
1 Introduction

Audio and speech processing systems have steadily risen in importance in the every-
day lives of most people in developed countries. From ‘Hi-Fi’ music systems, through
radio to portable music players, audio processing is firmly entrenched in providing
entertainment to consumers. Digital audio techniques in particular have now achieved
a domination in audio delivery, with CD players, Internet radio, MP3 players and iPods
being the systems of choice in many cases. Even within television and film studios,
and in mixing desks for ‘live’ events, digital processing now predominates. Music and
sound effects are even becoming more prominent within computer games.

Speech processing has equally seen an upward worldwide trend, with the rise of
cellular communications, particularly the European GSM (Global System for Mobile
communications) standard. GSM is now virtually ubiquitous worldwide, and has seen
tremendous adoption even in the world’s poorest regions.

Of course, speech has been conveyed digitally over long distance, especially satellite
communications links, for many years, but even the legacy telephone network (named
POTS for ‘Plain Old Telephone Services’) is now succumbing to digitisation in many
countries. The last mile, the several hundred metres of twisted pair copper wire running
to a customer’s home, was never designed or deployed with digital technology in mind,
and has resisted many attempts over the years to be replaced with optical fibre, Ethernet
or wireless links. However with DSL (digital subscriber line – normally asymmetric so
it is faster in one direction than the other, hence ADSL), even this analogue twisted pair
will convey reasonably high-speed digital signals. ADSL is fast enough to have allowed
the rapid growth of Internet telephony services such as Skype which, of course, convey
digitised speech.

1.1 Digital audio

Digital processing is now the method of choice for handling audio and speech: new
audio applications and systems are predominantly digital in nature. This revolution from
analogue to digital has mostly occurred over the past decade, and yet has been a quiet,
almost unremarked upon, change.

It would seem that those wishing to become involved in speech, audio and hearing
related research or development can perform much, if not all, of their work in the digital
domain these days. One of the benefits of digital technology is that the techniques are

1

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-51954-0 - Applied Speech and Audio Processing: With Matlab® Examples
Ian McLoughlin
Excerpt
More information

http://www.cambridge.org/9780521519540
http://www.cambridge.org
http://www.cambridge.org

2 Introduction

relatively device independent: one can create and prototype using one digital processing
platform, and then deploy upon another platform. The criteria then for a development
platform would be for ease-of-use and testing, while the criteria for a deployment plat-
form may be totally separate: low power, small size, high speed, low cost, etc.

In terms of development ease-of-use, Matlab running on a PC is chosen by many
of those working in the field. It is well designed to handle digital signals, especially the
long strings of audio samples. Built-in functions allow most common manipulations to
be performed easily, audio recording and playback are equally possible, and the visu-
alisation and plotting tools are excellent. A reduced-price student version is available
which is sufficient for much audio work. The author runs Matlab on both Mac OS-X
and Linux platforms for much of his own audio work.

Although there is currently no speech, audio or hearing toolbox provided by
The MathWorks® for Matlab, the Signal Processing Toolbox contains most of the
required additional functions, and an open source VOICEBOX is also available from the
Department of Electrical and Electronic Engineering, Imperial College, London with
many additional useful functions. It is also possible to perform all of the audio and
speech processing in this book using the open source developed Octave environment,
but would require some small changes to the Matlab examples given. In terms of capa-
bilities, Octave is less common than Matlab, lacks the advanced plotting and debugging
capabilities, but is otherwise similar.

1.2 Capturing and converting sound

This book is all about sound. Either sound created through the speech production mech-
anism, or sound as heard by a machine or human. In purely physical terms, sound is a
longitudinal wave which travels through air (or a transverse wave in some other media)
due to the vibration of molecules. In air, sound is transmitted as a pressure variation,
between high and low pressure, with the rate of pressure variation from low, to high,
to low again, determining the frequency. The degree of pressure variation (namely the
difference between the high and the low) determines the amplitude.

A microphone captures sound waves, often by sensing the deflection caused by the
wave on a thin membrane, transforming it proportionally to either voltage or current. The
resulting electrical signal is normally then converted to a sequence of coded digital data
using an analogue-to-digital converter (ADC). The most common format, pulse coded
modulation, will be described in Section 5.1.1.

If this same sequence of coded data is fed through a compatible digital-to-analogue
converter (DAC), through an amplifier to a loudspeaker, then a sound may be produced.
In this case the voltage applied to the loudspeaker at every instant of time is proportional
to the sample value from the computer being fed through the DAC. The voltage on the
loudspeaker causes a cone to deflect in or out, and it is this cone which compresses (or
rarifies) the air from instant to instant thus initiating a sound wave.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-51954-0 - Applied Speech and Audio Processing: With Matlab® Examples
Ian McLoughlin
Excerpt
More information

http://www.cambridge.org/9780521519540
http://www.cambridge.org
http://www.cambridge.org

1.3. Sampling 3

Figure 1.1 Block diagram of three classes of digital audio system showing (a) a complete digital
audio processing system comprising (from left to right) an input microphone, amplifier, ADC,
digital system, DAC, amplifier and loudspeaker. Variations also exist for systems recognising
audio or speech (b), and systems synthesising audio (c).

In fact the process, shown diagrammatically in Figure 1.1(a), identifies the major steps
in any digital audio processing system. Audio, in this case speech in free air, is converted
to an electrical signal by a microphone, amplified and probably filtered, before being
converted into the digital domain by an ADC. Once in the digital domain, these signals
can be processed, transmitted or stored in many ways, and indeed may be experimented
upon using Matlab. A reverse process will then convert the signals back into sound.

Connections to and from the processing/storage/transmission system of Figure 1.1
(which could be almost any digital system) may be either serial or parallel, with several
standard options being available in either case. Optical and wireless variants are also
increasingly popular.

Variations on this basic system, such as shown in Figure 1.1(b) and (c), use a subset of
the components for analysis or synthesis of audio. Stereo systems would have two mic-
rophones and loudspeakers, and some systems may have many more of either. The very
simple amplifier, ADC and DAC blocks in the diagram also hide some of the complex-
ities that would be present in many systems – such as analogue filtering, automatic gain
control, and so on, in addition to the type (class) of amplification provided.

Both ADC and DAC are also characterised in different ways: by their sampling rates,
technology, signal-to-noise ratio, and dynamic range, usually determined by the number
of bits that they output.

1.3 Sampling

Considering a sequence of audio samples, first of all we note that the time spacing
between successive samples is almost always designed to be uniform. The frequency of
this timing is referred to as the sampling rate, and in Figure 1.1 would be set through

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-51954-0 - Applied Speech and Audio Processing: With Matlab® Examples
Ian McLoughlin
Excerpt
More information

http://www.cambridge.org/9780521519540
http://www.cambridge.org
http://www.cambridge.org

4 Introduction

a periodic clock signal fed to the ADC and DAC, although there is no reason why
both need the same sample rate – digital processing can be used to change sample rate.
Using the well-known Nyquist criterion, the highest frequency that can be
unambiguously represented by such a stream of samples is half of the sampling rate.

Samples themselves as delivered by ADC are generally fixed point with a resolution
of 16 bits, although 20 bits and even up to 24 bits are found in high-end audio systems.
Handling these on computer could utilise either fixed or floating point representation
(fixed point meaning each sample is a scaled integer, while floating point allows frac-
tional representation), with a general rule of thumb for reasonable quality being that 20
bits fixed point resolution is desirable for performing processing operations in a system
with 16-bit input and output.

In the absence of other factors, the general rule is that an n bit uniformly sampled
digital audio signal will have a dynamic range (the ratio of the biggest amplitude that
can be represented in the system to the smallest one) of, at best:

DR(dB) = 6.02 × n. (1.1)

For telephone-quality speech, resolutions as low as 8–12 bits are possible depending on
the application. For GSM-type mobile phones, 14 bits is common. Telephone-quality,
often referred to as toll-quality, is perfectly reasonable for vocal communications, but is
not perceived as being of particularly high quality. For this reason, more modern vocal
communication systems have tended to move beyond 8 bits sample resolution in practice.

Sample rates vary widely from 7.2 kHz or 8 kHz for telephone-quality audio to
44.1 kHz for CD-quality audio. Long-play style digital audio systems occasionally opt
for 32 kHz, and high-quality systems use 48 kHz. A recent trend is to double this to
96 kHz. It is debatable whether a sampling rate of 96 kHz is at all useful to the human
ear which can typically not resolve signals beyond about 18 kHz, apart from the rare
listeners having golden ears.1 However such systems may be more pet-friendly: dogs
are reportedly able to hear up to 44 kHz and cats up to almost 80 kHz.

1 The die-hard audio enthusiasts who prefer valve amplifiers, pay several years’ salary for a pair of
loudspeakers, and often claim they can hear above 20 kHz, are usually known as having golden ears.

Infobox 1.1 Audio fidelity
Something to note is the inexactness of the entire conversion process: what you hear is a wave
impinging on the eardrum, but what you obtain on the computer has travelled some way through
air, possibly bounced past several obstructions, hit a microphone, vibrated a membrane, been
converted to an electrical signal, amplified, and then sampled. Amplifiers add noise, distortion,
and are not entirely linear. Microphones are usually far worse on all counts. Analogue-to-digital
converters also suffer linearity errors, add noise, distortion, and introduce quantisation error due
to the precision of their voltage sampling process. The result of all this is a computerised sequence
of samples that may not be as closely related to the real-world sound as you might expect. Do not
be surprised when high-precision analysis or measurements are unrepeatable due to noise, or if
delicate changes made to a sampled audio signal are undetectable to the naked ear upon replay.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-51954-0 - Applied Speech and Audio Processing: With Matlab® Examples
Ian McLoughlin
Excerpt
More information

http://www.cambridge.org/9780521519540
http://www.cambridge.org
http://www.cambridge.org

1.4. Summary 5

Table 1.1. Sampling characteristics of common applications.

Application Sample rate, resolution Used how
telephony 8 kHz, 8–12 bits 64 kbps A-law or µ-law
voice conferencing 16 kHz, 14–16 bits 64 kbps SB-ADPCB
mobile phone 8 kHz, 14–16 bits 13 kbps GSM
private mobile radio 8 kHz, 12–16 bits <5 kbps, e.g. TETRA
long-play audio 32 kHz, 14–16 bits minidisc, DAT, MP3
CD audio 44.1 kHz, 16–24 bits stored on CDs
studio audio 48 kHz, 16–24 bits CD mastering
very high end 96 kHz, 20–24 bits for golden ears listening

Sample rates and sampling precisions for several common applications, for humans
at least, are summarised in Table 1.1.

1.4 Summary

Most of the technological detail related to the conversion and transmission process is
outside the scope of this book, although some excellent resources covering this can
be found in the bibliography. Generally, the audio processing specialist is fortunate
enough to be able to work with digital audio without being too concerned with how
it was captured, or how it will be replayed. Thus, we will confine our discussions
throughout the remainder of this text primarily to the processing/storage/transmission,
recognition/analysis and synthesis/generation blocks in Figure 1.1, ignoring the messy
analogue detail.

Sound, as known to humans, has several attributes. These include time-domain
attributes of duration, rhythm, attack and decay, but also frequency domain attributes of
tone and pitch. Other, less well-defined attributes, include quality, timbre and tonality.
Often, a sound wave conveys meaning: for example a fire alarm, the roar of a lion, the
cry of a baby, a peal of thunder or a national anthem.

However, as we have seen, sound sampled by an ADC (at least the more common
pulse coded modulation-based ADCs) is simply represented as a vector of samples,
with each element in the vector representing the amplitude at that particular instant of
time. The remainder of this book attempts to bridge the gap between such a vector of
numbers representing audio, and an understanding or interpretation of the meaning of that
audio.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-51954-0 - Applied Speech and Audio Processing: With Matlab® Examples
Ian McLoughlin
Excerpt
More information

http://www.cambridge.org/9780521519540
http://www.cambridge.org
http://www.cambridge.org

6 Introduction

Bibliography

• Principles of Computer Speech
I. H. Witten (Academic Press, 1982)
This book provides a gentle and readable introduction to speech on computer, written in an

accessible and engaging style. It is a little dated in the choice of technology presented, but the

underlying principles discussed remain unchanged.

• The Art of Electronics
P. Horowitz and W. Hill (Cambridge University Press, 2nd edition 1989)
For those interested in the electronics of audio processing, whether digital or analogue, this

book is a wonderful introduction. It is clearly written, absolutely packed full of excellent

information (on almost any aspect of electronics), and a hugely informative text. Be aware

though that its scope is large: with over 1000 pages, only a fraction is devoted to audio

electronics issues.

• Digital Signal Processing: A Practical Guide for Engineers and Scientists
S. W. Smith (Newnes, 2002)
Also freely available from www.dspguide.com
This excellent reference work is available in book form, or directly from the website above.

The author has done a good job of covering most of the required elements of signal processing

in a relatively easy-to-read way. In general the work lives up to the advertised role of being

practically oriented. Overall, a huge amount of information is presented to the reader; however

it may not be covered gradually enough for those without a signal processing background.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-51954-0 - Applied Speech and Audio Processing: With Matlab® Examples
Ian McLoughlin
Excerpt
More information

http://www.cambridge.org/9780521519540
http://www.cambridge.org
http://www.cambridge.org

2 Basic audio processing

Audio is normal and best handled by Matlab, when stored as a vector of samples, with
each individual value being a double-precision floating point number. A sampled sound
can be completely specified by the sequence of these numbers plus one other item of
information: the sample rate. In general, the majority of digital audio systems differ from
this in only one major respect, and that is they tend to store the sequence of samples as
fixed-point numbers instead. This can be a complicating factor for those other systems,
but an advantage to Matlab users who have two less considerations to be concerned
with when processing audio: namely overflow and underflow.

Any operation that Matlab can perform on a vector can, in theory, be performed
on stored audio. The audio vector can be loaded and saved in the same way as any
other Matlab variable, processed, added, plotted, and so on. However there are of
course some special considerations when dealing with audio that need to be discussed
within this chapter, as a foundation for the processing and analysis discussed in the later
chapters.

This chapter begins with an overview of audio input and output in Matlab,
including recording and playback, before considering scaling issues, basic processing
methods, then aspects of continuous analysis and processing. A section on visualisation
covers the main time- and frequency-domain plotting techniques. Finally, methods of
generating sounds and noise are given.

2.1 Handling audio in MATLAB

Given a high enough sample rate, the double precision vector has sufficient resolution
for almost any type of processing that may need to be performed – meaning that one can
usually safely ignore quantisation issues when in the Matlab environment. However
there are potential resolution and quantisation concerns when dealing with input to and
output from Matlab, since these will normally be in a fixed-point format. We shall
thus discuss input and output: first, audio recording and playback, and then audio file
handling in Matlab.

7

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-51954-0 - Applied Speech and Audio Processing: With Matlab® Examples
Ian McLoughlin
Excerpt
More information

http://www.cambridge.org/9780521519540
http://www.cambridge.org
http://www.cambridge.org

8 Basic audio processing

2.1.1 Recording sound

Recording sound directly in Matlab requires the user to specify the number of samples
to record, the sample rate, number of channels and sample format. For example, to
record a vector of double precision floating point samples on a computer with attached
or integrated microphone, the following Matlab command may be issued:

speech=wavrecord(16000,8000,1,’double’);

This records 16 000 samples with a sample rate of 8 kHz, and places them into a
16 000 element vector named speech. The ‘1’ argument specifies that the recording
is mono rather than stereo. This command only works under Windows, so under Linux
or MacOS it is best to use either the Matlab audiorecorder() function, or use a
separate audio application to record audio (such as the excellent open source audacity
tool), saving the recorded sound as an audio file, to be loaded into Matlab as we shall
see shortly.

Infobox 2.1 Audio file formats
Wave: The wave file format is usually identified by the file extension .wav, and actually can hold
many different types of audio data identified by a header field at the beginning of the file. Most
importantly, the sampling rate, number of channels and number of bits in each sample are also
specified. This makes the format very easy to use compared to other formats that do not specify
such information, and thankfully this format is recognised by Matlab. Normally for audio work,
the wave file would contain PCM data, with a single channel (mono), and 16 bits per sample.
Sample rate could vary from 8000 Hz up to 48 000 Hz. Some older PC sound cards are limited
in the sample rates they support, but 8000 Hz and 44 100 Hz are always supported. 16 000 Hz,
24 000 Hz, 32 000 Hz and 48 000 Hz are also reasonably common.

PCM and RAW hold streams of pulse coded modulation data with no headers or gaps. They
are assumed to be single channel (mono) but the sample rate and number of bits per sample are
not specified in the file – the audio researcher must remember what these are for each .pcm or .raw
file that he or she keeps. These can be read from and written to by Matlab, but are not supported
as a distinctive audio file. However these have historically been the formats of choice for audio
researchers, probably because research software written in C, C++ and other languages can most
easily handle this format.

A-law and µ-law are logarithmically compressed audio samples in byte format. Each byte
represents something like 12 bits in equivalent linear PCM format. This is commonly used in
telecommunications where the sample rate is 8 kHz. Again, however, the .au file extension (which
is common on UNIX machines, and supported under Linux) does not contain any information
on sample rate, so the audio researcher must remember this. Matlab does support this format
natively.

Other formats include those for compressed music such as MP3 (see Infobox: Music file formats
on page 11), MP4, specialised musical instrument formats such as MIDI (musical instrument
digital interface) and several hundred different proprietary audio formats.

If using the audiorecorder() function, the procedure is first to create an audio
recorder object, specifying sample rate, sample precision in bits, and number of channels,
then to begin recording:

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-51954-0 - Applied Speech and Audio Processing: With Matlab® Examples
Ian McLoughlin
Excerpt
More information

http://www.cambridge.org/9780521519540
http://www.cambridge.org
http://www.cambridge.org

2.1. Handling audio in MATLAB 9

aro=audiorecorder(16000,16,1);
record(aro);

At this point, the microphone is actively recording. When finished, stop the recording
and try to play back the audio:

stop(aro);
play(aro);

To convert the stored recording into the more usual vector of audio, it is necessary to
use the getaudiodata() command:

speech=getaudiodata(aro, ’double’);

Other commands, including pause() and resume(), may be issued during record-
ing to control the process, with the entire recording and playback operating as back-
ground commands, making these a good choice when building interactive speech
experiments.

2.1.2 Storing and replaying sound

In the example given above, the ‘speech’ vector consists of double precision samples,
but was recorded with 16-bit precision. The maximum representable range of values in
16-bit format is between −32 768 and +32 767, but when converted to double precision
is scaled to lie with a range of +/−1.0, and in fact this would be the most universal
scaling within Matlab so we will use this wherever possible. In this format, a recorded
sample with integer value 32 767 would be stored with a floating point value of +1.0,
and a recorded sample with integer value −32 768 would be stored with a floating point
value of −1.0.

Replaying a vector of sound stored in floating point format is also easy:

sound(speech, 8000);

It is necessary to specify only the sound vector by name and the sample rate (8 kHz in this
case, or whatever was used during recording). If you have a microphone and speakers
connected to your PC, you can play with these commands a little. Try recording a simple
sentence and then increasing or reducing the sample rate by 50% to hear the changes
that result on playback.

Sometimes processing or other operations carried out on an audio vector will result
in samples having a value greater than +/−1.0, or in very small values. When replayed
using sound(), this would result in clipping, or inaudible playback respectively. In
such cases, an alternative command will automatically scale the audio vector prior to
playback based upon the maximum amplitude element in the audio vector:

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-51954-0 - Applied Speech and Audio Processing: With Matlab® Examples
Ian McLoughlin
Excerpt
More information

http://www.cambridge.org/9780521519540
http://www.cambridge.org
http://www.cambridge.org

10 Basic audio processing

soundsc(speech, 8000);

This command scales in both directions so that a vector that is too quiet will be amplified,
and one that is too large will be attenuated. Of course we could accomplish something
similar by scaling the audio vector ourselves:

sound(speech/max(abs(speech)), 8000);

It should also be noted that Matlab is often used to develop audio algorithms that
will be later ported to a fixed-point computational architecture, such as an integer DSP
(digital signal processor), or a microcontroller. In these cases it can be important to ensure
that the techniques developed are compatible with integer arithmetic instead of floating
point arithmetic. It is therefore useful to know that changing the ‘double’ specified
in the use of the wavrecord() and getaudio() functions above to an ‘int16’
will produce an audio recording vector of integer values scaled between −32 768 and
+32 767.

The audio input and output commands we have looked at here will form the bedrock of
much of the process of audio experimentation with Matlab: graphs and spectrograms (a
plot of frequency against time) can show only so much, but even many experienced audio
researchers cannot repeatedly recognise words by looking at plots! Perfectly audible
sound, processed in some small way, might result in highly corrupt audio that plots
alone will not reveal. The human ear is a marvel of engineering that has been designed
for exactly the task of listening, so there is no reason to assume that the eye can perform
equally as well at judging visualised sounds. Plots can occasionally be an excellent
method of visualising or interpreting sound, but often listening is better.

A time-domain plot of a sound sample is easy in Matlab:

plot(speech);

although sometimes it is preferred for the x-axis to display time in seconds:

plot([1: size(speech)] / 8000, speech);

where again the sample rate (in this case 8 kHz) needs to be specified.

2.1.3 Audio file handling

In the audio research field, sound files are often stored in a raw PCM (pulse coded
modulation) format.That means the file consists of sample values only – with no reference
to sample rate, precision, number of channels, and so on. Also, there is a potential endian
problem for samples greater than 8 bits in size if they have been handled or recorded by
a different computer type.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-51954-0 - Applied Speech and Audio Processing: With Matlab® Examples
Ian McLoughlin
Excerpt
More information

http://www.cambridge.org/9780521519540
http://www.cambridge.org
http://www.cambridge.org

