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CHAPTER 1

Auctions and Efficiency
Eric Maskin

1. INTRODUCTION

The allocation of resources is an all-pervasive theme in economics. Further-
more, the question of whether there exist mechanisms ensuring efficient allo-
cation (i.e., mechanisms that ensure that resources end up in the hands of those
who value them most) is of central importance in the discipline. Indeed, the
very word “economics” connotes a preoccupation with the issue of efficiency.

But economists’ interest in efficiency does not end with the question of
existence. If efficient mechanisms can be constructed, we want to know what
they look like and to what extent they might resemble institutions used in
practice.

Understandably, the question of what will constitute an efficient mechanism
has been a major concern of economic theorists going back to Adam Smith. But,
the issue is far from just a theoretical one. It is also of considerable practical
importance. This is particularly clear when it comes to privatization, the transfer
of assets from the state to the private sector.

In the last 15 years or so, we have seen a remarkable flurry of privatizations
in Eastern Europe, the former Soviet Union, China, and highly industrialized
Western nations, such as the United States, the United Kingdom, and Germany.
An important justification for these transfers has been the expectation that they
will improve efficiency. But if efficiency is the rationale, an obvious leading
question to ask is: “What sorts of transfer mechanisms will best advance this
objective?”

One possible and, of course, familiar answer is “the Market.” We know
from the First Theorem of Welfare Economics (see Debreu, 1959) that, under
certain conditions, the competitive mechanism (the uninhibited exchange and
production of goods by buyers and sellers) results in an efficient allocation.
A major constraint on the applicability of this result to the circumstances of
privatization, however, is the theorem’s hypothesis of large numbers. For the
competitive mechanism to work properly – to avoid the exercise of monopoly
power – there must be sufficiently many buyers and sellers so that no single
agent has an appreciable effect on prices. But privatization often entails small
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numbers. In the recent U.S. “spectrum” auctions – the auctions in which the
government sold rights (in the form of licenses) to use certain radio frequency
bands for telecommunications – there were often only two or three serious bid-
ders for a given license. The competitive model does not seem readily applicable
to such a setting.

An interesting alternative possibility was raised by William Vickrey (1961)
40 years ago. Vickrey showed that, if a seller has a single indivisible good
for sale, a second-price auction (see Section 2) is an efficient mechanism –
i.e., the winner is the buyer whose valuation of the good is highest – in the
case where buyers have private values (“private values” mean that no buyer’s
private information affects any other buyer’s valuation). This finding is rendered
even more significant by the fact that it can be readily extended to the sale of
multiple goods,1 as shown by Theodore Groves (1973) and Edward Clarke
(1971). Unfortunately, once the assumption of private values is dropped and
thus buyers’ valuations do depend on other buyers’ information (i.e., we are
in the world of common2 or interdependent values), the second-price auction
is no longer efficient, as I will illustrate later by means of an example. Yet,
the common-values case is the norm in practice. If, say, a telecommunications
firm undertakes a market survey to forecast demand for cell phones in a given
region, the results of the survey will surely be of interest to its competitors and
thus turn the situation into one of common values.

Recently, a literature has developed on the design of efficient auctions in
common-values settings. The time is not yet ripe for a survey; the area is
currently evolving too rapidly for that. But I would like to take this opportunity
to discuss a few of the ideas from this literature.

2. THE BASIC MODEL

Because it is particularly simple, I will begin with the case of a single indivisible
good. Later, I will argue that much (but not all) of what holds in the one-good
case extends to multiple goods.

Suppose that there are n potential buyers. It will be simplest to assume
that they are risk-neutral (however, we can accommodate any other attitude
toward risk if the model is specialized to the case in which there is no residual
uncertainty about valuations when all buyers’ information is pooled). Assume
that each buyer i’s private information about the good can be summarized
by a real-valued signal. That is, buyer i’s information is reducible to a one-
dimensional parameter.3 Formally, suppose that each buyer i’s signal si lies in

1 Vickrey himself also treated the case of multiple units of the same good.
2 I am using “common values” in the broad sense to cover any instance where one agent’s payoff

depends on another’s information. The term is sometimes used narrowly to mean that all agents
share the same payoff.

3 Later on, I will examine the case of multidimensional signals. As with multiple goods, much
will generalize. As we will see, the most problematic case is that in which there are both multiple
goods and multidimensional signals.
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an interval [si , s̄i ]. The joint prior distribution of (s1, . . . , sn) is given by the
c.d.f. F(s1, . . . , sn). Buyer i’s valuation for the good (i.e., the most he would be
willing to pay for it) is given by the function vi (s1, . . . , sn). I shall suppose (with
little loss of generality) that higher values of si correspond to higher valuations,
i.e.,

∂vi

∂si
> 0. (2.1)

Let us examine two illustrations of this model.

Example 2.1. Suppose that

vi (s1, . . . , sn) = si .

In this case, we are in the world of private values, not the interesting setting
from the perspective of this lecture, but a valid special case.

A more pertinent example is:

Example 2.2. Suppose that the true value of the good to buyer i is yi , which,
in turn, is the sum of a value component that is common to all buyers and a
component that is peculiar to buyer i . That is,

yi = z + zi ,

where z is the common component and zi is buyer i’s idiosyncratic component.
Suppose, however, that buyer i does not actually observe yi , but only a noisy
signal

si = yi + εi , (2.2)

where εi is the noise term, and all the random variables –z, the zi s, and the
εi s – are independent. In this case, every buyer j’s signal s j provides information
to buyer i about his valuation, because s j is correlated [via (2.2)] with the
common component z. Hence, we can express vi (s1 , . . . , sn) as

vi (s1, . . . , sn) = E[yi |s1, . . . , sn], (2.3)

where the right-hand side of (2.3) denotes the expectation of yi conditional on
the signals (s1, . . . , sn).

This second example might be kept in mind as representative of the sort of
scenario that the analysis is intended to apply to.

3. AUCTIONS

An auction in the model of Section 2 is a mechanism (alternatively termed a
“game form” or “outcome function”) that, on the basis of the bids submitted,
determines (i) who wins (i.e., who – if anyone – is awarded the good), and
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to such a setting.

An interesting alternative possibility was raised by William Vickrey (1961)
40 years ago. Vickrey showed that, if a seller has a single indivisible good
for sale, a second-price auction (see Section 2) is an efficient mechanism –
i.e., the winner is the buyer whose valuation of the good is highest – in the
case where buyers have private values (“private values” mean that no buyer’s
private information affects any other buyer’s valuation). This finding is rendered
even more significant by the fact that it can be readily extended to the sale of
multiple goods,1 as shown by Theodore Groves (1973) and Edward Clarke
(1971). Unfortunately, once the assumption of private values is dropped and
thus buyers’ valuations do depend on other buyers’ information (i.e., we are
in the world of common2 or interdependent values), the second-price auction
is no longer efficient, as I will illustrate later by means of an example. Yet,
the common-values case is the norm in practice. If, say, a telecommunications
firm undertakes a market survey to forecast demand for cell phones in a given
region, the results of the survey will surely be of interest to its competitors and
thus turn the situation into one of common values.

Recently, a literature has developed on the design of efficient auctions in
common-values settings. The time is not yet ripe for a survey; the area is
currently evolving too rapidly for that. But I would like to take this opportunity
to discuss a few of the ideas from this literature.

2. THE BASIC MODEL

Because it is particularly simple, I will begin with the case of a single indivisible
good. Later, I will argue that much (but not all) of what holds in the one-good
case extends to multiple goods.

Suppose that there are n potential buyers. It will be simplest to assume
that they are risk-neutral (however, we can accommodate any other attitude
toward risk if the model is specialized to the case in which there is no residual
uncertainty about valuations when all buyers’ information is pooled). Assume
that each buyer i’s private information about the good can be summarized
by a real-valued signal. That is, buyer i’s information is reducible to a one-
dimensional parameter.3 Formally, suppose that each buyer i’s signal si lies in

1 Vickrey himself also treated the case of multiple units of the same good.
2 I am using “common values” in the broad sense to cover any instance where one agent’s payoff

depends on another’s information. The term is sometimes used narrowly to mean that all agents
share the same payoff.

3 Later on, I will examine the case of multidimensional signals. As with multiple goods, much
will generalize. As we will see, the most problematic case is that in which there are both multiple
goods and multidimensional signals.
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where the right-hand side of (2.3) denotes the expectation of yi conditional on
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(ii) how much each buyer pays.4 Let us call an auction efficient provided that,
in equilibrium, buyer i is the winner if and only if

vi (s1, . . . , sn) ≥ max
j �=i

vj (s1, . . . , sn) (3.1)

(this definition is slightly inaccurate because of the possibility of ties for highest
valuation, an issue that I shall ignore). In other words, efficiency demands that,
in an equilibrium of the auction, the winner be the buyer with the highest
valuation, conditional on all available information (i.e., on all buyers’ signals).

This notion of efficiency is sometimes called expost efficiency. It assumes
implicitly that the social value of the good being sold equals the maximum of
the potential buyers’ individual valuations. This assumption would be justified
if, for example, each buyer used the good (e.g., a spectrum license) to produce
an output (e.g., telecommunication service) that is sold in a competitive market
without significant externalities (market power or externalities might drive a
wedge between individual and social values).

The reader may wonder why, even if one wants efficiency, it is necessary to
insist that the auction itself be efficient. After all, the buyers could always retrade
afterward if the auction resulted in a winner with less than the highest valuation.
The problem with relying on postauction trade, however, is much the same as
that plaguing competitive exchange in the first place: These mechanisms do
not, in general, work efficiently when there are only a few traders. To see this,
consider the following example:5

Example 3.1. Suppose that there are two buyers. Assume that buyer 1 has won
the auction and has a valuation of 1. If the auction is not guaranteed to be
efficient, then there is some chance that buyer 2’s valuation is higher. Suppose
that, from buyer 1’s perspective, buyer 2’s valuation is distributed uniformly in
the interval [0, 2]. Now, if there is to be further trade after the auction, someone
has to initiate it. Let us assume that buyer 1 does so by proposing a trading
price to buyer 2. Presumably, buyer 1 will propose a price p∗ that maximizes
his expected payoff, i.e., that solves

max
p

1

2
(2 − p)(p − 1). (∗)

[To understand (∗), note that 1
2 (2 − p) is the probability that the proposal is

accepted – since it is the probability that buyer 2’s valuation is at least p – and
that p − 1 is buyer 1’s net gain in the event of acceptance.] But the solution to
(∗) is p∗ = 3

2 . Hence, if buyer 2’s valuation lies between 1 and 3
2 , the allocation,

4 For some purposes – e.g., dealing with risk-averse buyers (see Maskin and Riley, 1984), liquidity
constraints (see Che and Gale, 1996, or Maskin, 2000) or allocative externalities (see Jehiel and
Moldovanu (2001) – one must consider auctions in which buyers other than the winner also
make payments. In this lecture, however, I will not have to deal with this possibility.

5 In this example, buyers have private values, but, as Fieseler, Kittsteiner, and Moldavanu (2000)
show, resale can become even more problematic when there are common values.
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even after allowing for expost trade, will remain inefficient, because buyer 2
will reject 1’s proposal.

I will first look at efficiency in the second-price auction. This auction form
(often called the Vickrey auction) has the following rules: (i) each bidder i
makes a (sealed) bid bi , which is a nonnegative number; (ii) the winner is the
bidder who has made the highest bid (again ignoring the issue of ties); (iii) the
winner pays the second-highest bid, max j �=i b j . As I have already noted and
will illustrate explicitly, in Section 6 this auction can readily be extended to
multiple goods.

The Vickrey auction is efficient in the case of private values.6 To see this, note
first that it is optimal – in fact, a dominant strategy – for buyer i to set bi = vi

(i.e., to bid his true valuation). In particular, bidding below vi does not affect
buyer i’s payment if he wins (because his bid does not depend on his own bid);
it just reduces his chance of winning – and so is not a good strategy. Bidding
above vi raises buyer i’s probability of winning, but the additional events in
which he wins are precisely those in which someone else has bid higher than
vi . In such events, buyer i pays more than vi , also not a desirable outcome.
Thus, it is indeed optimal to bid bi = vi , which implies that the winner is the
buyer with the highest valuation, the criterion for efficiency.

Unfortunately, the Vickrey auction does not remain efficient once we depart
from private values. To see this, consider the following example.

Example 3.4. Suppose that there are three buyers with valuation functions

v1(s1, s2, s3) = s1 + 2

3
s2 + 1

3
s3,

v2(s1, s2, s3) = s2 + 1

3
s1 + 2

3
s3,

v3(s1, s2, s3) = s3.

Notice that buyers 1 and 2 have common values (i.e., their valuations do not
depend only on their own signals). Assume that it happens that s1 = s2 = 1
(of course, buyers 1 and 2 would not know that their signal values are equal,
because signals are private information), and suppose that buyer 3’s signal
value is either slightly below or slightly above 1. In the former case, it is easy
to see that

v1 > v2 > v3,

and so, for efficiency, buyer 1 ought to win. However, in the latter case

v2 > v1 > v3,

6 It is easy to show that the “first-price” auction – the auction in which each buyer makes a bid, the
high bidder wins, and the winner pays his bid – is a nonstarter as far as efficiency is concerned.
Indeed, even in the case of private values, the first-price auction is never efficient, except when
buyers’ valuations are symmetrically distributed (see Maskin, 1992).
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and so buyer 2 is the efficient winner. Thus, the efficient allocation between
buyers 1 and 2 turns on whether s3 is below or above 1. But, in a Vickrey
auction, the bids made by buyers 1 and 2 cannot incorporate information about
s3, because that signal is private information to buyer 3. Thus, the outcome of
the auction cannot in general be efficient.

4. AN EFFICIENT AUCTION

How should we respond to the shortcomings of the Vickrey auction as illustrated
by Example 3.3? One possible reaction is to appeal to classical mechanism-
design theory. Specifically, we could have each buyer i announce a signal value
ŝi , award the good to the buyer i for whom vi (ŝ1, . . . , ŝn) is highest, and choose
the winner’s payment to evoke truth-telling in buyers (i.e., to induce each buyer
j to set ŝ j equal to his true signal value s j ). This approach is taken in Crémer
and McLean (1985) and Maskin (1992).

The problem with such a “direct revelation” mechanism is that it is utterly
unworkable in practice. In particular, notice that it requires the mechanism
designer to know the physical signal spaces S1, . . . , Sn, the functional forms
vi (·), and the prior distributions of the signals – an extraordinarily demanding
constraint. Now, the mechanism designer could attempt to elicit this information
from the buyers themselves using the methods of the implementation literature
(see Palfrey, 1993). For example, to learn the signal spaces, he could have
each buyer announce a vector (Ŝ1, . . . , Ŝn) and assign suitable penalties if the
announcements did not match up appropriately. A major difficulty with such a
scheme, however, is that in all likelihood the signal spaces Si are themselves
private information. For analytic purposes, we model Si as simply an interval
of numbers. But, this abstracts from the reality that buyer i’s signal corresponds
to some physical entity – whatever it is that buyer i observes. Indeed, the signal
may well be a sufficient statistic for data from a variety of different informational
sources, and there is no reason why other buyers should know just what this
array of sources is.

To avoid these complications, I shall concentrate on auction rules that do not
make use of such details as signal spaces, functional forms, and distributions.
Indeed, I will be interested in auctions that work well irrespective of these
details; that is, I will adhere to the “Wilson Doctrine” (after Robert Wilson, who
has been an eloquent proponent of the view that auction institutions should be
“detail-free”). It turns out that a judicious modification of the Vickrey auction
will do the trick.

Before turning to the modification, however, I need to introduce a restriction
on valuation functions that is critical to the possibility of constructing efficient
auctions. Let us assume that for all i and j �= i and all (s1, . . . , sn),

vi (s1, . . . , sn) = v j (s1, . . . , sn) ⇒ ∂vi

∂si
(s1, . . . , sn) >

∂v j

∂si
(s1, . . . , sn).7 (4.1)

7 This condition was introduced by Gresik (1991).
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In other words, condition (4.1) says that buyer i’s signal has a greater marginal
effect on his own valuation than on that of any other buyer j (at least at points
where buyer i’s and buyer j’s valuations are equal).

Notice that, in view of (2.1), condition (4.1)8 is automatically satisfied by
Example 2.1 (the case of private values): the right-hand side of the inequal-
ity then simply vanishes. Condition (4.1) also holds for Example 2.2. This is
because, in that example, si conveys relevant information to buyer j (�= i) about
the common component z, but tells buyer i not only about z but also his id-
iosyncratic component zi. Thus, vi will be more sensitive than v j to variations
in si .

But whether or not condition (4.1) is likely to be satisfied, it is, in any event,
essential for efficiency. To see what can go wrong without it, consider the
following example.

Example 4.5. Suppose that the owner of a tract of land wishes to sell off the
rights to drill for oil on her property. There are two potential drillers who
are competing for this right. Driller 1’s fixed cost of drilling is 1, whereas his
marginal cost is 2. In contrast, driller 2 has fixed and marginal costs of 2 and
1, respectively. Assume that driller 1 observes how much oil is underground.
That is, s1 equals the quantity of oil. Driller 2 obtains no private information.
Then, if the price of oil is 4, we have

v1(s1) = (4 − 2)s1 − 1 = 2s1 − 1,

v2(s1) = (4 − 1)s1 − 2 = 3s1 − 2.

Observe that v1(s1) > v2(s1) if and only if s1 < 1. Thus, for efficiency, driller 1
should be awarded drilling rights provided that 1

2 < s1 < 1 ( for s1 < 1
2 , there

is not enough oil to justify drilling at all). Driller 2, by contrast, should get the
rights when s1 > 1.

In this example, there is no way (either through a modified Vickrey auction
or otherwise) of inducing driller 1 to reveal the true value s1 to allocate drilling
rights efficiently. To see this, consider, without loss of generality, a direct rev-
elation mechanism and let t1(ŝ1) be a monetary transfer (possibly negative) to
driller 1 if he announces signal value ŝ1. Let s �

1 and s ��
1 be signal values such

that

1

2
< s �

1 < 1 < s ��
1 . (4.2)

Then, for driller 1 to have the incentive to announce truthfully when s1 = s ��
1 ,

we must have

t1(s ��
1 ) ≥ 2s ��

1 − 1 + t1(s �
1) (4.3)

8 Notice that the strictness of the inequality in (4.1) rules out the case of “pure common values,”
where all buyers share the same valuation. However, in that case, the issue of who wins does
not matter for efficiency.
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and so buyer 2 is the efficient winner. Thus, the efficient allocation between
buyers 1 and 2 turns on whether s3 is below or above 1. But, in a Vickrey
auction, the bids made by buyers 1 and 2 cannot incorporate information about
s3, because that signal is private information to buyer 3. Thus, the outcome of
the auction cannot in general be efficient.

4. AN EFFICIENT AUCTION

How should we respond to the shortcomings of the Vickrey auction as illustrated
by Example 3.3? One possible reaction is to appeal to classical mechanism-
design theory. Specifically, we could have each buyer i announce a signal value
ŝi , award the good to the buyer i for whom vi (ŝ1, . . . , ŝn) is highest, and choose
the winner’s payment to evoke truth-telling in buyers (i.e., to induce each buyer
j to set ŝ j equal to his true signal value s j ). This approach is taken in Crémer
and McLean (1985) and Maskin (1992).

The problem with such a “direct revelation” mechanism is that it is utterly
unworkable in practice. In particular, notice that it requires the mechanism
designer to know the physical signal spaces S1, . . . , Sn, the functional forms
vi (·), and the prior distributions of the signals – an extraordinarily demanding
constraint. Now, the mechanism designer could attempt to elicit this information
from the buyers themselves using the methods of the implementation literature
(see Palfrey, 1993). For example, to learn the signal spaces, he could have
each buyer announce a vector (Ŝ1, . . . , Ŝn) and assign suitable penalties if the
announcements did not match up appropriately. A major difficulty with such a
scheme, however, is that in all likelihood the signal spaces Si are themselves
private information. For analytic purposes, we model Si as simply an interval
of numbers. But, this abstracts from the reality that buyer i’s signal corresponds
to some physical entity – whatever it is that buyer i observes. Indeed, the signal
may well be a sufficient statistic for data from a variety of different informational
sources, and there is no reason why other buyers should know just what this
array of sources is.

To avoid these complications, I shall concentrate on auction rules that do not
make use of such details as signal spaces, functional forms, and distributions.
Indeed, I will be interested in auctions that work well irrespective of these
details; that is, I will adhere to the “Wilson Doctrine” (after Robert Wilson, who
has been an eloquent proponent of the view that auction institutions should be
“detail-free”). It turns out that a judicious modification of the Vickrey auction
will do the trick.

Before turning to the modification, however, I need to introduce a restriction
on valuation functions that is critical to the possibility of constructing efficient
auctions. Let us assume that for all i and j �= i and all (s1, . . . , sn),

vi (s1, . . . , sn) = v j (s1, . . . , sn) ⇒ ∂vi

∂si
(s1, . . . , sn) >

∂v j

∂si
(s1, . . . , sn).7 (4.1)

7 This condition was introduced by Gresik (1991).
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In other words, condition (4.1) says that buyer i’s signal has a greater marginal
effect on his own valuation than on that of any other buyer j (at least at points
where buyer i’s and buyer j’s valuations are equal).

Notice that, in view of (2.1), condition (4.1)8 is automatically satisfied by
Example 2.1 (the case of private values): the right-hand side of the inequal-
ity then simply vanishes. Condition (4.1) also holds for Example 2.2. This is
because, in that example, si conveys relevant information to buyer j (�= i) about
the common component z, but tells buyer i not only about z but also his id-
iosyncratic component zi. Thus, vi will be more sensitive than v j to variations
in si .

But whether or not condition (4.1) is likely to be satisfied, it is, in any event,
essential for efficiency. To see what can go wrong without it, consider the
following example.

Example 4.5. Suppose that the owner of a tract of land wishes to sell off the
rights to drill for oil on her property. There are two potential drillers who
are competing for this right. Driller 1’s fixed cost of drilling is 1, whereas his
marginal cost is 2. In contrast, driller 2 has fixed and marginal costs of 2 and
1, respectively. Assume that driller 1 observes how much oil is underground.
That is, s1 equals the quantity of oil. Driller 2 obtains no private information.
Then, if the price of oil is 4, we have

v1(s1) = (4 − 2)s1 − 1 = 2s1 − 1,

v2(s1) = (4 − 1)s1 − 2 = 3s1 − 2.

Observe that v1(s1) > v2(s1) if and only if s1 < 1. Thus, for efficiency, driller 1
should be awarded drilling rights provided that 1

2 < s1 < 1 ( for s1 < 1
2 , there

is not enough oil to justify drilling at all). Driller 2, by contrast, should get the
rights when s1 > 1.

In this example, there is no way (either through a modified Vickrey auction
or otherwise) of inducing driller 1 to reveal the true value s1 to allocate drilling
rights efficiently. To see this, consider, without loss of generality, a direct rev-
elation mechanism and let t1(ŝ1) be a monetary transfer (possibly negative) to
driller 1 if he announces signal value ŝ1. Let s �

1 and s ��
1 be signal values such

that

1

2
< s �

1 < 1 < s ��
1 . (4.2)

Then, for driller 1 to have the incentive to announce truthfully when s1 = s ��
1 ,

we must have

t1(s ��
1 ) ≥ 2s ��

1 − 1 + t1(s �
1) (4.3)

8 Notice that the strictness of the inequality in (4.1) rules out the case of “pure common values,”
where all buyers share the same valuation. However, in that case, the issue of who wins does
not matter for efficiency.
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(the left-hand side is his payoff when he is truthful, whereas the right-hand side
is his payoff when he pretends that s1 = s �

1). Similarly, the incentive-constraint
corresponding to s1 = s �

1 is

2s �
1 − 1 + t1(s �

1) ≥ t1(s ��
1 ). (4.4)

Subtracting (4.4) from (4.3), we obtain

2(s �
1 − s ��

1 ) ≥ 0,

a contradiction of (4.2). Hence, there exists no efficient mechanism.
The feature that interferes with efficiency in this example is the violation of

condition (4.1), i.e., the fact that

0 <
∂v1

∂s1
<

∂v2

∂s1
. (4.5)

Inequalities (2.1) and (4.5) imply that, as s1 rises, drilling rights become more
valuable to driller 1, but increasingly more likely, from the standpoint of ef-
ficiency, to be awarded to driller 2. This conflict makes the task of providing
proper incentives for driller 1 impossible.

Assuming henceforth that (4.1) holds, let us reconfront the task of designing
an efficient auction. In Example 3.4, we saw that the Vickrey auction failed
because buyers 1 and 2 could not incorporate pertinent information about buyer
3 in their bids (since s3 was private information). This suggests that, as in
Dasgupta and Maskin (2000), a natural way of amending the Vickrey auction
would be to allow buyers to make contingent bids – bids that depend on other
buyers’ valuations. In Example 3.4, this would enable buyer 1 to say, in effect,
“I don’t know what buyer 3’s valuation is, but if it turns out to be x , then I want
to bid y.”

Let us examine how contingent bidding would work in the case of two buyers.
Buyer 1 would announce a schedule b̂1(·), where, for all possible values v2,

b̂1(v2) = buyer 1’s bid if buyer 2 has valuation v2.

Similarly, buyer 2 would announce a schedule b̂2(·), where

b̂2(v1) = buyer 2’s bid if buyer 1’s valuation is v1.

We would then look for a fixed point
(
vo

1, vo
2

) = (
b̂1

(
vo

2

)
, b̂2

(
vo

1

))
(4.6)

and

install buyer 1 as the winner if and only if vo
1 > vo

2 . (4.7)

To understand the rationale for (4.6) and (4.7), imagine that buyers bid
truthfully. Because signals are private information and thus buyer 1 will not in
general know his own valuation, truthful bidding means that, if his signal value
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is s1, he submits a schedule b̂1(·) = b1(·) such that

b1(v2(s1, s �
2)) = v1(s1, s �

2) for all s �
2.

9 (4.8)

That is, whatever s �
2 (and hence v2) turns out to be, buyer 1 bids his true valuation

for that signal value. Similarly, truthful bidding for buyer 2 with signal value
s2 means reporting schedule b̂2(·) = b2(·), such that

b2(v1(s �
1, s2)) = v2(s �

1, s2) for all s �
1. (4.9)

Observe that if buyers bid according to (4.8) and (4.9), then the true valuations

(v1(s1, s2), v2(s1, s2))

constitute a fixed point in the sense of (4.6).10

In view of (4.6) and (4.7), this means that if buyers are truthful, the auction
will result in an efficient allocation. Thus, the remaining critical issue is how
to get buyers to bid truthfully. For this purpose, it is useful to recall the device
that the Vickrey auction exploits to induce truthful bidding, viz. to make the
winner’s payment equal, not to his own bid, but to the lowest possible bid he
could have made and still have won the auction.

This trick cannot be exactly replicated in our setting because buyers are
submitting schedules rather than single bids. But let us try to take it as far
as it will go. Suppose that when buyers report the schedules (b̂1(·), b̂2(·)), the
resulting fixed point (vo

1, vo
2) satisfies

vo
1 > vo

2 .

Then, according to our rules, buyer 1 should win. But rather than having him
pay vo

1, we will have buyer 1 pay v∗
1 , where

v∗
1 = b̂2(v∗

1 ). (4.10)

This payment rule, I maintain, is the common-values analog of the Vickrey trick
in the sense that v∗

1 is the lowest constant bid (i.e., the lowest uncontingent bid)
that buyer 1 could make and still win (or tie for winning) given buyer 2’s bid
b̂2(·). The corresponding payment rule for buyer 2 should he win is v∗

2 such that

v∗
2 = b̂1

(
v∗

2

)
. (4.11)

I claim that, given the payment rules (4.10) and (4.11), it is an equilibrium for
buyers to bid truthfully. To see this most easily, let us make use of a strengthened

9 I noted in my arguments against direct revelation mechanisms that buyer 1 most likely will not
know buyer 2’s signal space S2. But this in no way should prevent him from understanding how
his own valuation is related to that of buyer 2, which is what (4.8) is really expressing [i.e., (4.8)
still makes sense even if buyer 1 does not know what values s�

2 can take].
10 Without further assumptions on valuation functions, there could be additional – nontruthful –

fixed points. Dasgupta and Maskin (2000) and Eso and Maskin (2000a) provide conditions to
rule such fixed points out. But even if they are not ruled out, the auction rules can be modified
so that, in equilibrium, the truthful fixed point results (see Dasgupta and Maskin, 2000).
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(the left-hand side is his payoff when he is truthful, whereas the right-hand side
is his payoff when he pretends that s1 = s �

1). Similarly, the incentive-constraint
corresponding to s1 = s �

1 is

2s �
1 − 1 + t1(s �

1) ≥ t1(s ��
1 ). (4.4)

Subtracting (4.4) from (4.3), we obtain

2(s �
1 − s ��

1 ) ≥ 0,

a contradiction of (4.2). Hence, there exists no efficient mechanism.
The feature that interferes with efficiency in this example is the violation of

condition (4.1), i.e., the fact that

0 <
∂v1

∂s1
<

∂v2

∂s1
. (4.5)

Inequalities (2.1) and (4.5) imply that, as s1 rises, drilling rights become more
valuable to driller 1, but increasingly more likely, from the standpoint of ef-
ficiency, to be awarded to driller 2. This conflict makes the task of providing
proper incentives for driller 1 impossible.

Assuming henceforth that (4.1) holds, let us reconfront the task of designing
an efficient auction. In Example 3.4, we saw that the Vickrey auction failed
because buyers 1 and 2 could not incorporate pertinent information about buyer
3 in their bids (since s3 was private information). This suggests that, as in
Dasgupta and Maskin (2000), a natural way of amending the Vickrey auction
would be to allow buyers to make contingent bids – bids that depend on other
buyers’ valuations. In Example 3.4, this would enable buyer 1 to say, in effect,
“I don’t know what buyer 3’s valuation is, but if it turns out to be x , then I want
to bid y.”

Let us examine how contingent bidding would work in the case of two buyers.
Buyer 1 would announce a schedule b̂1(·), where, for all possible values v2,

b̂1(v2) = buyer 1’s bid if buyer 2 has valuation v2.

Similarly, buyer 2 would announce a schedule b̂2(·), where

b̂2(v1) = buyer 2’s bid if buyer 1’s valuation is v1.

We would then look for a fixed point
(
vo

1, vo
2

) = (
b̂1

(
vo

2

)
, b̂2

(
vo

1

))
(4.6)

and

install buyer 1 as the winner if and only if vo
1 > vo

2 . (4.7)

To understand the rationale for (4.6) and (4.7), imagine that buyers bid
truthfully. Because signals are private information and thus buyer 1 will not in
general know his own valuation, truthful bidding means that, if his signal value
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is s1, he submits a schedule b̂1(·) = b1(·) such that

b1(v2(s1, s �
2)) = v1(s1, s �

2) for all s �
2.

9 (4.8)

That is, whatever s �
2 (and hence v2) turns out to be, buyer 1 bids his true valuation

for that signal value. Similarly, truthful bidding for buyer 2 with signal value
s2 means reporting schedule b̂2(·) = b2(·), such that

b2(v1(s �
1, s2)) = v2(s �

1, s2) for all s �
1. (4.9)

Observe that if buyers bid according to (4.8) and (4.9), then the true valuations

(v1(s1, s2), v2(s1, s2))

constitute a fixed point in the sense of (4.6).10

In view of (4.6) and (4.7), this means that if buyers are truthful, the auction
will result in an efficient allocation. Thus, the remaining critical issue is how
to get buyers to bid truthfully. For this purpose, it is useful to recall the device
that the Vickrey auction exploits to induce truthful bidding, viz. to make the
winner’s payment equal, not to his own bid, but to the lowest possible bid he
could have made and still have won the auction.

This trick cannot be exactly replicated in our setting because buyers are
submitting schedules rather than single bids. But let us try to take it as far
as it will go. Suppose that when buyers report the schedules (b̂1(·), b̂2(·)), the
resulting fixed point (vo

1, vo
2) satisfies

vo
1 > vo

2 .

Then, according to our rules, buyer 1 should win. But rather than having him
pay vo

1, we will have buyer 1 pay v∗
1 , where

v∗
1 = b̂2(v∗

1 ). (4.10)

This payment rule, I maintain, is the common-values analog of the Vickrey trick
in the sense that v∗

1 is the lowest constant bid (i.e., the lowest uncontingent bid)
that buyer 1 could make and still win (or tie for winning) given buyer 2’s bid
b̂2(·). The corresponding payment rule for buyer 2 should he win is v∗

2 such that

v∗
2 = b̂1

(
v∗

2

)
. (4.11)

I claim that, given the payment rules (4.10) and (4.11), it is an equilibrium for
buyers to bid truthfully. To see this most easily, let us make use of a strengthened

9 I noted in my arguments against direct revelation mechanisms that buyer 1 most likely will not
know buyer 2’s signal space S2. But this in no way should prevent him from understanding how
his own valuation is related to that of buyer 2, which is what (4.8) is really expressing [i.e., (4.8)
still makes sense even if buyer 1 does not know what values s�

2 can take].
10 Without further assumptions on valuation functions, there could be additional – nontruthful –

fixed points. Dasgupta and Maskin (2000) and Eso and Maskin (2000a) provide conditions to
rule such fixed points out. But even if they are not ruled out, the auction rules can be modified
so that, in equilibrium, the truthful fixed point results (see Dasgupta and Maskin, 2000).
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version of (4.1):

∂vi

∂si
>

∂v j

∂si
. (4.12)

Let us suppose that buyer 2 is truthful, i.e., he bids b2(·) satisfying (4.9). I must
show that it is optimal for buyer 1 to bid b1(·) satisfying (4.8).

Notice first that if buyer 1 wins, his payoff is

v1(s1, s2) − v∗
1 , where v∗

1 = b2
(
v∗

1

)
, (4.13)

regardless of how he bids (because neither his valuation nor his payment de-
pends on his bid). I claim that if buyer 1 bids truthfully, then he wins if and
only if (4.13) is positive. Observe that if this claim is established, then I will
in fact have shown that truthful bidding is optimal; because buyer 1’s bid does
not affect (4.13), the most he can possibly hope for is to win precisely in those
cases where the net payoff from winning is positive.

To see that the claim holds, let us first differentiate (4.9) with respect to s �
1

to obtain

db2

dv1
(v1(s �

1, s2))
∂v1

∂s1
(s �

1, s2) = ∂v2

∂s1
(s �

1, s2) for all s �
1.

This identity, together with (2.1) and (4.12), implies that

db2

dv1
(v1) < 1, for all v1. (4.14)

But, from (4.14), (4.13) is positive if and only if

v1(s1, s2) − v∗
1 >

db2

dv1
(v �

1)(v1(s1, s2) − v∗
1 ) for all v �

1. (4.15)

Now, from the intermediate value theorem, there exists v �
1 ∈ [v∗

1 , v1(s1, s2)] such
that

b2(v1(s1, s2)) − b2(v∗
1 ) = db2

dv1
(v �

1)(v1(s1, s2) − v∗
1 ).

Hence (4.13) is positive if and only if

v1(s1, s2) − v∗
1 > b2(v1(s1, s2)) − b2(v∗

1 ), (4.16)

which, because v∗
1 = b2(v∗

1 ), is equivalent to

v1(s1, s2) > v2(s1, s2). (4.17)

Now suppose that buyer 1 is truthful. Because (v1(s1, s2), v2(s1, s2)) is then
a fixed point, 1 wins if and only if (4.17) holds. So, we can conclude that,
when buyer 1 is truthful, his net payoff from winning is positive [i.e., (4.13) is
positive] if and only if he wins, which is what I claimed. That is, the modified
Vickrey auction is efficient. (This analysis ignores the possible costs to buyers
of aquiring signals; once such costs are incorporated the modified Vickrey
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auction is no longer efficient in general – see Maskin, 1992 and Bergeman and
Välimäki, 2000.)

An attractive feature of the Vickrey auction in the case of private values is that
bidding one’s true valuation is optimal regardless of the behavior of other buyers
(i.e., it is a dominant strategy). Once we abandon private values, however, there
is no hope of finding an efficient mechanism with dominant strategies (this
is because, if my payoff depends on your signal, then my optimal strategy
necessarily depends on the way that your strategy reflects your signal value,
and so is not independent of what you do). Nevertheless, equilibrium in our
modified Vickery auction has a strong robustness property. In particular, notice
that although, technically, truthful bidding constitutes only a Bayesian (rather
than dominant-strategy) equilibrium, equilibrium strategies are independent of
the prior distribution of signals F . That is, regardless of buyers’ prior beliefs
about signals, they will behave the same way in equilibrium. In particular, this
means that the modified Vickrey auction will be efficient even in the case in
which buyers’ signals are believed to be independent of one another.11 It also
means that truthful bidding will remain an equilibrium even after buyers learn
one another’s signal values; i.e., truthful bidding constitutes an ex post Nash
equilibrium. Finally Chung and Ely (2001) show that, at least in the two-buyer
case, the modified Vickrey auction is dominant solvable.

One might complain that having a buyer make his bid a function of the other
buyer’s valuation imposes a heavy informational burden on him – what if he
does not know anything about the connection between the other’s valuation
and his own? I would argue, however, that the modified Vickrey auction should
be viewed as giving buyers an additional opportunity rather than as setting
an onerous requirement. After all, the degree to which a buyer makes his bid
contingent is entirely up to him. In particular, he always has the option of
bidding entirely uncontingently (i.e., of submitting a constant function). Thus,
contingency is optional (but, of course, the degree to which the modified Vickrey
auction will be more efficient than the ordinary Vickrey will turn on the extent
to which buyers are prepared to bid contingently).

I have explicitly illustrated how the modified Vickrey auction works only in
the case of two bidders, but the logic extends immediately to larger numbers.
For the case of n buyers, the rules become:

1. Each buyer i submits a contingent bid schedule b̂i (·), which is a func-
tion of v−i , the vector of valuations excluding that of buyer i.

2. The auctioneer computes a fixed point (vo
1, . . . , vo

n), where vo
i =

b̂i (vo
−i ) for all i .

3. The winner is the buyer i for whom vo
i ≥ vo

j for all j �= i .

11 Crémer and McLean (1985) exhibit a mechanism that attains efficiency if the joint distribution
of signals is common knowledge (including to the auction designer) and exhibits correlation.
R. McLean and A. Postlewaite (2001) show how this sort of mechanism can be generalized to
the case where the auction designer himself does not know the joint distribution.
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