mathematical analysis, so

that our formulation can be checked against biological observation. Although

many of the models we examine may at first seem to be gross simplifications,

their very simplicity is a strength. Simple models show clearly the implications

of our most basic assumptions.

We begin by focusing on modeling the way populations grow or decline

over time. Since mathematical models should be driven by questions, here

are a few to consider: Why do populations sometimes grow and sometimes

decline? Must populations grow to such a point that they are unsustainably

large and then die out? If not, must a population reach some equilibrium? If an

equilibrium exists, what factors are responsible for it? Is such an equilibrium

so delicate that any disruption might end it? What determines whether a given

population follows one of these courses or another?
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2 Dynamic Modeling with Difference Equations

To begin to address these questions, we start with the simplest mathematical

model of a changing population.

1.1. The Malthusian Model

Suppose we grow a population of some organism, say flies, in the laboratory.

It seems reasonable that, on any given day, the population will change due to

new births, so that it increases by the addition of a certain multiple f of the

population. At the same time, a fraction d of the population will die.

Even for a human population, this model might apply. If we assume humans

live for 70 years, then we would expect that from a large population roughly

1/70 of the population will die each year; so, d = 1/70. If, on the other hand,

we assume there are about four births in a year for every hundred people,

we have f = 4/100. Note that we have chosen years as units of time in this

case.

� Explain why, for any population, d must be between 0 and 1. What

would d < 0 mean? What would d > 1 mean?

� Explain why f must be at least 0, but could be bigger than 1. Can you

name a real organism (and your choice of units for time) for which f

would be bigger than 1?

� Using days as your unit of time, what values of f and d would be in

the right ballpark for elephants? Fish? Insects? Bacteria?

To track the population P of our laboratory organism, we focus on �P ,

the change in population over a single day. So, in our simple conception of

things,

�P = f P − d P = ( f − d)P.

What this means is simply that given a current population P , say P = 500,

and the fecundity and death rates f and d, say f = .1 and d = .03, we

can predict the change in the population �P = (.1 − .03)500 = 35 over a

day. Thus, the population at the beginning of the next day is P + �P =

500 + 35 = 535.

Some more notation will make this simpler. Let

Pt = P(t) = the size of the population measured on day t,

so

�P = Pt+1 − Pt
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1.1. The Malthusian Model 3

Table 1.1. Population Growth
According to a Simple Model

Day Population

0 500
1 (1.07)500 = 535

2 (1.07)2500 = 572.45

3 (1.07)3500 ≈ 612.52

4 (1.07)4500 ≈ 655.40
...

...

is the difference or change in population between two consecutive days. (If

you think there should be a subscript t on that �P , because �P might be

different for different values of t , you are right. However, it’s standard practice

to leave it off.)

Now what we ultimately care about is understanding the population Pt ,

not just �P . But

Pt+1 = Pt + �P = Pt + ( f − d)Pt = (1 + f − d)Pt .

Lumping some constants together by letting λ = 1 + f − d, our model of

population growth has become simply

Pt+1 = λPt .

Population ecologists often refer to the constant λ as the finite growth rate

of the population. (The word “finite” is used to distinguish this number from

any sort of instantaneous rate, which would involve a derivative, as you learn

in calculus.)

For the values f = .1, d = .03, and P0 = 500 used previously, our entire

model is now

Pt+1 = 1.07Pt , P0 = 500.

The first equation, relating Pt+1 and Pt , is referred to as a difference equation

and the second, giving P0, is its initial condition. With the two, it is easy to

make a table of values of the population over time, as in Table 1.1.

From Table 1.1, it’s even easy to recognize an explicit formula for Pt ,

Pt = 500(1.07)t .

For this model, we can now easily predict populations at any future times.
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4 Dynamic Modeling with Difference Equations

It may seem odd to call Pt+1 = (1 + f − d)Pt a difference equation, when

the difference �P does not appear. However, the equations

Pt+1 = (1 + f − d)Pt

and

�P = ( f − d)P

are mathematically equivalent, so either one is legitimately referred to by the

same phrase.

Example. Suppose that an organism has a very rigid life cycle (which might

be realistic for an insect), in which each female lays 200 eggs, then all the

adults die. After the eggs hatch, only 3% survive to become adult females,

the rest being either dead or males. To write a difference equation for the

females in this population, where we choose to measure t in generations, we

just need to observe that the death rate is d = 1, while the effective fecundity

is f = .03(200) = 6. Therefore,

Pt+1 = (1 + 6 − 1)Pt = 6Pt .

� Will this population grow or decline?

� Suppose you don’t know the effective fecundity, but do know that the

population is stable (unchanging) over time. What must the effective

fecundity be? (Hint: What is 1 + f − d if the population is stable?)

If each female lays 200 eggs, what fraction of them must hatch and

become females?

Notice that in this last model we ignored the males. This is actually a

quite common approach to take and simplifies our model. It does mean we

are making some assumptions, however. For this particular insect, the precise

number of males may have little effect on how the population grows. It might

be that males are always found in roughly equal numbers to females so that

we know the total population is simply double the female one. Alternately,

the size of the male population may behave differently from the female one,

but whether there are few males or many, there are always enough that female

reproduction occurs in the same way. Thus, the female population is the

important one to track to understand the long-term growth or decline of the

population.

� Can you imagine circumstances in which ignoring the males would be

a bad idea?

www.cambridge.org/9780521525862
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-52586-2 — Mathematical Models in Biology: An Introduction
Elizabeth S. Allman , John A. Rhodes
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.1. The Malthusian Model 5

What is a difference equation? Now that you have seen a difference

equation, we can attempt a definition: a difference equation is a formula

expressing values of some quantity Q in terms of previous values of Q. Thus,

if F(x) is any function, then

Qt+1 = F(Qt )

is called a difference equation. In the previous example, F(x) = λx , but often

F will be more complicated.

In studying difference equations and their applications, we will address

two main issues: 1) How do we find an appropriate difference equation to

model a situation? 2) How do we understand the behavior of the difference

equation model once we have found it?

Both of these things can be quite hard to do. You learn to model with dif-

ference equations by looking at ones other people have used and then trying to

create some of your own. To be honest, though, this will not necessarily make

facing a new situation easy. As for understanding the behavior a difference

equation produces, usually we cannot hope to find an explicit formula like we

did for Pt describing the insect population. Instead, we develop techniques

for getting less precise qualitative information from the model.

The particular difference equation discussed in this section is sometimes

called an exponential or geometric model, since the model results in exponen-

tial growth or decay. When applied to populations in particular, it is associated

with the name of Thomas Malthus. Mathematicians, however, tend to focus

on the form of the equation Pt+1 = λPt and say the model is linear. This

terminology can be confusing at first, but it will be important; a linear model

produces exponential growth or decay.

Problems

1.1.1. A population is originally 100 individuals, but because of the com-

bined effects of births and deaths, it triples each hour.

a. Make a table of population size for t = 0 to 5, where t is measured

in hours.

b. Give two equations modeling the population growth by first ex-

pressing Pt+1 in terms of Pt and then expressing �P in terms of

Pt .

c. What, if anything, can you say about the birth and death rates for

this population?
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6 Dynamic Modeling with Difference Equations

1.1.2. In the early stages of the development of a frog embryo, cell division

occurs at a fairly regular rate. Suppose you observe that all cells

divide, and hence the number of cells doubles, roughly every half-

hour.

a. Write down an equation modeling this situation. You should spec-

ify how much real-world time is represented by an increment of 1

in t and what the initial number of cells is.

b. Produce a table and graph of the number of cells as a function of

t .

c. Further observation shows that, after 10 hours, the embryo has

around 30,000 cells. Is this roughly consistent with your model?

What biological conclusions and/or questions does this raise?

1.1.3. Using a hand calculator, make a table of population values at times

0 through 6 for the following population models. Then graph the

tabulated values.

a. Pt+1 = 1.3Pt , P0 = 1

b. Nt+1 = .8Nt , N0 = 10

c. �Z = .2Z , Z0 = 10

1.1.4. Redo Problem 1.1.3(a) using MATLAB by entering a command se-

quence like:

p=1

x=p

p=1.3*p

x=[x p]

p=1.3*p (Because this repeats an earlier command, you can save

x=[x p] some typing by hitting the “↑” key twice.)

.

.

.

Explain how this works.

Now redo the problem again by a command sequence like:

p=1

x=1

for i=1:10

p=1.3*p (The indentation is not necessary, but helps make

x=[x p] the for-end loop clearer to read.)

end

Explain how this works as well.
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1.1. The Malthusian Model 7

Graph your data with:

plot([0:10],x)

1.1.5. For the model in Problem 1.1.3(a), how much time must pass before

the population exceeds 10, exceeds 100, and exceeds 1,000? (Use

MATLAB to do this experimentally, and then redo it using logarithms

and the fact that Pt = 1.3t .) What do you notice about the difference

between these times? Explain why this pattern holds.

1.1.6. If the data in Table 1.2 on population size were collected in a labora-

tory experiment using insects, would it be consistent with a geometric

model? Would it be consistent with a geometric model for at least

some range of times? Explain.

1.1.7. Complete the following:

a. The models Pt = k Pt−1 and �P = r P represent growing popu-

lations when k is any number in the range and when r is any

number in the range .

b. The models Pt = k Pt−1 and �P = r P represent declining popu-

lations when k is any number in the range and when r is any

number in the range .

c. The models Pt = k Pt−1 and �P = r P represent stable popula-

tions when k is any number in the range and when r is any

number in the range .

1.1.8. Explain why the model �Q = r Q cannot be biologically meaningful

for describing a population when r < −1.

1.1.9. Suppose a population is described by the model Nt+1 = 1.5Nt and

N5 = 7.3. Find Nt for t = 0, 1, 2, 3, and 4.

1.1.10. A model is said to have a steady state or equilibrium point at P∗ if

whenever Pt = P∗, then Pt+1 = P∗ as well.

a. Rephrase this definition as: A model is said to have a steady state

at P∗ if whenever P = P∗, then �P = . . . .

b. Rephrase this definition in more intuitive terms: A model is said

to have a steady state at P∗ if . . . .

c. Can a model described by Pt+1 = (1 + r )Pt have a steady state?

Explain.

Table 1.2. Insect Population Values

t 0 1 2 3 4 5 6 7 8 9 10
Pt .97 1.52 2.31 3.36 4.63 5.94 7.04 7.76 8.13 8.3 8.36
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8 Dynamic Modeling with Difference Equations

Table 1.3. U.S. Population Estimates

Year Population (in 1,000s)

1920 106,630
1925 115,829
1930 122,988
1935 127,252
1940 131,684
1945 131,976
1950 151,345
1955 164,301
1960 179,990

1.1.11. Explain why the model �P = r P leads to the formula Pt = (1 +

r )t P0.

1.1.12. Suppose the size of a certain population is affected only by birth,

death, immigration, and emigration – each of which occurs in a yearly

amount proportional to the size of a population. That is, if the pop-

ulation is P , within a time period of 1 year, the number of births is

bP , the number of deaths is d P , the number of immigrants is i P ,

and the number of emigrants is eP , for some b, d, i, and e. Show

the population can still be modeled by �P = r P and give a formula

for r .

1.1.13. As limnologists and oceanographers are well aware, the amount of

sunlight that penetrates to various depths of water can greatly affect

the communities that live there. Assuming the water has uniform

turbidity, the amount of light that penetrates through a 1-meter column

of water is proportional to the amount entering the column.

a. Explain why this leads to a model of the form Ld+1 = kLd , where

Ld denotes the amount of light that has penetrated to a depth of d

meters.

b. In what range must k be for this model to be physically meaningful?

c. For k = .25, L0 = 1, plot Ld for d = 0, 1, . . . , 10.

d. Would a similar model apply to light filtering through the canopy

of a forest? Is the “uniform turbidity” assumption likely to apply

there?

1.1.14. The U.S. population data in Table 1.3 is from (Keyfitz and Flieger,

1968).

a. Graph the data. Does this data seem to fit the geometric growth

model? Explain why or why not using graphical and numerical
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1.1. The Malthusian Model 9

evidence. Can you think of factors that might be responsible for

any deviation from a geometric model?

b. Using the data only from years 1920 and 1925 to estimate a growth

rate for a geometric model, see how well the model’s results agree

with the data from subsequent years.

c. Rather than just using 1920 and 1925 data to estimate a growth

parameter for the U.S. population, find a way of using all the data

to get what (presumably) should be a better geometric model. (Be

creative. There are several reasonable approaches.) Does your new

model fit the data better than the model from part (b)?

1.1.15. Suppose a population is modeled by the equation Nt+1 = 2Nt , when

Nt is measured in individuals. If we choose to measure the population

in thousands of individuals, denoting this by Pt , then the equation

modeling the population might change. Explain why the model is

still just Pt+1 = 2Pt . (Hint: Note that Nt = 1000Pt .)

1.1.16. In this problem, we investigate how a model must be changed if we

change the amount of time represented by an increment of 1 in the time

variable t . It is important to note that this is not always a biologically

meaningful thing to do. For organisms like certain insects, gener-

ations do not overlap and reproduction times are regularly spaced,

so using a time increment of less than the span between two con-

secutive birth times would be meaningless. However, for organisms

like humans with overlapping generations and continual reproduc-

tion, there is no natural choice for the time increment. Thus, these

populations are sometimes modeled with an “infinitely small” time

increment (i.e., with differential equations rather than difference equa-

tions). This problem illustrates the connection between the two types

of models.

A population is modeled by Nt+1 = 2Nt , N0 = A, where each

increment of t by 1 represents a passage of 1 year.

a. Suppose we want to produce a new model for this population,

where each time increment of t by 1 now represents 0.5 years, and

the population size is now denoted Pt . We want our new model to

produce the same populations as the first model at 1-year intervals

(so P2t = Nt ). Thus, we have Table 1.4. Complete the table for Pt

so that the growth is still geometric. Then give an equation of the

model relating Pt+1 to Pt .

b. Produce a new model that agrees with Nt at 1-year intervals, but

denote the population size by Qt , where each time increment of
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10 Dynamic Modeling with Difference Equations

Table 1.4. Changing Time Steps in a Model

t 0 1 2 3
Nt A 2A 4A 8A

t 0 1 2 3 4 5 6
Pt A 2A 4A 8A

t by 1 represents 0.1 years (so, Q10t = Nt ). You should begin by

producing tables similar to those in part (a).

c. Produce a new model that agrees with Nt at 1-year intervals, but

denote the population size by Rt , where each time increment of t

by 1 represents h years (so R 1
h

t = Nt ). (h might be either bigger

or smaller than 1; the same formula describes either situation.)

d. Generalize parts (a–c), writing a paragraph to explain why, if our

original model uses a time increment of 1 year and is given by

Nt+1 = k Nt , then a model producing the same populations at 1-

year intervals, but that uses a time increment of h years, is given

by Pt+1 = kh Pt .

e. (Calculus) If we change the name of the time interval h to �t , part

(d) shows that

�P

�t
=

kh − 1

h
P.

If �t = h is allowed to become infinitesimally small, this means

d P

dt
= lim

h→0

kh − 1

h
P.

Illustrate that

lim
h→0

kh − 1

h
= ln k

by choosing a few values of k and a very small h and comparing

the values of ln k and kh−1
h

.

This result is formally proved by:

lim
h→0

kh − 1

h
= lim

h→0

k0+h − k0

h
=

d

dx
kx

∣

∣

∣

∣

x=0

= ln k kx
∣

∣

x=0
= ln k.

f. (Calculus) Show the solution to d P
dt

= ln k P with initial value

P(0) = P0 is

P(t) = P0et ln k = P0k t .
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